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Integrative multi-omics and drug–response characterization of
patient-derived prostate cancer primary cells
Ziruoyu Wang1, Yanan Li2, Wensi Zhao3,4, Shuai Jiang5,6, Yuqi Huang 3,4, Jun Hou5, Xuelu Zhang7, Zhaoyu Zhai7, Chen Yang8,
Jiaqi Wang1, Jiying Zhu1, Jianbo Pan7, Wei Jiang 1, Zengxia Li1, Mingliang Ye 2✉, Minjia Tan 3✉, Haowen Jiang8✉ and
Yongjun Dang 1,7✉

Prostate cancer (PCa) is the second most prevalent malignancy in males across the world. A greater knowledge of the relationship
between protein abundance and drug responses would benefit precision treatment for PCa. Herein, we establish 35 Chinese PCa
primary cell models to capture specific characteristics among PCa patients, including gene mutations, mRNA/protein/surface
protein distributions, and pharmaceutical responses. The multi-omics analyses identify Anterior Gradient 2 (AGR2) as a pre-
operative prognostic biomarker in PCa. Through the drug library screening, we describe crizotinib as a selective compound for
malignant PCa primary cells. We further perform the pharmacoproteome analysis and identify 14,372 significant protein-drug
correlations. Surprisingly, the diminished AGR2 enhances the inhibition activity of crizotinib via ALK/c-MET-AKT axis activation
which is validated by PC3 and xenograft model. Our integrated multi-omics approach yields a comprehensive understanding of PCa
biomarkers and pharmacological responses, allowing for more precise diagnosis and therapies.
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INTRODUCTION
Prostate cancer (PCa) was the most frequently diagnosed cancer
in men in over half (112 of 185) of the world’s countries in 2020.1

Throughout the past decade, systemic therapy for patients with
Asia PCa has made very modest progress. Although only 7.8% of
new cases of PCa worldwide occurred in China, 14.5% of deaths
happened among Chinese patients according to GLOBOCAN 2020
estimates.1 One of the possible causes for higher mortality rate
among Chinese PCa patients could be the unique genomic
alteration signatures in Asian patients, such as gene-level
mutation frequencies and copy number alternations, compared
to those of Western populations, highlighting the importance of
considering ethnic background when making clinical decisions.2

Currently, the early recognition of PCa and the prediction of
tumor development following treatment still mainly relied on
changes of prostate-specific antigen (PSA) level. However, 4–10 ng/
mL PSA levels (also known as the gray area of PSA) cannot
accurately distinguish benign prostatic hyperplasia (BPH) from
malignancy or predict tumor progression. In addition, both BPHs
and tumors have a phenotype of excessive cell growth, but only
tumors exhibit a malignant phenotype of metastasis and invasion,
the mechanism of which is not well understood. Consequently,
investigating the molecular distinctions between BPH and tumor
could improve our understanding of the roots of tumor malignancy.

In recent years, next-generation sequencing (NGS) has allowed
for individualized cancer treatment.3,4 Nevertheless, accumulating
evidence suggested that many of the cancer characteristics that
influence tumor progression and treatment responses were
influenced by non-genetic mechanisms,5 resulting in only 30%
of patients exhibiting clinical responses commensurate with early
expectations.6,7 Consequently, it is essential to utilize multi-level
data to inform therapeutic decision making.
To date, limited PCa drug investigations in Asian populations

have limited its clinical oncology efficacy. Directly exposing cells to
drugs through functional precision medicine (FPM) could assist to
identify dynamic individual critical vulnerabilities to improve the
therapeutic efficacy in clinic.8 There is a growing interest in the
pan-cancer platforms available for pharmaceutical screening based
on widely used cell lines, including the Cancer Therapeutics
Response Portal (CTRP),9 Genomics of Drug Sensitivity in Cancer
(GDSC)10 and Cancer Cell Line Encyclopedia (CCLE).11 However,
most of these were utilizing cell lines generated decades ago which
may have lost their initial tumor features and developed new
mutations as a result of long-term cultivation. Additionally, these
cell lines were rarely derived from Asian population. To faithfully
analyze personalized tumor heterogeneity and pharmaceutical
responses, it is necessary to establish a panel of PCa patient-derived
primary cell models and identify protein-drug associations.

