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The CLKs (Cdc2-like kinases) belong to the dual-specificity protein kinase family and play crucial roles in regulating transcript
splicing via the phosphorylation of SR proteins (SRSF1-12), catalyzing spliccosome molecular machinery, and modulating the
activities or expression of non-splicing proteins. The dysregulation of these processes is linked with various diseases, including
neurodegenerative diseases, Duchenne muscular dystrophy, inflammatory diseases, viral replication, and cancer. Thus, CLKs have
been considered as potential therapeutic targets, and significant efforts have been exerted to discover potent CLKs inhibitors. In
particular, clinical trials aiming to assess the activities of the small molecules Lorecivivint on knee Osteoarthritis patients, and
Cirtuvivint and Silmitasertib in different advanced tumors have been investigated for therapeutic usage. In this review, we
comprehensively documented the structure and biological functions of CLKs in various human diseases and summarized the
significance of related inhibitors in therapeutics. Our discussion highlights the most recent CLKs research, paving the way for the

clinical treatment of various human diseases.
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INTRODUCTION OF CLKS

The Cdc2-like kinases (CLKs) belong to the dual-specificity protein
kinase (DSK)family, which catalyze the phosphorylation of serine,
threonine, and tyrosine of substrates.! The CLKs family consists of
four homologous proteins (CLK1 - 4) and all family members are
evolutionarily conserved in eukaryots.?>® Specifically, CLKs are
classified as a CMGC kinase (cyclin-dependent kinases (CDKs),
mitogen-activated protein kinases (MAPKs), glycogen synthase
kinases (GSKs), and CDK-like kinases) group that share the same
ATP co-factor and catalyze the phosphorylation of downstream
protein substrates.”® The CLK kinase domain contains an
“EHLAMMERILG" motif and is located at the C-terminus of each
family member. Thus, CLK proteins are also known as the
“LAMMER” family” (Fig. 1a). CLKs are located in the cytoplasm and
nucleus, but mainly exert functions in the nuclear compartment
by phosphorylating the serine / arginine (Ser-Arg) -rich domain of
splicing factors.®'® Generally, phosphorylation of CLKs down-
stream substrates is driven by recognition of the universal
consensus R-x-x-S/T sequence.>'" On this basis, CLKs control pre-
mRNA splicing to generate different protein isoforms, which play
crucial roles in cell growth and survival.'' SR proteins (SRSF1-12)
are well-defined substrates of CLKs that bind with pre-mRNA and
related spliccosome components to facilitate spliceosome
assembly.'?™'* Activated SR proteins that have been phosphory-
lated by CLKs participate in alternative splicing (AS) and catalyze
splicing processes.'> On the contrary, the functional SR proteins
are subsequently dephosphorylated by phosphatases. This
process is required for the export of spliced mRNA from the

nucleus.'>'>16

; https://doi.org/10.1038/541392-023-01409-4

Among the four family members of CLKs, CLK1 has been
structurally and functionally well characterized. CLK1, also termed
STY, has been identified to be auto-phosphorylated at Ser / Thr /
Tyr residues and phosphorylates Ser residues of its substrates.'”'®
The catalytic domain of CLK1 is located at the C-terminus, whereas
the N-terminus contains the Ser-Arg repeats responsible for
mediating the interactions with the corresponding substrates.’
The kinase domain of CLK1 phosphorylates not only Ser-Arg
dipeptide, but also Ser-Lys and Ser-Pro sites.'® Functionally, CLK1
is co-localized with SR proteins in the nucleus and facilitates the
conformational change of the SRSF1 protein. This process
subsequently disrupts the export of SRSF1 from the nucleus to
cytosol and heightens SRSF1 binding to primary transcripts.?°
However, loss of SRSF1 phosphorylation results in decreased
alternative splicing of more than 100 genes, leading to irregular
gene expression.”®?" CLK1 abundance was shown to vary
periodically over the cell cycle and reached a peak at the G2/M
phase, indicating a close relationship between CLK1 expression
and cell cycle progression.?’ Similar to CLK1, CLK2, —3, and —4
were also shown to contribute to cell growth and disease
occurrence via the regulation of splicing."® In addition, human
CLK2 was found to play a role in fatty liver disease through
participating in fatty acid oxidation and ketogenesis.*?> CLK3 was
suggested to play a pivotal role in the fertilization process due to
its overexpression in mature spermatozoa.®> CLK4 has been
implicated to modulate pre-mRNA intron-retaining splicing after
stress withdraw.'>2* Collectively, CLKs act as critical regulators and
exert important functions which are essential in catalyzing splicing
and modulating phosphorylation. In this review, we systematically

"Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan 450001, China; 2China-US (Henan) Hormel
Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan 450008, China; 3State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou
University, Zhengzhou, Henan, China; *Academy of Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan 450001, China and *Research Center of
Basic Medicine, Academy of Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan 450001, China

Correspondence: Zigang Dong (dongzg@zzu.edu.cn)

Received: 4 July 2022 Revised: 15 March 2023 Accepted: 20 March 2023

Published online: 07 April 2023

© The Author(s) 2023

SPRINGER NATURE


http://crossmark.crossref.org/dialog/?doi=10.1038/s41392-023-01409-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41392-023-01409-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41392-023-01409-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41392-023-01409-4&domain=pdf
http://orcid.org/0000-0002-8224-9250
http://orcid.org/0000-0002-8224-9250
http://orcid.org/0000-0002-8224-9250
http://orcid.org/0000-0002-8224-9250
http://orcid.org/0000-0002-8224-9250
http://orcid.org/0000-0002-4174-4028
http://orcid.org/0000-0002-4174-4028
http://orcid.org/0000-0002-4174-4028
http://orcid.org/0000-0002-4174-4028
http://orcid.org/0000-0002-4174-4028
mailto:dongzg@zzu.edu.cn
www.nature.com/sigtrans

Cdc2-like kinases: structure, biological function, and therapeutic...
Song et al.

Hinge B-hairpin LAMMER

a insertion M;IAPK-Iike insertion
CLK1 | N-terminus | _|[C-lobe] |
1 148 297319 DFG 400 432 484
CLK2 |  N-terminus m IC-lobe| |
1 150 299321 402 434 499
CLK3 N-terminus [C-lobe|
1 291 440462 543 575 638
CLK4 [ N-terminus m [C-lobe] |
1 146 295317 398 430 481

MAPK-like insertion

Fig. 1 Structural comparison of human CLKs. a Domain structures of human CLK1, -2, -3, and -4. b Crystal structure of human CLK1 without
N-terminus domain (PDB ID: 6I5H). The protein structure backbone is visualized as a cartoon representation, while the ligand and its
interacting residues are visualized as sticks. H-bonds are shown as black dashed lines. The coloring of all domains and signature sequence
motifs are consistent with panel a. ¢ Structural superposition of CLK1 (PDB ID: 6I5H, green), CLK2 (PDB ID: 6KHE, cyan), CLK3 (PDB ID: 2EU9,
magenta) and CLK4 (PDB ID: 6FYV, yellow). The protein structural backbone is represented as a ribbon. d Electrostatic surface representation
of CLKs. The blue and red colors represent positive and negative charges, respectively. The different pockets among these kinases were
determined by the distances between side chains of conserved Val residue in the N-lobe and DFG-1 residue in the C-lobe

SPRINGER NATURE Signal Transduction and Targeted Therapy (2023)8:148



describe the structure of CLK family members, their biological
functions, and the potential roles in human diseases progression,
such as neurodegenerative diseases, inflammatory diseases, viral
replication, and cancer. Finally, we comprehensively summarize
the related small molecular inhibitors of CLKs and their
therapeutic potential in various human diseases.

CRYSTAL STRUCTURE OF CLKS
Structurally, all four members of the human CLKs share highly
conserved topology. Each of the proteins is comprised of a flexible
unstructured N-terminal region (around 140-300 residues) and a
conserved kinase domain®’ (Fig. 1a). Despite being unstructured,
the N-terminal extensions of CLKs were reported to resemble
similar RS (arginine / serine) domains present in their target SR
protein substrates which then act as a bridge mediating the
interactions between their kinase domain and the RS domain of
the SR proteins. Removing this N-terminus of CLK1 results in a
significant decrease of the phosphorylation level of the RS domain
of SRSF1. This observation further reflects that the intrinsic
disordered region of CLK1 and its mediated protein-protein
contacts not only enhances the binding of the downstream
proteins but also facilitates the hyperphosphorylation of the
substrates.®®

In contrast, the catalytic domain of CLKs is well-ordered and
displays a typical kinase fold, containing an N-lobe and a C-lobe
bridged by a hinge region forming a conserved ATP binding
pocket®'? (Fig. 1). The N-lobe consists of three B-strands, an a-
helix, and two additional -strands. The C-lobe possesses three
conserved structural insertions defining the CLK family.®> These
signature motifs are B-hairpin insertion, a LAMMER domain, and a
mitogen-activated protein kinase (MAPK)-like insertion (Fig. 1). The
extended B-hairpin insertion present at the top of the C-lobe
(residues 297-319 in CLK1, 299-321 in CLK2, 440-462 in CLK3 and
295-317 in CLK4) is highly conserved in CLK family members.
Another predominant sequence motif has invariant “EHLAMMER-
ILG” region (residues 386-396 in CLK1, 388-398 in CLK2, 529-539
in CLK3 and 384-394 in CLK4), from which the family name
LAMMER protein kinase is derived, located at the bottom of the
C-lobe (Fig. 1). The last shared MAPK-like insertion is organized as
helix-strand-strand-helix while in the same region in MAPK protein
family, the two-strand B-sheet is substituted with a loop. These
structural features of CLK-specific sequence motifs are likely
important for their substrate recognition and binding specificity.

