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The protective nasal boosting of a triple-RBD subunit vaccine
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Dear Editor,
Though COVID-19 vaccines have been developed and clinically

deployed rapidly, new variants of concern (VOCs) are still
emerging frequently and escalating around the world. More
breakthrough infections occurred even vaccination rates are high.
For possible ending of the pandemic, curbing infection and
stopping transmission are priority. Booster approach with either
mRNA or inactivated vaccines can reduce COVID-19 severity,1–3

but shows limited efficacy against infection and transmission. One
of the most important reasons is that serum IgG is hard accessible
to mucosal surface of the upper respiratory tract, where the initial
infection and replication of SARS-CoV-2 occur.4,5 With ability to
generate mucosal immunity against SARS-CoV-2, intranasal
immunization has attracted worldwide attention.6 A most recent
report that a combination of systemic mRNA vaccination plus
mucosal adenovirus-S immunization induced strong neutralizing
antibody responses suggest mucosal booster vaccination is
essential to establish robust sterilizing immunity in the respiratory
tract against SARS-CoV-2.7 Recently, an inhaled COVID vaccine
named Convidecia Air has been approved for emergency use as a
booster in China.8 We have designed a bivalent chimeric triple-
RBD immunogen containing one Delta RBD and two Omicron
RBDs (3Ro-NC)9 (Supplementary Fig. 1) and demonstrated that
intranasal (i.n) immunization with 3Ro-NC plus recombinant
flagellin KFD adjuvant could induce robust systemic and mucosal
immunity against SARR-CoV-2 VOCs. It was noted that the mucosal
immunity induced by 3Ro-NC plus KFD adjuvant inhibited
Omicron infections in both upper and lower respiratory tracts.
As of September 22, 2022, nearly half of the 12.7 billion COVID-19

vaccines inoculated worldwide are the inactivated SARS-CoV-2
vaccine (IAV) (https://ourworldindata.org/ & https://
www.worldometers.info/coronavirus/#countries). However, vaccina-
tion with IAV induced a minimal mucosal secretory IgA response in
individuals. There is an urgent need to develop a boosting strategy
to elicit higher and broad mucosal immune responses for the
enormous vaccinees to prevent potential breakthrough infection.
To test the sequential immunization strategy, human ACE2

transgenic mice were immunized with 2-dose IAVs followed by
intranasal boost with 2-dose 3Ro-NC plus KFD (i.n boost group) or
intramuscular boost with 1-dose IAV (IAV boost group). Mean-
while, unimmunized mice (saline group) and 2-dose IAV
immunized mice without boost were used as controls (Fig. 1a).
The booster administration increased RBD-binding IgG and
neutralizing capacity (Fig. 1b). Consistent with several reports,
three-dose COVID-19 vaccines administration are less neutralizing
against Omicron variant.10 It is of great interest that i.n boost of
2-dose 3Ro-NC plus KFD can improve the breadth and strength of
neutralizing ability against Gamma, Omicron BA.1 and BA.2 strains,
in contrast to the IAV boost (i.m) (Fig. 1b and Supplementary Fig.
2). As expected, only the i.n boost group induced SARS-CoV-2-
specific mucosal immunity, as evidenced by RBD-specific IgA

antibody detected in saliva and virginal lavage fluid (Fig. 1c).
Consistently, the neutralizing titers in representative mucosal
sample, saliva of i.n boost group was significantly higher than that
in the IAV boost group (Supplementary Fig. 3). Moreover, i.n
boost group showed comparable RBD-specific IgA antibody titers
with that induced by 3-dose of 3Ro-NC+ KFD i.n group, higher
than 2-dose of 3Ro-NC+ KFD i.n group (Supplementary Fig. 4).
To investigate effectiveness of the administration of a booster