Received: 1 June 2022 Revised: 3 February 2023 Accepted: 7 February 2023

1Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences,
Shanghai Medical College, Fudan University, 200032 Shanghai, China; 2CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and
Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian, China; 3The Chemical Proteomics Center and State Key Laboratory of Drug
Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203 Shanghai, China; 4University of Chinese Academy of Sciences, 100049 Beijing, China;
5Department of Urology, Zhongshan Hospital, Fudan University, 200032 Shanghai, China; 6Department of Urology, Zhongshan Hospital Wusong Branch, Fudan University,
200032 Shanghai, China; 7Center for Novel Target and Therapeutic Intervention, Chongqing Medical University, 400016 Chongqing, China and 8Department of Urology, Huashan
Hospital, Fudan University, 200040 Shanghai, China
Correspondence: Mingliang Ye (mingliang@dicp.ac.cn) or Minjia Tan (mjtan@simm.ac.cn) or Haowen Jiang (haowj_sh@fudan.edu.cn) or Yongjun Dang (yjdang@cqmu.edu.cn)
These authors contributed equally: Ziruoyu Wang, Yanan Li, Wensi Zhao, Shuai Jiang

www.nature.com/sigtransSignal Transduction and Targeted Therapy

© The Author(s) 2023

1
2
3
4
5
6
7
8
9
0
()
;,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41392-023-01393-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41392-023-01393-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41392-023-01393-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41392-023-01393-9&domain=pdf
http://orcid.org/0000-0002-3060-8418
http://orcid.org/0000-0002-3060-8418
http://orcid.org/0000-0002-3060-8418
http://orcid.org/0000-0002-3060-8418
http://orcid.org/0000-0002-3060-8418
http://orcid.org/0000-0001-7615-0900
http://orcid.org/0000-0001-7615-0900
http://orcid.org/0000-0001-7615-0900
http://orcid.org/0000-0001-7615-0900
http://orcid.org/0000-0001-7615-0900
http://orcid.org/0000-0002-5872-9326
http://orcid.org/0000-0002-5872-9326
http://orcid.org/0000-0002-5872-9326
http://orcid.org/0000-0002-5872-9326
http://orcid.org/0000-0002-5872-9326
http://orcid.org/0000-0002-6784-9653
http://orcid.org/0000-0002-6784-9653
http://orcid.org/0000-0002-6784-9653
http://orcid.org/0000-0002-6784-9653
http://orcid.org/0000-0002-6784-9653
http://orcid.org/0000-0001-7237-1132
http://orcid.org/0000-0001-7237-1132
http://orcid.org/0000-0001-7237-1132
http://orcid.org/0000-0001-7237-1132
http://orcid.org/0000-0001-7237-1132
mailto:mingliang@dicp.ac.cn
mailto:mjtan@simm.ac.cn
mailto:haowj_sh@fudan.edu.cn
mailto:yjdang@cqmu.edu.cn
www.nature.com/sigtrans


The incidence of PCa in Asia is rapidly rising with economic
development, longer life expectancy and adoption of the western
lifestyle.12,13 Studies which integrated multi-omics and drug
responses would be essential to improve treatment recommenda-
tions for Asian male populations. Herein, we offered a resource to
evaluate the relationships across genome, transcriptome, pro-
teome, cell-surface proteome, and drug responses in PCa patients-
derived primary cell samples. Additional examination of the
pharmacoproteome uncovered PCa-related biomarkers and their
corresponding treatment strategies.