Structural superimposition of all human CLKs protein crystal
structures demonstrated that their kinase domains share very
similar topological features**%?’ (Fig. 1c). Thus, CLK inhibitors are
typically ATP mimetics that exert their activity through binding
within the ATP pocket. As shown in Fig. 1b, the inhibitor generally
contains aromatic heterocycles which are sandwiched between
hydrophobic residues (L167, V175 in CLK1) of the N-lobe and
hydrophobic residues (L295, V324 in CLK1) of the C-lobe resemble
the binding of the adenine ring system of ATP co-factor.?®
Chemical modifications within the ring of the inhibitors form
hydrogen bonds with the main chain atom of the hinge region.
The DFG sequence motif in the C-lobe was shown to be essential
for inhibitor and substrate binding. It has been reported that the
DFG-1 residue (Val in CLK1, 2, 4) is substituted by a shorter side
chain Ala in CLK3, which leads to the increased size of the CLK3
binding cavity. This subtle difference has resulted in the
development of selective inhibitors on CLK1, —2, and —4 instead
of CLK3?” (Fig. 1d). Further electrostatic surface calculations
showed distinct charge distributions in the binding pocket,
indicating that this is likely another important element for
selectivity which can be considered during drug design. Taken
together, the subtle structural differences in the inhibitor binding
site should be considered when designing selective CLK inhibitors
in the future.
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BIOLOGICAL FUNCTION OF CLKS

CLKs in regulation of the splicing process

Alternative splicing is a biological phenomenon that enables the
generation of multiple mRNA and protein products from a single
gene.? Five main types of AS are currently known: ES (exon
skipping), IR (intron retention), MXE (mutually exclusive exon),
A5SS (alternative 5’ splice site), and A3SS (alternative 3’ splice
site).?*?° The spliccosome is an enzymatic machine that is
required to splice pre-mRNA3" Spliceosome formation is the
result of complex interactions between small nuclear ribonucleo-
proteins (snRNPs, including U1, U2, U4/U6, and U5) and more than
150 additional proteins.®>? In addition, different RNA-binding
proteins (RBPs) take part in alternative splicing, including SR
proteins and heterogeneous nuclear ribonucleoprotein (hnRNP)
family proteins.>'~> CLKs and SR-specific protein kinases (SRPKs)
are largely responsible for phosphorylating the RS dipeptide
repeat domains of the SR protein families (SRSF1-12).*® Once
phosphorylated, SR proteins regulate RNA splicing and participate
in multiple physiological functions.?”*® Besides, other splicing-
related factors, such as RBM (RNA binding motif) proteins, are also
involved in generating mature mRNA through the process of
alternative splicing.®> Additionally, ~95% of human genes
transcribe multiple mRNA isoforms by differential inclusion of
exons.>® Here, we discuss the involvement of CLKs in regulating
the splicing process through phosphorylating splicing-related
proteins.

Human CLK1 was shown to regulate the cellular distribution of
the SR family proteins via the phosphorylation of their respective
C-terminus (Figs. 2 and 3). Among these factors, SRSF1 is a well-
characterized downstream substrate of CLKs.2> The N-terminus of
CLK1 was shown to interact with SRSF1 through its RS domain
which was necessary for the hyperphosphorylation of SRSF1. This
process further facilitates the binding of SRSF1 to its RNA target
Ron ESE (AGGCGGAGGAAGC), an RNA oligomer designed by the
SRSF1 exonic enhancer sequence.”® A phosphoproteomic analysis
of gastric tumor and patient-derived xenograft (PDX) samples
identified that SRSF2 was hyperphosphorylated in tumor samples.
Inhibition of CLK1 by inhibitors or siRNA downregulated CLK1-
dependent SRSF2 splicing activity, resulting in a reduced cell
proliferation, invasion, and migration of gastric cancer.*® The
results indicate the involvement of SRSF2 in CLKT modulating
splicing signals.*® SRSF1 was also shown to be a substrate of CLK2,
and its phosphorylation status was observed to be closely related
to the expression of CLK2, which is essential for its nuclear
localization and splicing functions.*'#? A CLK3-HMGA?2 alternative
splicing axis was discovered to promote the stemness potential of
human hematopoietic stem cells (HSCs) in vitro and in vivo.** The
finding illustrated that CLK3 promoted the skipping of HMGA2-L
exon in a SRSF1-dependent manner to reinforce an HSC-specific
program. Mutated SRSF1 binding motif within HMGA2-L exon 4
disrupted CLK3 regulated skipping of HMGA2-L through SRSF1,
providing a direct molecular link between CLK3 and SRSF1.*® CLK1
phosphorylated SRSF4 and SRSF6 during insulin stimulation
resulting in protein kinase C BIl (PKCPI) pre-mRNA alternative
splicing which subsequently participated in insulin-stimulated
actin rearrangements. In addition, CLK1 overexpression promoted
exon 17 inclusion splicing and increased the expression of PKCRII
through phosphorylation of SR proteins in response to insulin
stumilization.” It was reported that CLK1 phosphorylated SRSF5 on
Ser 250, thereby, affecting alternative splicing of METTL14 and
Cyclin L2 to promote cell metastasis and viability in pancreatic
cancer.* Inhibition of the CLKs enzymatic activities preferentially
inhibited the phosphorylation of SRSF10 at Ser 129, 131, and 133
eliciting p53-dependent apoptosis in human colorectal cancer
cells. Moreover, the interaction between CLK1 and SRSF10 was
confirmed by a GST-pull-down assay.*®

In addition, CLK kinases were shown to phosphorylate the
spliceosome-associated splicing factor 45 (SPF45).%°47 CLK1
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Fig. 2 Biology function of CLKs. CLKs participate in biological processes by modulating splicing and non-splicing functions. CLKs are
activated, phosphorylated or regulated by c-Myc, AKT or 14-3-3r, or negatively regulated by miRNAs. CLKs affect their downstream effectors
by phosphorylating serine, threonine, or tyrosine residues to activate cellular splicing and non-splicing processes. Alternative splicing of
certain genes is increased in response to protein phosphorylation by CLKs. Targets of CLKs include SR proteins, SPF45, and/or U1-70K or
modulated RBFOX2. Consequently, different protein isoforms that function in multiple cellular processes are generated. CLKs promote
cytokinesis, increase c-myc activity, and suppress fatty acid metabolism by phosphorylating downstream Aurora B, USP13, and PGC-1a. The
activation of Wnt/p-catenin and Hippo signaling by increased expression of Wnt 3a or YAP further highlights the importance of CLKs in non-
splicing processes. The figure was generated using Figdraw (www.figdraw.com)

phosphorylated SPF45 at eight different Ser residues, facilitating
cell migration and invasion in a phosphorylation-dependent
manner on SKOV-3 cells. Furthermore, CLK1 enhanced SPF45-
induced Fas mRNA exon 6 exclusion to facilitate serum-stimulated
cell migration, whereas inhibition of CLK1 promoted SPF45
degradation and inhibited malignant phenotype in a
proteasome-dependent manner.*® CLK1 was reported to phos-
phorylate U1-70K at the C-terminal Ser226 residue, facilitating
U1-70K release from subnuclear granules and its subsequent
interaction with U1 snRNP and SRSF1 for early spliceosomal
protein assembly.”® Furthermore, SR protein kinase 1 (SRPK1)
dissociated CLK1 from U1-70K to recycle kinase catalysis.*®
Elevated CLK2 mRNA levels were observed in luminal and
HER2 + breast cancer cell lines as well as the EGFR-amplified
MDA-MB-468 and EGF-dependent MCF10DCIS triple-negative
breast cancer (TNBC) cell lines. CLK2 promoted the inclusion
skipping at exon 11a of mesenchymal-type ENAH in luminal breast
cancer cells through the modulation of RBFOX2 as opposed to

SPRINGERNATURE

SRSF1.*> The wusage of ENAH exon 11a affected by
CLK2 subsequently implied cell growth, migration, and invasion
in breast cancer.*

CLKs in regulation of the nonsplicing process

Besides splicing, the CLKs are involved in other biological
functions via phosphorylation of their substrates (Figs. 2 and 3).
CLK1, —2, and —4 are required for Aurora B activation via its
phosphorylation at the Ser331 residue during late cytokinesis in
normally segregating cells.> Phosphorylation of protein-tyrosine
phosphatase (PTP-1B) at Ser50 by CLK1 and CLK2 promoted its
enzymatic activity in 32P-labeled in vitro kinase assay, phosphatase
assays, and co-transfection experiment in HEK293 cells.*® CLK2
phosphorylated PGC-1a at 11 Ser residues along its SR domain,
resulting in the repression of PGC-1a transcriptional activity on
gluconeogenic genes and the disruption of the physical interac-
tion of PGC-1a with MED1. This biological process was found to
attenuate PPARa transcription, decrease fatty acid oxidation,
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The direct upstream and downstream regulators of CLKs
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Fig. 3 The direct upstream and downstream regulators of CLKs. The expression or activities of CLKs are directly regulated by the upstream
proteins such as AKT, c-Myc, or miRNAs. CLKs phosphorylate or modulate their downstream targets, which have been demonstrated in
publications, to participate in pivotal processes. The upstream and downstream regulators of CLK1 (a), CLK2 (b), CLK3 (c), and CLK4 (d) have
been shown in the figure seperately. The figure was generated by Figdraw (www.figdraw.com)

promote disease, and
gluconeogenesis.