dose, the mice were then intranasally challenged with Omicron
BA.1 (5 × 104 TCID50 in 50 µl) at 28 days post the last administration.
Viral loads, pathological changes and neutralizing antibodies were
examined at day 3 post infection. As viral loads are mostly under
the detection limit by plaque assay (Supplementary Fig. 5), viral
copies were adopted to evaluate the protection against virus
infection. Compared to the non-boosted group, reduction of viral
copies in the lung of i.n boost group and IAV boost group were
45.5 folds and 7 folds respectively, showing a noticeable drop in
the i.n boost group (Fig. 1d). The viral RNA copies in the i.n boost
group have dropped at least 535-fold lower compared to the saline
control group. Importantly, 3 of 7 mice showed totally blocking the
virus infection in the i.n boost group, which means the intranasal
strategy can curb infection (Fig. 1d). To test whether the mucosal
immunity can offer protection in upper respiratory tracts, turbinate
tissues were taken and measured via qPCR. Intranasal boost group
showed the lowest viral titer in nasal turbinate tissue compared to
other groups (Fig. 1e). The correlation analysis showed viral RNA
copy numbers in the nasal turbinate tissue were negatively
correlated with RBD-specific salivary IgA titers, but independent
of RBD-neutralizing titers in serum (Fig. 1f). Low viral RNA copy
number have been detected in turbinate, indicating that the
mucosal immunity conferred protection in the upper respiratory
tract. In lung tissue, the viral RNA copy number was negatively
correlated with serum neutralizing antibodies titers but not with
RBD-specific salivary IgA titers (Fig. 1g). These indicated that the
neutralizing antibody responses in serum provided protection in
the lower respiratory tract, and the intranasal boosted neutralizing
antibody in mucosal tissue conferred protection in the upper
respiratory tract. Meanwhile, histopathological examination was
performed to analyze infection and immunization related inflam-
mation in the lungs (Fig. 1h and i). It was appreciated that in all four
challenged groups, no severe pathology was observed in lungs. But
inflammatory cell infiltration around perivascular sites can be
observed in the IAV primed mice. In contrast to the IAV boost, the
i.n boost didn’t elevate the level of inflammatory cell infiltration.
In conclusion, despite the significant individual bias in the hACE2

mice, it is still obviously that sequential intranasal immunization with
3Ro-NC plus KFD adjuvant can induce mucosal immunity in the
respiratory tract and enhance broad-neutralizing activity against more
VOCs. By restriction of initial infection and early replication round of
SARS-CoV-2,4 the nasal vaccine booster might reduce the risk of
secondary transmission to lung to result in severe lung disease as well
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as hidden transmission to other persons. Combined with property of
highly safe and self-administered potential warrant its further clinical
trials in humans.
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Fig. 1 Protection efficacy of boosts against SARS-CoV-2 variant Omicron infection. a Diagram scheme of immunization and virus challenge.
Briefly, 12–16 weeks old hACE2 transgenic mice were divided into 4 groups: unimmunized saline (8 mice), 2-dose IAVs immunized (8 mice),
2-dose IAVs immunized followed by intranasal boost with 2-dose 3Ro-NC plus KFD (i.n boost group, 7 mice) or intramuscular boost with
1-dose IAV (IAV boost group, 6 mice). At day 91, all mice were challenged by the SARS-CoV-2 BA.1 strain and sacrificed at day 3 post infection.
b RBD-specific serum IgG and neutralization antibody titers of serum against pseudo-typed virus, before and post boost. c Salivary and vaginal
IgA post last immunization. d, e qPCR tested RNA copies of SARS-CoV-2 RBD in lung and turbinate. f, g Correlation of RNA copies with
Omicron BA.1 RBD-specific salivary IgA and neutralizing titers (dotted lines, 95% confidence interval). h Lung sections stained by Hematoxylin
and eosin (H&E) (Arrow, inflammatory cell infiltration; Scale bars, 100 µm). i Pathological scores, infiltration scores of immunocyte aggregation
around bronchioles, pulmonary vessels, and interstitial pneumonia according to the H&E-stained sections. Data are represented as
mean ± SEM. Groups were compared using paired t test (b), or one-way ANOVA (c–e and i). ns not significant; *P < 0.05; **P < 0.01; ***P < 0.001.
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