RESULTS
Establishment of the prostate cancer model repository (PCMR)
In this study, we developed the prostate cancer model repository
(PCMR) by generating 35 primary patient-derived cells, including
10 BPH and 25 tumor samples, to characterize PCa on multi-scales
(Fig. 1a–c). To generate PCa cell models, we improved the primary
culture process with a new tissue digestion formula, based on
previous studies (Methods).14,15 The tissue digesting formula
elevated the primary culture success rate to 100%, supporting the
long-term viability and proliferation of PCa epithelial cells. In this
co-culture system, epithelial-like colonies of patient-derived
conditional reprogramming cells (CRCs) developed on the
irradiated murine-derived 3T3 cells (Fig. 1b, d). The culture of
primary cell lines allowed the replacement of murine-derived 3T3
cells with rat tail collagen I coated dishes when primary cells
proliferated stably (after 10 passages).
In total, 35 cell lines were generated from 10 BPH and 25 PCa

with detailed clinical pathological information including different
Gleason scores (Supplementary Table 1). In agreement with a
previous report,16 the clinical characteristics were independent of
successful CRC establishment. The feasible passages with these
cell lines depended on the individual patient and were unrelated
to clinical malignancy. The immunofluorescence (IF) staining and
immunoblotting of the clinical PCa marker alpha-methylacyl-CoA
racemase (AMACR)17 in BPH and PCa primary cells showed varying
degrees of malignancy matched to the clinical pathology grade
(Fig. 1d and Supplementary Fig. 1a). In addition, the cytokeratin 5
(CK5) exhibited epithelial characteristics18 in all prostate primary
cells and did not differ significantly across cells (Fig. 1d and
Supplementary Fig. 1a). We noticed that the androgen receptor
(AR) was expressed in our early-passage primary cells (within 3
passages) but never afterwards as the cells were passaged
(Supplementary Fig. 1b). By comparing the hematoxylin-eosin
(HE) staining of BPH-1, GS 6-1, GS 8-1, GS 9-1 and GS 10-1, we
unveiled that the malignancy degree of the primary cells matched
the pathological grade of tissue origin (Supplementary Fig. 1c).
These findings demonstrated that the CRC culture supported the
in vitro proliferation of both benign- and malignant-derived
epithelial cells and preserved the clinical traits of patients.

Multi-omics landscape of PCMR
Multi-dimensional omics data offers an exceptional opportunity to
integrate data in order to better understand disease character-
istics. PCMR samples were subjected to whole-exome sequencing
(WES), RNA-seq, total proteome, and surface proteome analysis
after sample quality control (QC) and normalization procedures
(Fig. 1c).
WES was performed on 23 samples to detect any possible

somatic variants in genome, which identified 1,329 somatic
variation events in primary cells (Fig. 1e and Supplementary Data 1).
Our prior research demonstrated that CRCs cultivated using our
technique conserved the mutational landscape of the primary
tissues.19 Herein, we compared the tumor primary cell mutations to
1840 samples from The Cancer Genome Atlas (TCGA)20 and two
prior studies of PCa21,22 from the widely used cBioPortal for Cancer
Genomics (http://cbioportal.org)23 (Supplementary Data 1), and

found 84.6% overlapping mutated genes and 15.6% unique
mutations (Supplementary Fig. 2a), which likely suggests the racial
differences and tumor heterogeneity. In addition, RNA sequencing
(RNA-seq) was carried out in total mRNA of 25 tumor and BPH
primary cells, which identified 17,558 genes with transcripts per
kilobase of exon model per Million mapped reads (TPM) greater
than 1 (Supplementary Data 2).
Tandem Mass Tag (TMT) labeling and mass spectrometry

analysis were used for global proteomic analysis. An internal
reference sample was prepared by pooling all samples at equal
amounts, and then was used for the four-batch analyses. The
correlation coefficients of all internal reference sample runs were
greater than 0.97 (Supplementary Fig. 2b), demonstrating the
good reproducibility of the proteome data. Proteome quantifica-
tion of all samples exhibited a unimodal distribution and passed
through the quality control procedure (Supplementary Fig. 2c). At
the protein and peptide levels, proteomics analysis of all patient
samples yielded a total of 7062 protein groups with a false
discovery rate (FDR) of 1% (Supplementary Data 3). A total of 6848
and 6656 proteins were identified in tumors and BPH cells,
respectively. On average, the proteome detected 5890 proteins
per sample, with a range from 5670 in BPHs to 6086 in tumors
(Fig. 1f; Supplementary Data 4).
For the surface proteome analysis, biotinylation of surface-