AKT kinase exhibits a complex regulatory relationship with CLK1
and CLK2>°°3 CLK1 is a preferred substrate of AKT; the AKT
phosphorylation site on CLK1 is located in its N-terminal
unstructured SR domain but not the kinase domain.>** Mutation
of the predicted AKT phosphorylation sites of CLK1 to alanine
residues (Ser36, Thr122, and Ser139 mutated to Ala) increased
PCKBIl level throughout the preadipocyte differentiation to
mature adipocytes process in 3T3-L1 cells. Furthermore, the
S36A mutation of CLK1 resulted in the reduction of SRSF1 and
SRSF2 phosphorylation, the T122A mutation led to decrease of
SRSF5 phosphorylation, and the S139A mutation contributed to
the diminished phosphorylation of SRSF4, SRSF6, SRSF5 as well as
SRSF1 and SRSF2 in 3T3-L1 preadipocytes.®® Consequently, the
adipogenesis program was blocked prior to differentiation in cells
transfected with both CLK1 single mutants and CLK1-AAA
mutations.>> AKT was also found to stabilize CLK2 through
phosphorylation of CLK2 at Ser34 and Thr127 residues to enhance
cell proliferation and block cell apoptosis in response to ionizing
radiation.>® In turn, CLK2 was found to phosphorylate the
regulatory subunit B563 of phosphatase 2 A (PP2A), which was
required to drive AKT-PP2A complex formation that results in AKT
dephosphorylation at the Ser473 and Thr308 residues.”®>' More-
over, CLK2 kinase activity was induced by AKT phosphorylation at
Thr343 residue of the CLK2 activation loop in response to insulin

fatty liver
22,50

suppress  hepatic

Signal Transduction and Targeted Therapy (2023)8:148

and feeding in hepatic gluconeogenesis. Once CLK2 was activated,
it underwent auto-phosphorylation to stabilize itself.>° Altogether,
these results suggested that CLK2 functions as both an up-stream
regulator and down-stream substrate of AKT, which operates as a
self-requlatory loop. However, this function was probably cell
type-specific because no experimental evidence confirming the
interaction between CLK2 and AKT was identified in human breast
cancer cells.*? In addition, murine CLK2 is auto-phosphorylated at
a highly conserved auto-phosphorylation Ser141 site that
influences its subnuclear localization; the subcellular localization
is suspected to impact substrate interaction properties of CLK2.>*
Besides, proteasomal degradation of CLK2 was decreased in
glioma stem cells (GSCs) through binding with 14-3-31 protein.>
Moreover, AKT/ Forkhead box O3a (FOXO3a) /p27 pathway was
identified to participate in GSCs growth inhibition which caused
by CLK2 knocking down.>®> Apart from this, CLK4 bound with
nexilin (NEXN) and phosphorylated it at Ser437 to regulate cardiac
function, subsequently reversing pathological cardiomyocyte
hypertrophy.>®

In summary, the role of CLKs in splicing or non-splicing
processes is complex and diverse. The general function of CLKs
requires the interaction with or phosphorylation of their down-
stream or upstream proteins. In this review, we summarize the
crucial related proteins and potential functions of CLKs in the
regulation of cell growth, metastasis, fatty acid oxidation or
cardiac function maintain by affecting the activities of
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downstream proteins (Table 1, Figs. 2, and 3). However, further
investigation of CLKs in modulating different proteins or signaling
pathways is needed to comprehensively understand the roles that
CLKs play in physiological and pathological processes.

CLKS AND HUMAN DISEASES

The CLKs exert important functions and participate in various
human noncancer diseases and cancer development through
splicing or non-splicing processes.’”*® Here, we documented
the functions of CLKs and addressed the therapeutic potential
of targeting CLKs in various human diseases (Tables 2-4 and
Figs. 4-6).

CLKs in noncancer diseases and therapeutic tactics
CLKs in neurodegenerative diseases. Hyperphosphorylation and
deposition of tau protein is a hallmark of sporadic Alzheimer's
disease (AD), and the dysregulation of tau exon 10 alternative
splicing contributes to neurofibrillary degeneration.>® It was also
reported that irregular splicing events modulated by CLK1 or CLK2
affected the human adult nervous system contributing to sporadic
AD.*%%T CLK1-mediated phosphorylation of SR proteins at serine
residues is a key mechanism that has been implicated in the
development of Alzheimer's disease.* In addition, the processes of
tau exon 10 alternative splicing induced by phosphorylating SR
proteins, and the pre-mRNA splicing changes caused by mCLK2
tended to be therapeutic concepts of tauopathies, including
sporadic AD.%>%? Unfortunately, the author of the study did not
indicate the exact SRs modulated by mCLK2 in AD. Furthermore,
irregular CLK2 expression and activity were observed in AD, which
resulting in misregulation alternative splicing of tau exon 10°°.
Besides, inhibition of CLK2 was proposed to be a potential
therapeutic strategy in Phelan-McDermid syndrome (PMDS) by
improving autism and neuronal functions.®®> The loss of ubiquiti-
nation modulation of CLK2 expression in Shank3-deficient neurons
is a genetic hallmark of PMDS. Moreover, TG003 treatment
exhibited a similar restorative effect on spine density with CLK2
reduction in Shank3- deficient neurons.®* On the basis that CLK2 is
a therapeutic target of PMDS, Indazole 1 and Indazole 2 were
shown to increase spine density in mouse brain slices at a
relatively low dose (300nM and 1puM) compared to TGO003
(10 uMm) .3

CLKs in Duchenne muscular dystrophy. Duchenne muscular
dystrophy (DMD) is a fatal progressive muscle-wasting disease.
Based on current research, DMD develops due to open-reading
frame disruption or dystrophin mRNA alteration caused by exon
deletion or mutations.®*® CLK1-regulated splicing manipulation,
especially the exon-skipping function, was reported to contribute
to DMD.®” A patient harbored c.4303G>T point mutation in
dystrophin gene exon 31 changed SRp30c/SRSF9-dependent exon
skipping enhancer (ESE) to hnRNP A1-dependent exon skipping
silencer (ESS), thus, leading to exon 31 skipping to generate
truncated, but functional dystrophin protein. Moreover, TG003, an
inhibitor of CLK-1, —2, and —4, promoted dystrophin gene exon
31 skipping in patient muscle cells that harbored the c4303G>T
point mutation (ineffective in exon 31-WT cells) and enabled the
generation of partially functional dystrophin protein.’® On the
other hand, additional SR(s) which could be phosphorylated by
CLKs cooperated with hnRNP A1 to recognize exon 31 during
splicing after de-phosphorylation by TG003.°® TG693, a selective
CLK1 inhibitor capable of treating DMD, was discovered to be a
more metabolically stable compound relative to TG0003.”
Functionally, TG693 mediated SR protein phosphorylation and
promoted mutant exon 31 skipping reading on the cells harboring
the c.4303G>T point mutation by targeting CLK1, particularly
SRSF4 and SRSF6.5” These efforts highlight the potential benefits
of using CLKs-targeting compounds for the therapeutic
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management of genetic diseases characterized by irregular
splicing, including DMD.

CLKs in inflammatory diseases. Knockdown of CLK2 promoted
tenocyte differentiation by inhibiting the expression of tenocyte
catabolic enzymes, indicating that targeting CLK2 may play a
protective role against tendinopathy.®® SM04755 was identified as
a potent inhibitor of CLK2 and DYRK1A with an IC5, of 5.0 nM and
3.5nM, respectively. SM04755 potently inhibited CLK2 and
DYRK1A to modulate intron retention of Wnt pathway genes,
subsequently suppressing Wnt signaling pathway and inhibiting
the inflammatory signaling mediators NF-kB and STAT3. This
process prevented tendon destruction and promoted tendon
regeneration.®®

Osteoarthritis (OA) is a disease characterized by the formation
of osteophytes, cartilage degradation, and synovial inflamma-
tion.”® CLK2 and DYRK1A participate in OA through the Wnt
pathway without modulating p-catenin activity, resulting in
inflammatory cytokine production and cartilage catabolic enzyme
expression.”"”? In addition, CLK2 inhibition suppressed cartilage
catabolic enzyme expression and induced early chondrocyte
differentiation in human mesenchymal stem cells (hMSCs).”" This
finding reveals a novel role of CLK2 in promoting OA. Lorecivivint
(SM04690) potently inhibited CLK2 (ICso=7.8 nM) and DYRK1A
(ICso = 26.9 nM) to suppress CLK2-mediated phosphorylation of SR
proteins and DYRK1A-mediated phosphorylation of SIRT1 and
FOXO1. Moreover, Lorecivivint exerted anti-inflammatory effect by
significantly decreasing NF-kB and STAT3 activity. Lorecivivint
provided both symptom relief and inflammatory modification
through dual targeting of CLK2 and DYRK1A.%?

A Phase | clinical trial (NCT02095548) and phase lla proof-of-
concept clinical trial (NCT02536833) among knee OA patients
indicated that Lorecivivint appeared to be safe and well-tolerated,
emphasizing the therapeutic potential of Lorecivivint in OA.”>7* A
post hoc analysis from a phase llb clinical trial (NCT03122860)
showed that intra-articular (IA) therapy of 0.07 mg Lorecivivint in
participants with knee OA showed long-lasting improvements in
function and pain compared to those given placebo.”>”®
Furthermore, other clinical trials (NCT04385303 (Phase llI),
NCT03928184 (Phase Ill), NCT03727022 (Phase Il) and) have been
carried out and accomplished to reveal the therapeutic potential
of Lorecivivint in keen OA.