exposed proteins was performed by using a non-permeable
amine-reactive biotinylation reagent, sulfo-NHS-SS-Biotin24,25 with
an optimized protocol (Methods). Streptavidin blotting indicated
successful biotinylation (Supplementary Fig. 2d). The Spearman’s
correlation coefficient of 4 samples in 2 batches was greater than
0.93 (Supplementary Fig. 2e), demonstrating the high reproduci-
bility of the surface proteome data. The correlations of the primary
samples were between 0.87 to 0.98 (Supplementary Fig. 2f).
Surface proteome data from all samples also exhibit a unidirec-
tional distribution (Supplementary Fig. 2g). Combining all the
samples, we identified 2644 cell-surface proteins (proteins with
GO-annotation of cell-surface/plasma membrane/cell membrane/
extracellular, and proteins predicted with transmembrane topol-
ogy using TMHMM, Phobius) for further analysis (Supplementary
Data 4). Similar to prior studies,26,27 ~56% of proteins were
identified as plasma membrane and membrane related proteins in
total (Supplementary Fig. 2h). The number of surface proteins
identified by sulfo-NHS-SS-biotin ranged from 1842 to 2330 in
every single sample (Fig. 1f).
We further characterized the number of mRNA/proteins

identified in BPH and tumor primary cells identified at the
transcriptome, proteome, and surface proteome scales, respec-
tively. Notably, tumor cells exhibited richer mRNA/proteins
(Fig. 1g) in all scales, suggesting more active cell transduction
and metabolic signaling within tumor cells. So far, our research
has established a comprehensive landscape of PCa patient-
derived primary cells at the genomics, transcriptomics, proteo-
mics, and surface proteomics scales.

PCMR captures oncogenic alterations of PCa
To characterize oncogenic alterations captured by PCMR, we
identified somatic mutations by WES. The results demonstrated
that only a small number of mutated genes in tumors and BPH
coincide (Fig. 2a), indicating different genetic backgrounds and
cell proliferation mechanisms between tumor and benign
samples. Variants analysis was performed to capture the genomic
alterations in tumor patients (Fig. 2b–e). Comparing to 7,308 sam-
ples from 22 prior studies in cBioPortal, our study uncovered a
distinctive mutational landscape of Chinese PCa primary cells that
was varied from Western populations in cBioPortal (Supplemen-
tary Fig. 3a). The top 10 mutated genes in our tumor primary cell
models occurred more frequently in neuroendocrine prostate
cancer (NEPC) and castration-resistant prostate cancer (CRPC),
which are highly malignant subtypes of PCa (Fig. 2f), partially
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prompting that primary cells may enriched with low-frequency
malignant mutations. The top 10 high-frequency mutations (such
as MUC19, NBPF14, AHNAK2, and COL1A1) detected in primary
cells were rare mutations in previously reported samples except
TTN (Supplementary Fig. 3a), which is known as a major mutated

gene in many types of tumors including PCa. Previous research
has implicated some high-frequency mutations, such as COL1A128

and AHNAK2,29 with the invasion and metastasis in various
cancers. By combining survival data in cBioPortal, we described 4
mutations (TTN, NBPF14, AHNAK2, and COL1A1) among top 10

Fig. 1 Multi-omics landscape of PCMR. a–c Workflow of multi-omics and drug sensitivity screening landscape of Prostate Cancer Model
Repository (PCMR). Benign prostatic hyperplasia (BPH) or tumor primary cell samples were generated from 10 BPH and 25 Chinese prostate
cancer (PCa) patients. d The HE staining of BPH tissue and three cases of PCa tissue, as well as the morphology and immunofluorescence
staining (AMACR and CK5) of primary cells (passage 3). e WES for in-depth somatic variant screening. Top, mutation counts for the top 20
mutant genes in each primary cell; Right, mutation types and their frequencies. f Overview of the proteomics and cell-surface proteomics
profile of PCMR. Bar plots show protein identification number in proteome and cell-surface proteome of paired primary cell samples (n= 26).
g Overlapping genes/proteins between tumor and BPH primary cells identified by RNA-seq, proteomics and cell-surface proteomics
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high-frequency mutations as prognostic indicators in primary cells
(Fig. 2g–i), since the other 6 genes offered less prognostic
significance (Supplementary Fig. 3b). The combination of four
genes provided a more significant prognostic prediction value