CLKs in viral replication. The HIV-1 virus significantly contributes
to the global health burden and the replication of HIV-1 is the key
process in the virus life cycle.”””® Substantial efforts have been
made to alter RNA splicing of HIV-1, and SR proteins were found to
participate in viral replication.”*® Therefore, studies were carried
out to investigate the role that CLKs, which are located upstream
of SRs, play in HIV-1 replication. CLK1 promoted the expression of
HIV-1 Gag, a viral structural protein, while CLK2 significantly
decreased Gag expression. However, CLK3 and CLK4 were found
to only have modest effects in promoting Gag expression.®’
Application of chlorhexidine, an inhibitor of CLK2, —3, and —4
(chlorhexidine exhibits minimal activity against CLK2), significantly
inhibited HIV-1 Gag synthesis and viral replication. Moreover,
chlorhexidine treatment suppressed HIV-1 regulatory protein Rev
accumulation to prevent the export of viral RNAs. Moreover, a
phase Il clinical trial (NCT00006075) was carried out at the year of
2001 to evaluate the best strength of chlorhexidine gluconate in
the prevention of mother-to-child transmission (MTCT) of HIV-1 by
washing the mother’s vagina and the newborn baby during birth.
The trial pointed out that a 1% solution of chlorhexidine exhibited
well safety, tolerance, and effectiveness in decreasing the rate of
MTCT of HIV-1.3% These findings highlight the possibility of
targeting host CLKs to block HIV-1 replication.?’

The life cycle of influenza A also relies on mRNA splicing and
splicing-related factors, including CLK1.8378> Knock-down of CLK1
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reduced the replication of influenza A/WSN/33 by increasing
segment 7 RNA splicing and decreasing viral M1 and M2 proteins,
which are essential for influenza virus replication. Furthermore, SRSF3
was identified as a key factor responsible for regulating viral RNA
splicing upon CLK1 inhibition. NIH39 and KH-CB19, inhibitors of CLK1,
showed antiviral activity with an 1Cso of 6.6uM and 13.6 uM,
respectively. NIH39 reduced viral mRNA splicing and related protein
expression at 12.5 uM. However, KH-CB19 did not show any effect
even at relatively high doses of 50 and 100 uM, indicating that NIH39
may be a promising anti-viral therapeutic to combat influenza A2 As
CLK1 was found to play a crucial role in influenza replication,
screening of CLK1 inhibitors was carried out by a virtual docking
program. The virtual docking program indicated that J10688
(clypearin), J12098 (corilagin), and J14848 (pinosylvin) were identified
to be the most potential anti-influenza virus candidates as CLK1
inhibitors with EC50 values of 12+0.28 20+222 and
5.28 + 2.45 pg/mL, respectively; cytotoxic concentrations (CC50) were
>200, 153.54 and 18.26 ug/mL, respectively.®® J10688, isolated from
Pithecellobium clypearia Benth, showed potent anti-influenza ability
through impairing viral proteins NP and M2 synthesis and down-
regulating the phosphorylation of the splicing factors SF2/ASF and
SC3557 These conclusions indicated a novel therapeutic approach
that targets host CLKs to suppress viral replication.

Besides HIV-1 and influenza A, CLK1 also plays important roles in
the replication of West Nile virus and chikungunya virus, making it an
attractive cellular candidate for host-directed antiviral therapy.®®°

CLKs in autophagy-associated diseases. Autophagy is an impor-
tant cellular process that protect cells from death and maintain
homeostasis through the selective degradation of intracellular
hazard.”" Alterations in autophagic activity are associated with a
wide range of human diseases, including diabetes,”*?* cardiovas-
cular diseases,®*® infectious®®®” and drug-induced organ
injury.?®% CLK1 has been reported to participate in the regulation
of the autophagy process. CLK1 inhibition by 10 uM concentration
of Leucettine L41 (inhibit both DYRKs and CLKs) treatment was
shown to increase LC3 foci formation and induce autophagy in a
dose-dependent manner in human osteosarcoma cells U-2 0S.'%°
Meanwhile, CLK1 RNA interference in U-2 OS cells resulted in
elevated cell autophagy. However, Leucettine L33 (inactive on
both CLK1 and DYRKs) and L38 (more potent to DYRKs) were
unable to trigger autophagy in U-2 OS cells.'® The findings
highlight that CLKs inhibition contribute more to autophagy than
DYRKs. Mechanistically, L41 treatment significantly elevated exon
4-containing CLK1 mRNA transcripts resulting in an increase of the
full-length kinase isoform by modulating its own splicing.'®'°’
Additionally, the targeting of CLK1 by inhibitors or siRNA reagents
was speculated to trigger autophagy through modulating the
alternative splicing of autophagy regulator pre-mRNAs, including
mTOR and X-box-binding protein 1 (XBP1).'°9102193 These
findings further confirm that CLK1 inhibitors are potent inducers
of autophagy. Moreover, compound 9e, a drug derived from 3,6-
disubstutited-imidazo [1,2-a] pyridine, potently inhibited CLK1
with an 1Csg value of 4 nM compared with CLK2 (ICsq of 50 nM) and
CLK4 (ICso of 17 nM). Treatment with compound 9e induced
autophagy, significantly increased autophagic flux, and affected
the subcellular redistribution and phosphorylation levels of the
downstream SR proteins of CLK1 in SKOV-3 cells." In addition,
CLK1-IN-1 was shown to induce autophagy by targeting CLK1 in
the treatment of autophagy-associated diseases. The downstream
SR proteins of CLK1 were redistributed from the nucleoplasm to
nuclear speckles after CLK1-IN-1 treatment. Furthermore, CLK1-IN-
1 induced autophagy in BNLCL.2 and SKOV-3 cells by elevating
LC3II protein expression and increasing the ratio of LC3Il to LC3l in
a dose- and time-dependent manner by targeting CLK1.'*
Collectively, inhibition of CLK1 increased cellular autophagy,
indicating its potential as a treatment strategy for autophagy-
associated diseases.
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CLKs in other diseases. Pathological cardiac hypertrophy is
characterized by hypertrophic growth and cardiomyocyte size
increase in response to pathological stimuli.'®>'°® CLK4 was found
to play a pivotal role in maintaining cardiac function; the deletion
of CLK4 contributed to pathological myocardial hypertrophy and
heart failure.® Phosphorylation of NEXN at Ser437 by CLK4 was
found to rescue pathological myocardial hypertrophy, which
highlights the splicing-independent involvement of CLK4 in heart
disease. Moreover, the finding indicated that restoration of CLK4
may act as a novel therapeutic target for treating pathological
cardiac hypertrophy.>®

Hepatic gluconeogenesis is critical for hyperglycemia in
diabetes.'””"'% CLK2 was identified as a suppressor of hepatic
gluconeogenesis, and its activity was regulated by insulin/AKT.>
Insulin/AKT stabilized CLK2 and increased its expression and
activity during the feeding/fasting nutrient cycle. Mechanistically,
Insulin treatment led to CLK2 phosphorylation at Ser342/Thr343 in
H2.35 hepatocytes. Moreover, AKT specifically interacted with
CLK2 at its kinase domain and phosphorylated CLK2 at Thr343 in
response to insulin. Activated CLK2 phosphorylated PGC-1a at its
SR domain to repress PGC-1a transcriptional activity on gluconeo-
genic genes, resulting in hepatic gluconeogenesis suppression.>®

Furthermore, CLKs contributed to the sensing of temperature
differentials through the phosphorylation of SR proteins.'®® CLK1/
4 became completely inactivated at 38 °C and was re-activated at
35°C, indicating the potential role of CLK1/4 as molecular
thermometers in response to circadian body-temperature oscilla-
tions.'®""% TG003 application dramatically abolished the re-
phosphorylation of SR proteins, such as SRSF5 and SRSF6, during
the temperature shift from 42°C to 35°C.'% Meanwhile,
temperature-dependent AS events, including exon inclusion and
intron retention, were modulated after TG003 treatment, illustrat-
ing the pivotal role of CLK1/4 in connecting body temperature
with AS.'%

To summarize, irregular splicing or expression of CLKs involved
in various human diseases, for instance, Alzheimer's disease,
osteoarthritis, Duchenne muscular dystrophy, pathological cardiac
hypertrophy, and gluconeogenesis. Moreover, inhibitors have
been reported to have anti-inflammatory, anti-viral, and anti-
neurodegenerative functions as well as other functions. Never-
theless, the clinical application of these inhibitors is in great
demand which may provide direct evidence for the therapy of
different human diseases.

CLKs in cancer and treatment strategies

Expression or activities change of CLKs are associated with cancer
development and progression.'"’™'"> Depletion or chemical
inhibition of CLKs changed alternative splicing events leading to
decreased cell proliferation.®”''*"""® Given the expression status
and clinical significance of CLKs in The Cancer Genome Atlas
Program (TCGA) database (https://portal.gdc.cancer.gov/), we
systematically discuss the roles of CLKs in cancer and therapeutic
effects of their related inhibitors (Table 3 and Figs. 5, 6).

CLK1 in cancer. The expression of CLK1 was dramatically
increased in pancreatic ductal adenocarcinoma (PDAC) tissues at
both the mRNA and protein levels, promoting cell growth and
metastasis in vitro and in vivo.** High expression of CLK1 was
associated with poor prognosis in PDAC. Mechanistically, CLK1
was found to directly phosphorylate SRSF5 at Ser250. Conse-
quently, this inhibited METTL14%°""® skipping (generated
METTL14-L isoform) to enhance N6-methyladenosine (m6A)
methylation and cancer metastasis. Additionally, Cyclin L2%*°"%3
skipping (generated CCNL2-S isoform) was found to promote
PDAC cells proliferation in response to SRSF5 phosphorylation at
Ser250.** These results revealed a therapeutic option and
potential prognostic value of CLK1/SRSF5 pathway in PDAC
patients.
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Inhibition of CLK1 decreased cell proliferation and induced
apoptosis in PC3 and DU145 prostate cancer cells; the responsive
AS events were validated by transcriptomic analysis.''® The
sequencing revealed the dramatic change of alternative splicing
events in the following cancer related genes: centromere protein E
(CENPE, inclusion at exon 38), establishment of sister chromatid
cohesion N-acetyltransferase 2 (ESCO2, skipping at exon 9),
cytoskeleton associated protein 2 (CKAP2, skipping at exon 3),
maternal embryonic leucine zipper kinase (MELK, skipping at exon
13), aspartate B-hydroxylase (ASPH, skipping at exon 6 and 8) and
CD164 (skipping at exon 5)."" In hypoxic conditions, CLK1 and
CLK3 expression were consistently induced in PC3 cells exposed to
1%, 0.2%, and 0% hypoxic environments; changes in CASP9
splicing were also observed.'*

CLK1 was expressed at levels 10 to 30% higher in gastric tumor
samples compared to normal gastric tissues.*® In a phosphor-
proteomic analysis study, CLK1 and its related splicing machinery
pathway were shown to be the most important regulators in
gastric cancer.®® CLK1 was overexpressed in gastric cancer tissues
and the inhibition of CLK1 resulted in the suppression of cell
proliferation, migration, and invasion.*® These findings indicate
that CLK1 plays an important role in gastric cancer progression.