(Log-rank test, p-value = 1.29 × 10−10, Fig. 2h). The comparison
suggested that the high-frequency mutations detected in primary
tumor cells may catch the malignant and rare mutations in PCa
which exhibited strong prognosis value.
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In-depth multi-omics analysis of PCMR
In the present study, the differences between BPH and tumor
primary cells were comprehensively characterized at four levels:
genome, transcriptome, proteome and cell-surface proteome.
Integrative multi-omics profiling supported the molecular under-
standing of the disease using an exploratory approach to improve
the precision of clinical decision making. Integrated multi-omics
profiling improved the precision of clinical decision making by
enhancing molecular understanding of the disease. Globally,
mRNA and protein abundance exhibited a moderate correlation of
0.26 (Spearman correlation coefficient) in tumor samples (Supple-
mentary Fig. 4a) and a weaker correlation in BPHs. Several various
types of tumors had exhibited weak relationships between the
abundances of certain RNA transcripts and the corresponding
protein.30,31 We validated the presence of modest transcriptome-
proteome correlations in PCa primary cells. Pathway enrichment
analysis of genes with relatively positive or even negative mRNA-
protein correlations demonstrated that genes with strong
correlations were predominantly enrolled in biosynthesis and
metabolism processes, while genes with negative correlations
were involved in transcription-related processes using Reactome
database (Supplementary Fig. 4b). The results suggested that
protein post-translational modification substantially shaped its
abundance and biological process.
We next performed differentially expressed gene analysis on

proteome (Supplementary Fig. 4c), surface proteome (Supple-
mentary Fig. 4d), and transcriptome scales (Supplementary Fig.
4e), in which, totally 122 proteins (Wilcoxon rank-sum test,
p < 0.05, fold change >1.2), 115 surface proteins (Wilcoxon rank-
sum test, p < 0.05, fold change >1.2) and 637 genes (Wald test,
p < 0.05, fold change >1.5) were significantly changed between
BPH and tumor cells, respectively. Transcriptomic data showed the
most dynamic range, followed by surface proteomic data and
finally proteomic data. Proteins or genes were considered
significantly altered (DEP/Gs) if their fold change and p-value
met the certain threshold. To compare proteome and surface
proteome data, we investigated 155 DEPs that were noteworthy in
proteome and surface proteome data and excluded 1770 proteins
with a nonsignificant p-value in proteome data. The fold change of
overlapped DEPs in surface protein and protein was well
correlated (Pearman’s rho= 0.72, p < 2.2 × 10−16; Fig. 3a), and
the cell-surface protein abundances performed a greater fold
change dynamic range than the total protein abundances. The
majority of DEPs were observed exclusively in whole cell lysate
(114 proteins, Fig. 3b) or on the cell membrane (107 proteins,
Fig. 3c), showing a distinguishable surface protein scenario.
Notably, eight DEPs (CPT1A, PGD, EML2, EPB41L1, ASS1, LCN2,
S100P, and AGR2) were significantly altered in both the proteome
and surface proteome data (Fig. 3d).
Gene set enrichment analysis (GSEA) according to Hallmark and