SPF45 was identified to be a cellular target of CLK1 in ovarian
cancer.*®'" (LC)-electrospray ionization-tandem mass spectro-
metry (MS/MS) experiments showed that CLK1 is able to
phosphorylate SPF45 at eight serine residues (Ser 48, 62, 202,
204, 222, 266, 288, and 291).%° Furthermore, CLK1 overexpression

Signal Transduction and Targeted Therapy (2023)8:148

increased SPF45 protein levels and promoted SPF45-induced exon
6 exclusion of Fas mRNA in SKOV3 breast cancer cells. Additionally,
inhibition of CLK1 decreased the half-life of SPF45 via a
proteasome-dependent manner in both SKOV-3 and Hela cells.
Interestingly, kinase dead Ser 48/222/266 mutants significantly
increased exon 6 exclusion while Ser 202/204 A significantly
decreased exon 6 exclusion compared with wild-type Myc-SPF45
in COS-1 cells. The finding further illustrates that CLK1 differen-
tially regulates SPF45 splicing activity depending upon phosphor-
ylation at different serine sites. Moreover, SPF45 enhanced
fibronectin expression to promote ovarian cancer migration and
invasion in a CLK1 phosphorylation-dependent way.*® This finding
highlights the potential use of CLK1 inhibitors to dephosphorylate
SPF45 in ovarian cancer treatment.

Based upon data provided by TCGA, CLK1 is significantly
overexpressed in many cancer types, including cholangiocarci-
noma (CHOL), colon adenocarcinoma (COAD), head and neck
squamous cell carcinoma (HNSC), kidney renal clear cell carcinoma
(KIRC), kidney renal papillary cell carcinoma (KIRP), liver hepato-
cellular carcinoma (LIHC), prostate adenocarcinoma (PRAD),
rectum adenocarcinoma (READ) and stomach adenocarcinoma
(STAD) (Fig. 5a). In addition, CLK1 was considered to participate in
the onset, progression, and evolution of cancers through different
mechanisms, however, the function probably was cancer specific.

CLK2 in cancer. Increased expression of CLK2 was demonstrated
to be correlated with poor prognosis in non-small cell lung cancer
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Fig. 5 Expression status and clinical outcomes associated with CLKs transcript levels in different tumor types. a RNA-seq data of CLKs
expression in tumor and normal tissues were obtained from the TCGA database (https://portal.gdc.cancer.gov/). The Kruskal-Wallis test was
used to assess statistical significance. b Raw counts of clinical survival information of CLKs were obtained from The TCGA dataset (https://
portal.gdc.cancer.gov/). The KM survival analysis with log-rank test was also used to compare the survival differences between the above two
groups. For Kaplan-Meier curves, p values, and hazard ratio (HR) with 95% confidence interval (Cl) were generated by log-rank tests and
univariate Cox proportional hazards regression. *, ** and *** represented p < 0.05, p <0.01 and p < 0.001, separately. p < 0.05 was considered

statistically significant

(NSCLC)."?" In addition, CLK2 expression was elevated in patients
with late-stage (llI-IV) cancer and metastasis, indicating that CLK2
could be a potential biomarker in NSCLC. Moreover, miR-573
suppressed CLK2 expression and interrupted the occurrence and
development of lung cancer caused by CLK2 overexpression.'?'
In luminal breast cancer, overexpression and amplification of
CLK2 were demonstrated to promote cell proliferation, migration,
invasion, and xenograft growth.** Breast cancers which harbored
high CLK2 expression levels showed a more proliferative
phenotype based on increased levels of cyclin B1, CDKI,
phospho-Rb, and the activation status of hippo signaling path-
way.*? Moreover, CLK2 was found to promote the EMT variant of
ENAH to facilitate breast tumor invasion and metastasis.*?
Pharmacological inhibition of CLK2 resulted in significant growth
inhibition, apoptosis, and exon skip in the allograft model of Myc-

Signal Transduction and Targeted Therapy (2023)8:148

driven spontaneous breast cancer.'”” RNA-seq analysis also
revealed that genes involved in cell cycle, DNA repair, RNA
splicing, and RNA transport pathways were modulated in
alternative splicing, further indicating the potential role of AS by
CLK2 in breast cancer.'?

The cell cycle of glioblastoma cell lines with elevated CLK2 levels
was arrested at G1 and S phases as a consequence of CLK2
depletion.'”® Mechanistically, knockdown of CLK2 was shown to
interrupt the cell cycle in vitro through the downregulation of AKT/
FOX03a/p27 signaling, resulting in reduced glioblastoma tumor
growth and prolonged survival in vivo."”® Moreover, CLK2
expression in glioblastoma patient specimens was inversely
correlated with patient survival time.'”® In addition, 14-3-3t
directly bond with CLK2 to increase CLK2 stability through
modulating proteasomal degradation in glioma stem-like cells
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The oncogenic function of CLKs and utilization of CLKs inhibitors in cancer
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Fig. 6 The oncogenic function of CLKs and utilization of CLKs inhibitors in cancer. a-d CLKs participate in cancer development, invasion, and
metastasis by altering mRNA splicing, wnt/f-catenin signaling, TGF-f signaling, or mediating cell cycle transition. CLKs regulate cancer growth
or metastasis by phosphorylating or modulating their downstream regulators, for instance, SRSF5, SPF45, USP13 SMAD3, PP2A, and other
proteins. CLKs inhibitors decreased cancer growth, metastasis, metabolism, and promoted apoptosis by modulating genes participating in cell
cycle, EMT, metabolic pathway, and apoptosis, respectively. e Preclinical cancer research conducted to assess the therapeutic potential of
CLKs-targeting compounds showed significant tumor growth inhibitory effects. The figure was generated by Figdraw(www.figdraw.com)

(GSCs).>®> Meanwhile, CLK2 negatively regulated PP2A activity in the
GSC272 brain tumor cancer cell line. Downregulation of CLK2 led to
decreased binding affinity with 14-3-31 and increased binding
affinity with phosphor-PP2A, resulting in the activation of PI3K
signaling pathway. Thus, the combination of CLK2 depletion with
the PI3K/mTOR inhibitor GSK2126458 significantly reduced tumor
growth in GSC272-implanted mice. Furthermore, the induction of
apoptosis was also observed when FGFR inhibitor (LY2874455) was
administered to a CLK2 knockdown GSC mouse model.>®

RNA-Seq data provided by the TCGA has shown that CLK2 is
overexpressed in many cancer types (Fig. 5a). Increased expression
of CLK2 was correlated with poor clinical outcomes in cervical
squamous cell carcinoma and endocervical adenocarcinoma
(CESC), COAD and KIRC (Fig. 5b). In conclusion, CLK2 might be an
ideal therapeutic target and prognostic marker for cancer
treatment.

CLK3 in cancer. CLK3 was found to be upregulated in cholangio-
carcinoma (CCA) patients and plays a role in nucleotide
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metabolism.'** Meanwhile, a gain of function somatic mutation
Q607R was identified in CLK3 kinase domain, which induced
USP13 Y708 phosphorylation and promoted USP13 binding to
c-Myc. The binding was found to prevent c-Myc ubiquitination
and enhance c-Myc activity, thereby, increasing c-Myc-mediated
purine synthesis in CCA.">* In turn, a CLK3-USP13-c-Myc feedback
loop was identified whereby activated c-Myc increased CLK3
transcription by enhancing CLK3 promoter activity. However, the
other CLKs family members were not affected by c-Myc.'?*

CLK3 was also markedly upregulated and closely associated
with hepatocellular carcinoma (HCC) TNM stages and patient
prognosis."®> Functional analysis revealed that CLK3 promoted
Wnt 3a transcription and activated Wnt/B-catenin cascades,
resulting in increased HCC cell proliferation, migration, and
invasion in vitro; additionally, animal experiments showed that
CLK3 also increased tumor development in vivo. Moreover, the
miR-144/CLK3 axis was found to further attenuate Wnt/B-catenin
signaling, resulting in suppression of HCC development and
metastasis.'>®
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CLK3 also affected HSCs by modulating HMGA2 alternative
splicing.”* Mechanistically, CLK3 strongly affected HMGA2 isoform
switching; knock-down of CLK3 decreased HMGA2-S transcription
but increased HMGA2-L transcription through SRSF1. The results
indicated that CLK3 was involved in regulating an SRSF1-
dependent splicing pattern that enhanced the development of
human HSC.*

Summarization from the TCGA database demonstrated that
elevated expression of CLK3 was observed in CHOL, HNSC, Kidney
chromophobe (KICH), KIRC, KIRP, LIHC, PRAD, and STAD. Furthermore,
increased expression of CLK3 was correlated with poor overall
survival (OS) outcome in COAD, indicating the clinical significance of
CLK3 (Fig. 5). Thus, targeting CLK3 by siRNA or antagonists could be
taken into consideration for further investigation.

CLK4 in cancer. CLK4 was overexpressed in mesenchymal-like
TNBC (MES-TNBC) cells and correlated with poor patient
survival.'' Silencing of CLK4 in a xenograft mouse model was
shown to decrease the expression of multiple epithelial-
mesenchymal transition (EMT) genes which participate in metas-
tasis and repress tumor cell migration in TNBC cells.''* Notably,
depletion of CLK4 impaired the expression of SMAD3, a mediator
of TGF-B signal transduction, suggesting that overexpression of
CLK4 can promote metastatic and aggressive phenotypes in MES-
TNBC cells. Furthermore, the pharmacological inhibition of
CLK4 suppressed the growth and invasiveness of MES-TNBC cells,
highlighting the potential utilities of CLK4 in the clinic.'"

CLK4 was also found to be extensively downregulated in
esophageal squamous cell carcinoma (ESCC) cells and patient
samples due to the methylation of its promoter."*® Mechan-
istically, CLK4 phosphorylated microphthalmia-associated tran-
scription factor (MITF) at Tyr360 to promote the autophagy
degradation of MITF. As a feedback axis, MITF bond to the E-boxes
in CLK4 promoter transcriptionally downregulating the expression
of CLK4 in ESCC. Moreover, CLK4 was proved to be a redox-
sensitive kinase. Interestingly, impairment of CLK4 kinase activity
upon oxidation of Met307 was found to enhance ESCC
carcinogenesis.'*® This finding revealed a novel function of CLK4
in modulating purine synthesis and redox status in conjunction
with its role in alternative splicing.

CLK4 expression varied in different cancer datasets, among
which the expression was significantly elevated in CHOL,
glioblastoma multiforme (GBM), HNSC, KIRC, KIRP, LIHC, PRAD,
and STAD; Conversely, CLK4 transcription was reduced in BLCA,
breast invasive carcinoma (BRCA), lung squamous cell carcinoma
(LUSC), pheochromocytoma and paraganglioma (PCGC), thyroid
carcinoma (THCA) and uterine corpus endometrial carcinoma
(UCEQ) (Fig. 5).

The frequency of elevated CLKs expression in gastric, prostate,
lung, and cholangiocarcinoma patient tumor tissues??4% 1197121124
suggests that CLKs may directly or indirectly contribute to tumor
development, progression, or metastasis. Besides, mutation
(CLK3)'™* or post-translational modification (CLK4) of CLK,'?®
alteration of CLKs expression or function influenced tumor
phenotypes. Therefore, high throughput sequencing and chemical
development based on mutation sites might be an effective
method to highlight clinically relevant molecular features of CLKs.

Targeting CLKs for cancer therapeutic strategies. The large body of
evidence provided in this review has illustrated the major
oncogenic function of CLKs in cancer. Thus, targeting CLKs has
garnered increased attention from clinical researchers as a
potential method of treating several cancer types. A number of
inhibitors that generally bind in the CLKs ATP pocket have been
extensively studied and reported (Table 4, Figs. 1b and 6).
SM08502 (Cirtuvivint) is the first small molecular inhibitor of
CLKs which underwent clinical trials. SM08502 is a potent pan-
CLKs inhibitor and showed strong affinity for CLKs with 1C5, values
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of 8nM to CLK1, 2nM to CLK2, 22nM to CLK3, and 1nM to
CLK4."%” Although SM08502 showed high affinity to CLKs, it
inhibited the activity of other structurally similar kinases as well,
indicating off-target effects and the potential for cytotoxicity.'*'?’
SM08502 was shown to significantly inhibit the kinase activity of
CLKs and decrease SRSF phosphorylation in gastrointestinal
cancers. Furthermore, SM08502 disrupted spliceosome activity,
thus, reducing the generation of splicing variants of Wnt signal
pathway genes.'?” Oral administration of SM08502 significantly
inhibited the growth of gastrointestinal tumors. SM08502 also
decreased SRSF phosphorylation and Wnt pathway gene expres-
sion in xenograft mouse models, suggesting that SM08502 is a
potent therapeutic drug in cancer treatment.'?” A Phase | clinical
trial of SM08502 (NCT03355066) assessing its efficacy in treating
advanced solid tumors for whom no standard therapy is currently
underway. This trial aimed to evaluate the safety, tolerability, PK,
PD, and preliminary anti-tumor efficacy of SM08502 by oral
administration. Additional clinical trials (NCT05084859) for
castration-resistant prostate cancer, non-small cell lung cancer,
and colorectal cancer were posted in 2021 to evaluate the safety,
tolerability, PK, and preliminary anti-tumor efficacy of SM08502.

TGO003, a benzothiazole compound, was found to have a potent
inhibitory effect on CLK1 and CLK4 via in vitro phosphorylation
assay.'”® The activities of TG003 on different CLKs and other
kinases, including SRPKs and PKC, were evaluated. Results showed
strong inhibitory activity of TG0O03 on murine CLKs (mCLKs) with
ICso values of 20 nM on mCLK1, 200 nM on mCLK2, and 15 nM on
mCLK4; however, TG003 showed less inhibitory activity against
mCLK3, SRPK1, SRPK2, and PKC kinases.'*® Moreover, TG003 acted
on CLK1/Sty kinase competitively with ATP (K., 3.35 uM) with a Ki
value of 10 nM.'*® In addition, 10 uM TG003 inhibited Clk/Sty
kinase activity and SR protein phosphorylation in Hela cell.'*®
TG003 was also found to inhibit CLK-dependent alternative
splicing and serine/arginine-rich protein phosphorylation.'?® The
application of TG003 significantly decreased gastric cancer cell
viability, invasion, and migration. Similar inhibition effects were
found in gastric cancer after depletion of CLK1 by small interfering
RNA (siRNA).*® Mechanistically, TGO03 treatment led to the
decrease of splicing protein pSRPK2, SRSF2, CLK1, and p-AKT.*°
In prostate cancer (PC), TG003 reduced cell proliferation, induced
apoptosis, and reversed EMT markers in vitro; in vivo CDX tumor
growth was also decreased upon treatment with TG003."'® In
addition, TG003 was found to regulate the alternative splicing of
CLK1 mRNA by reducing intron 4 retention and exon 4 skipping,
resulting in altered production of full-length catalytically active
(CLK1™) and truncated catalytically inactive (CLK1™%) isoforms.*’

T-025, a chemical modified from the 7H-pyrrolo [2,3-d]
pyrimidine structure, was developed as a potent inhibitor of
CLK2 able to bind within the ATP-binding pocket and interact with
the Glu244 and Leu246 amino acid residuess.'*? The K4 values of
T-025 to CLK1, -2, -3, -4 were 4.8, 0.096, 6.5, and 0.61 nM,
respectively; low Ky values to DYRKS family proteins were also
observed.”*? As a highly potent inhibitor to CLK/DYRK1, T-025
exhibited more than 300-fold enhanced selectivity compared with
other kinases during a KINOMEScan-based kinase profiler assay.'*
T-025 was more sensitive to the cells with elevated CLK2
expression and Myc-amplification in a dose-dependent manner.'*
Additionally, 50 mg/kg T-025 strongly suppressed the growth of a
breast tumor allograft model suggesting that T-025 exerts
anticancer effects against Myc-driven breast cancers.'?

DB18 is a potent inhibitor of CLK1, -2, and -4 kinases belonging to
the nilino-2-quinazoline derivatives.'”® DB18 attenuated CLKs kinase
activities with 1Csq values of 11 nM on CLK1, 27 nM on CLK2, 1280 nM
on CLK3, and 20 nM on CLK4 based on radiometric y**P-ATP assay.'?
When screening at 10 uM concentration with 10 uM ATP, the
compound also showed slight affinity to DYRKTA at 120 nM.'?>13°
Surprisingly, high DB18 concentrations (100 uM) showed no toxicity
on the activity of both human and rat DYRK1A, human DYRK1B, and
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DYRK2. Therefore, DB18 may be considered a novel and promising
CLKs selective inhibitor.'*® A cytotoxicity screening assay of DB18
was carried out in different cancer cell lines and normal human
fibroblast.*® The data demonstrated that DB18 exhibited potent
cytotoxicity on MCF-7 and PC3 cell lines with 1Csq values of 4 and
7 uM. Moreover, DB18 showed moderate cytotoxicity on fibroblast
and HuH7 at 21 and 25 pM, and weak activity on CaCo-2, MDA-MB-
231, HCT116, and NCI-H727 with ICs, higher than 25 uM.'?® The
variability of DB18 efficacy across cell lines is likely dependent on the
CLKs expression levels and kinase activities.

CLK1-IN-1 was designed as a potent and selective inhibitor of CLK1
with an ICso of 2 nM. The activity of CLK1-IN-1 against its targets is
highly dependent on the residues comprising the kinase domains.'®*
CLK1-IN-1 strongly suppressed CLK1 kinase activity with 69-fold
higher in activity compared to the inhibitory effect of CLK1-IN-1
against DYRK1A (ICso =138 nM)."®* CLK1-IN-1 was also shown to
inhibit other CLKs activities with 1Cs values of 31 nM to CLK2 and
8nM to CLK4.'®* Treatment of BNL CL.2 (mouse embryonic liver cell)
with 10 uM CLK1-IN-1 significantly inhibited CLK1 activation, resulting
in the redistribution of SR proteins from the nucleoplasm to nuclear
speckles, and an increase of autophagy and autophagic flux in vitro
in a dose-dependent manner.'® Meanwhile, CLK1-IN-1 elevated
LC3Il expression and induced autophagy and autophagic flux in a
dose- and time-dependent manner in the SKOV-3 human ovarian
cancer cell ling, indicating its therapeutic potential for treating certain
cancers.'® Furthermore, CLK1-IN-1 (30 mg/kg) was reported to have
a hepatoprotective effect by decreasing alanine aminotransferase
(ALT) and aspartate aminotransferase (AST) expression levels in an
Acetaminophen (APAP)-induced hepatotoxicity mouse model.'®*

CLK-IN-T3 exhibited dramatic inhibitory activity against CLKs with
IC50 values of 0.67 nM for CLK1, 15 nM for CLK2, and 110 nM for CLK3,
respectively. However, the change in CLK4 activity post-T3 treatment
was not directly measured in that work."*' DYRK1A and DYRK1B, dual
specificity kinases of the CMGC sub-family, were inhibited 200-300
times less efficiently than CLKs based on kinase enzymatic assays."*"
The results of RNA-Seq analysis indicated that distinct RNA-binding
motifs in skipped exons were associated with T3 treatment.'®’
Meanwhile, T3 application decreased the phosphorylation of the SR
proteins, which are located downstream of CLKs. T3 induced
apoptosis and G2/M cell cycle arrest in human A2780 and HCT116
cells by targeting CLK."*' Mechanically, T3 application modified AS
events in cancer by decreasing the expression of the anti-apoptotic
forms of clAP1, clAP2, XIAP, cFLIP, and Mcl-1."**> Meanwhile,
T3 synergistically induced apoptosis together with Bcl-xL/Bcl-2
inhibitor in human HCT116 and A2780 cancer cells.'*

KH-CB19 is a potent and highly selective CLKs inhibitor that was
demonstrated to strongly bind with CLK1 and CLK4 in temperature
shift assays.''” Further enzymatic assay revealed a relatively lower
ICso on CLK1 compared with ICsq values of 530 nM on CLK3 and
55.2nM on DYRK1A.""” KH-CB19 was revealed to bind with the ATP-
binding sites of CLK1 and CLK3 based on co-crystal structures.
Further experiments demonstrated that 10 uM KH-CB19 suppressed
the phosphorylation of SRp75, SRp55, and SRp20 compared to
TG003, which only inhibited SRp20 phosphorylation. Additionally,
10 uM KH-CB19 was able to inhibit full-length tissue factor (fITF) and
alternatively spliced human tissue factor (asHTF) expression in HMIEC-
1 cells.""” KH-CB20, an E/Z-mixture compound, shared the same
structure and similar kinase binding affinity with E-isomer KH-CB19
with ICs, values of 16.5 nM on CLK1, 488 nM on CLK3 and 57.8 nM on
DYRK1A.""” These results illustrated the potential of KH-CB19 and KH-
CB20 as lead compounds for further drug development.

Cpd-2 and cpd-3 possessed high affinity to CLK1/2 compared to
SRPK1/2/3 with 1Csq values of 1.1 nM (both cpd-2 and cpd-3), 24 nM
(cpd-2) or 2.1nM (cpd-3) on CLK1/2, while showed more than
100nM activity dose (both cpd-2 and cpd-3) on SRPK1/2/3,
separately.'® In comparison, the ICso values of cpd-1 are 16 and
45 nM on CLK1 and CLK2; the IC5, values of SRPK1, -2, and -3 were
calculated as 61, 75, and 10000 nM. Cpd-1, cpd-2, and cpd-3
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significantly decreased endogenous phosphorylation of SR proteins
and enlarged the nuclear speckles in MDA-MB-468 cells. Meanwhile,
the inhibitors resulted in splicing alterations of RPS6KB1(S6K) and
subsequently caused S6K protein depletion.'** Moreover, cpd-2 and
cpd-3 showed considerable growth inhibition (Glso) values in
different cancer cell lines: for Glso of cpd-2, 3.0 UM on breast cancer
(MDA-MB-468), 1.9 and 1.4 uM on NSCLC (A549 and NCI-H23) and
1.7, 22, 20 and 0.6 uM on colorectal cancer (COLO205, HCT116,
SW620, and COLO320DM); for Glsq of cpd-3, 3.4 uM on breast cancer
(MDA-MB-468), 2.6 and 2.2 uM on NSCLC (A549 and NCI-H23) and
2.1, 25, 29 and 1.5uM on colorectal cancer (COLO205, HCT116,
SW620, and COLO320DM). The data suggested that cpd compounds
functioned as CLK inhibitors that exerted tumor growth inhibitory
effects through splicing alterations.'*®

MU1210 is a potent inhibitor of CLKs with IC5, values of 8 nM for
CLK1, 20 nM for CLK2, 12 nM for CLK4, and more than 3000 nM for
CLK3; notably, off target against HIPKs and DYRKs were observed at
relatively high ICs, concentration.'** MU1210 attenuated MCF-7 cell
proliferation and showed ICs, of 4.6 uM in cell viability."** However,
the detailed biological functions and potential of MU1210 in cancer
treatment are largely uncharacterized.

Indazole1 is a novel potent in-house inhibitor of CLK2 with an ICsq
of 10 nM that was identified by in silico screening.5® Indazole1 also
potently inhibited CLK1, CLK3, CLK4, and DYRK1A in vitro with the
ICso values of 12nM, 2250 nM, 12nM, and 73 nM, respectively. Of
note, the data demonstrated that Indazole1 tended to be a more
potent CLKs inhibitor than TG003 by increasing the frequencies of
micro-nucleated binucleates (MNBN) in a dose-dependent manner in
primary human lymphocytes.5®

KuWal151, a member of 3-Aryl-substituted 6,7-dihydropyrrolo[3,4-
glindol-8(1H)-ones class, was identified as an inhibitor of CLK1, -2 and
-4 with the ICsq values for CLK1/2/4 of 88 nM, 510 nM and 28 nM,
respectively.'®® Interestingly, this compound is inactive against CLK3,
DYRKTA/B, and DYRK2.> KuWal151 showed less than 500nM
potency in more than 50 cancer cell lines, especially in the MDA-MB-
435 cell line (Glso = 72.4 nM) which exhibited heightened expression
of CLK1."*® UACC-257 cells showed the lowest CLK1 expression levels
and were least sensitive to KuWal151 application with a Gl value over
50 uM."* The sensitivities of different cancer cell lines with distinct
expression levels of SPF45, an essential substrate of CLK1, to
KuWal151 were determined. The results indicated that cells (HCT-116,
HCT-15, HT-29, KM12, MCF-7) with increased SPF45 levels were
dramatically suppressed by KuWal151. In contrast, OVCAR-8, HOP-92,
and MDA-MB-431 were less sensitive to the compound under similar
conditions, further proving the correlation between KuWal151 and
CLK1."* Thus, KuWal151 might be a potential compound or suitable
lead compound for the synthesis of anti-cancer agents
targeting CLKs.

GPS167 is a novel CLKs inhibitor that originated from a class of
compounds to interrupt HIV replication. GPS167 was subsequently
identified to exhibit approximately 50% inhibition on splicing
response at 2 puM.* A 3%P-kinase assay revealed that GPS167
decreased the CLKs-mediated phosphorylation of SRSF10, but not by
DRPK1 and SRPK, in a dose-dependent manner. The Colo205, SW620,
and HCT116 cancer cell lines were most sensitive to GPS167 as
evidenced by the results of CellTox-Green assays. However, the
compound showed less cytotoxicity on CRL-1831, CRL-1790, and
Caco-2 normal colonocyte cell lines.*® Intriguingly, the inhibition of
GPS167 on cell growth and viability was discovered to be p53-
dependent.* Collectively, GPS167 is a novel inhibitor of CLKs which
impairs cell proliferation and organoids growth of human CRC cells
via interrupting SRSF10 phosphorylation.*

Silmitasertib (CX-4945) is a dual inhibitor of CLK2 and CK2. CX-
4945 strongly inhibited CK2 with an ICsy value of 1 nM against
CK2a and CK2a'; however, it also had a high affinity for CLKs and
DYRK1A."*® The reported ICs, value of CX-4945 on CLK1 is
82.3nM, on CLK2 is 3.8nM, on CLK3 is 90 nM, and more than
1000 nM on SRPK1 and SRPK2.'*® CX-4945 was shown to be a
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CLK2 ATP-competitive inhibitor capable of modulating SR protein
phosphorylation with an ICso concentration ranging between 3 to
90 nM."*® The phosphorylation status of SRSF4, SRSF6, SRSF5, and
SRSF1 were profoundly decreased in 293-T cells following CX-
4945 treatment, indicating that CLKs are targets of the
inhibitor."*® Surprisingly, CX-4945 showed a greater inhibitory
effect than TGO003, with a comparable effect on SR protein
phosphorylation observed at 1 uM CX-4945 and 10 uM TG-003,
suggesting the potential for treating diseases characterized by
splicing dysregulation.’*® The efficacy of CX-4945 has been
demonstrated in a broad range of human malignancies. CX-4945
inhibited cell proliferation and induced caspase-3 independent
non-autophagic cell death in CCA Cells'®’; CX-4945 suppressed
TGF-B1-induced migration and invasion in human A549 cancer
cells,'®® and arrested cell cycle in vitro Moreover, CX-4945
inhibited BT-474 and BxPC-3 xenograft tumor growth in vivo in
a dose-dependent way."*® Moreover, a synergistic effect was
observed when CX-4945 was combined with bortezomib to treat
acute lymphoblastic leukemia'*® and multiple myeloma and
mantle cell lymphoma cell lines."*" Increased therapeutic effects
were observed when CX-4945 cooperated with dasatinib in
ovarian cancer;'*? cooperated with cisplatin and gemcitabine in
holangiocarcinoma'**'** and with temozolomide in GBM.'**%°

A phase /Il clinical trial (NCT03904862) of CX-4945 that aims to test
the safety and tolerability in individuals with recurrent medulloblas-
toma is currently recruiting patients. Another phase | clinical trial
(NCT03897036) to evaluate the treatment duration and pharmaco-
dynamics of CX-4945 in basal cell carcinoma (BCC) is also currently
recruiting volunteers. Additionally, a combination study of CX-4945
with ATM inhibitors (Sunitinib, Pazopanib, and Temsirolimus) in
kidney cancer (NCT03571438) which aims to evaluate the therapeutic
potential of the compounds in clinical treatment is currently ongoing.
A recently completed phase I/1l clinical trial (NCT02128282) estimated
the safety and tolerability of increasing doses of CX-4945 in
combination with gemcitabine plus cisplatin to determine the
maximum tolerated dose (MTD) and the recommended Phase Il dose
(RP2D) in the frontline treatment of patients with cholangiocarci-
noma. 200 mg CX-4945 combined with 25mg/m.sq. cisplatin or
1,000 mg/m.sq. gemcitabine was adopted in MTD and RP2D
estimation. Unfortunately, the results are presently unavailable to
the public. Additional experiments and clinical trials are currently
scheduled to assess the therapeutic potential of CX-4945 in cancer
treatment.

CC-671 is a dual inhibitor of CLK2 and Monopolar spindle 1
(Mps1, also named TTK).'*® Seven kinases showed over 80%
inhibition by CC-671 across a 255 kinases panel. TTK and CLK2
activities were potently suppressed of the seven identified
kinases with ICsq values of 5 nM and 6 nM, respectively.'*® Other
kinases, such as CLK1 or DYRKs, were also inhibited by CC-671
with different 1Cs, values.'® Interestingly, results from a series
of ActivX KiNative™ profiling assays indicated that CLK2 was
inhibited in vitro by CC-671 with an ICsy of 15 nM; however, TTK
was not inhibited.'*® Furthermore, treatment of different breast
cancer cell lines with CC-671 showed that luminal BC cells were
more sensitive to CC-671 treatment versus TNBC cells.'*®

Thiophene 48 is a dual DYRK/CLK1 inhibitor that was
synthesized based on the natural molecule harmine.'"’
Thiophene 48 showed potent activity with 1Cso values of
110 nM, 100 nM, 70 nM, and 40 nM on CLK1, DYRK1A, DYRK1B,
and DYRK2, respectively. Moreover, the compound was found
to have a 75-fold, 3-fold, and 2-fold better inhibitory activity
against DYRK2, DYRK1B, and CLK1 compared to the reference
compound harmine.* 1uM Thiophene 48 significantly
induced cell apoptosis in U20S osteosarcoma cells by increas-
ing the ratio of caspase 3/7. However, Thiophene 48 showed no
cytotoxicity at 5 uM on V79 hamster lung fibroblasts while the
same concentration of Harmine significantly inhibited cell
growth.'”
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Leucettine L41 is a dual inhibitor of CLK1/4 and DYRKs.
Leucettine L41 was modified by using Leucettamine B as an
inhibitory scaffold, and was shown to co-crystallized with
DYRK1A, DYRK2, CLK3, PIM1, and GSK-3B."8'%° Leucettine L41
exhibited potent inhibition on DYRK1A, DYRK1B, and DYRK2
with ICsq values of 60, 44, and 73 nM, respectively. However, the
ICso values with respect to CLKs are much higher.'*® Compared
to the effect of leucettamine B, the inhibitory activities of L41
were significantly increased against DYRKs, CLK1, and CLK4;
however, the 1Cso with respect to CLK3 was obvious increased
from 1.8 nM to more than 10 uM, suggesting that CLK1/4 may
also be ideal targets of L41."*® The study further indicated that
L41 displayed a neuroprotective role in glutamate-induced
HT22 cell death.'*® Moreover, Leucettine L41 decreased the
phosphorylation of SRp75 in HMEC-1 cells. In addition, a
CLK1 minigene transgenic model in Hela cells indicated that
L41 treatment significantly elevated the percentage of exon
inclusion of CLK1 itself.'°

More compounds have been shown to inhibit CLKs activities
and/or other CMGC kinases; however, detailed molecular
mechanisms and in vivo experimental evidence are currently
sparce. For example: Compound 3A5,"°' ML315,'°? SRI-
29329,'** ML167,"** ML106,'>> and BM07114'>° still lack the
pre-clinical data to support their anti-diseases efficiency. The
constant efforts that uncover the underlying potential of CLKs
inhibitors to prevent various diseases will pave the path to drug
development and facilitate the progress of diseases treatment.

CONCLUSIONS AND FUTURE PERSPECTIVES

Protein kinases, which phosphorylate specific substrate moieties,
play critical roles in cell growth and differentiation. Substrate
phosphorylation by kinases controls diverse cellular processes.'>’
Abnormal expression or dysfunction of protein kinases lead to
many human diseases, including cancer. Many protein kinases are
closely related to human diseases, for example, AURKA,'*® AKT,'*°
CDK12,'%° CDK15,"8" LIMK,®? CLKs,'®* AMPK,'®* and p38 MAPK.'5*

CLKs participate in the phosphorylation of key proteins that
regulate cellular metabolism and various signaling pathways.'*>'6¢
Irregular expression of CLKs and the dysregulation of alternative
splicing have been identified in several human diseases; therefore,
CLKs have emerged as a new class of disease hallmarks.'s”~'°
Accumulating evidence has revealed the importance of CLKs in
various physiological processes such as Duchenne muscular dystro-
phy, Alzheimer's disease, and cancer. However, there are still
limitations in the current understanding of CLKs. Firstly, the relation-
ship between CLKs, immunotherapy, and the tumor microenviron-
ment is currently unknown. Next, animal disease models, including
CLKs conditional knockout or in situ disease models, are needed to
fully understand the importance of CLKs in disease occurrence and
development. Given the recent discovery showing that oxidation of
the Met307 residue of CLK4 disrupted its kinase activity,'*® more
studies should be carried out to explore posttranslational modifica-
tions able to regulate CLKs function and expression. Moreover, the
Q607R mutation within the CLK3 kinase domain enhanced c-Myc
activity in promoting CCA,'** indicating the importance of CLKs
somatic mutations in human diseases. Therefore, a mutation map of
different CLKs detailing the functional consequences of specific
mutations will contribute to explore the underlying molecular
mechanism of CLKs. Therefore, continued investigation of CLKs
functionality using high throughput sequencing and animal models
are required to foster a more complete understanding of CLKs in
human diseases occurrence and progression.

Due to the essential role of CLKs in human diseases, significant
efforts have been made to study CLKs inhibitors using kinase
screening technologies and pharmacological approaches. Most
inhibitors have been well studied and have shown satisfactory
anti-neurodegeneration, anti-inflammation, anti-viral, and anti-
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cancer effects by inhibiting the expression and activities of CLKs.
However, there are still challenges associated with current CLKs
inhibitors, and efforts can be made to achieve the following goals
for disease therapeutics: 1) Targeted inhibition of specific CLKs for
precision therapy. Most small molecular CLKs targeting drugs are
broad-spectrum inhibitors, thus, specific inhibitors able to target
CLK1, -2, -3, or -4 are needed to achieve greater therapeutic effect
to reach a more precision therapy. 2) Development of pan-CLKs
inhibitors to achieve heightened anti-cancer effects. The dysfunc-
tion and irregular expression of different CLKs members are
concomitant in various human diseases, thus, the improvement of
pan-CLKs inhibitors can help to maximize the treatment efficacy
and benefit more patients in the clinic. 3) Enhance the specificity
and selectivity of inhibitors to CLKs compared with other
homologous CMGC family proteins through structural optimiza-
tion. Many CLKs inhibitors show slight or strong off-target effects
on other homologous kinases, such as, DYRKs and SRPKs. 4)
Combination therapies of CLKs inhibitors with other compounds
to achieve synergistic effects in the treatment of various diseases.
Aiko et al. noted that treatment with CLK-IN-T3 in combination
with the Bcl-xL/Bcl-2 inhibitor ABT-263 synergistically induced
caspase 3/7-dependent apoptosis in A2780 and HCT116 cells
compared to CLK-IN-T3 treatment alone.'*? Meanwhile, E7107, an
SF3b-targeting splicing modulator, synergistically enhanced
apoptosis in NSCLC cell lines when combined with ABT-263.'7°
These findings indicate that the combination strategy of targeting
CLKs with other inhibitors is an appropriate splicing molecular-
based approach for future clinical development. It is noteworthy
that certain CLKs inhibitors were recognized as ideal lead
compounds for structural optimization to obtain more specific
CLKs inhibitors. Moreover, a genetic function algorithm support
vector regression (GFA-SVR)'"' and ligand- or structure-based
drug optimization'’>"”® provided predictive models and effective
methods for screening and optimizing of the potential of CLKs
inhibitors. Nonetheless, research on CLKs-based therapy is still in
the initial stage; the cognition and development of CLKs inhibitors
will undoubtedly progress upon more in-depth investigation.

In conclusion, CLKs facilitate biological processes through the
phosphorylation or modulation of their downstream targets in a
splicing or non-splicing-dependent manner. Changes in CLKs
activity or expression level are closely related to pathological
processes. CLKs inhibitors have shown significant therapeutic
effects in various human diseases including neurodegenerative
diseases, inflammatory diseases, viral replication, and cancer. To
our knowledge, most of the compounds discussed in this review
satisfy the criteria for chemical biology probes and have
excellent prospects for the development of novel medicines.
Given the essential role of CLKs in various human diseases, it can
be expected that targeting CLK kinases may prove clinically
beneficial in the future.
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