KEGG database demonstrated that highly expressed mRNA/
proteins in tumor were highly enriched in epithelial-
mesenchymal transition (EMT), myogenesis, glycan biosynthesis
and extracellular matrix (ECM) receptor interaction pathways
(Fig. 3e and Supplementary Fig. 4g), whereas mRNA/proteins

enriched in BPHs were enrolled in inflammatory, oxidative
phosphorylation and amino acid metabolism process (Supple-
mentary Fig. 4f, h). Notably, the EMT process was highly enriched
in tumor transcriptome and proteome scales (Fig. 3f, g). The result
revealed that tumor cells lost epithelial phenotype and showed a
more invasive pattern compared to BPH cells. It was worth noting
that some enriched pathways from transcriptome or proteome
data were different, such as E2F targets, IL2-STAT5 signaling and
N-glycan biosynthesis pathways were only enriched in the
proteome, while angiogenesis and MYC target genes are more
pronounced in transcriptome enrichment (Fig. 3e and Supple-
mentary Fig. 4f–h). These data further suggested that RNA and
protein level analysis offered complementary molecular charac-
teristics. Therefore, combining the transcriptomic and proteomic
information is essential to deeply understand the cell phenotypes
and disease features on multi-scale.

Downregulation of AGR2 is a biomarker for PCMR aggressiveness
Differential expression analysis in multi-omics showed that AGR2
was significantly downregulated in tumor- versus BPH-derived
primary cell proteome (Wilcoxon rank-sum test, 0.49-fold,
p= 0.0002, Fig. 4a) and cell-surface proteome (Wilcoxon rank-
sum test, 0.17-fold, p < 0.0001, Fig. 4c), and AGR2 was also
comparatively lower in tumors at mRNA level (Wilcoxon rank-sum
test, 0.52-fold, p= 0.12, Supplementary Fig. 5a). AGR2 is a member
of the protein disulfide isomerase (PDI) family, which was reported
to regulate protein homeostasis regulation and maintain epithelial
phenotype, indicating an undeniable role in cancer progres-
sion.32,33 Immunoblotting analysis (Supplementary Fig. 5b) vali-
dated that the abundance of AGR2 were remarkably
downregulated in tumor- versus BPH-derived primary cell lysates
and membrane proteins (Fig. 4b, d) and were significantly related
to the clinical malignancy of patients (Supplementary Fig. 5c).
AGR2 immunohistochemical (IHC) staining was performed in an
independent cohort of 37 BPHs and 129 PCa clinical samples, the
positive rate of AGR2 decreased as the tumor stage progressed
(Fisher’s exact test, p= 0.0471, Fig. 4e), indicating that the
diminished protein expression levels of AGR2 were correlated
with the malignancy of tumor. In TCGA datasets, low AGR2
expression levels were significantly related to poor disease-free
survival (DFS) in PCa (Fig. 4f). Moreover, gene correlation analysis
in TCGA datasets indicated that the mRNA expression levels of
AGR2 were significantly positively correlated with epithelial
markers (E-cadherin, α-catenin and β-catenin, Fig. 4g–i) but was
not correlated with the vimentin and N-cadherin expression
(Supplementary Fig. 5d-e). AGR2 mRNA expression levels and
survival analysis were performed by GEPIA34 (http://gepia.cancer-
pku.cn). A similar correlation trend was also found in our RNA-seq
data (Fig. 4j).
To validate the correlation between AGR2 and E-cadherin, we

further constructed AGR2-knockdown (AGR2-KD) PC3 cell line and
corresponding PC3 xenograft nude mice models. E-cadherin
expression was significantly reduced in AGR2-KD PC3 cell lines
(Fig. 4k) and PC3 xenograft models (Fig. 4l). These findings
partially explained that the patients with lower AGR2 expression

Fig. 2 Oncogenic alterations in PCMR. a Overlapped mutated genes for tumor (red) and BPH (blue) primary cells identified by WES. b Variant
classification of tumor primary cells identified by WES. c Variant types of tumor primary cells identified by WES. d The variant number of per
tumor primary cell sample identified by WES. e Top 10 mutation genes of tumor primary cells. The fraction indicated the proportion of
patients with mutation in this gene. The bar height indicated total mutations in this gene. Red, conservative in-frame deletion; green,
disruptive in-frame deletion; pink, stop codon gained; blue, missense variant; purple, other variants. f The genomic alteration frequency of top
10 mutation genes in 7161 patients. Dark green represents mutations, blue represents deletions, red represents amplifications, and gray
represents multiple alterations. Data were obtained from the cBioPortal. NEPC, prostate neuroendocrine carcinoma; CRPC, castration-resistant
prostate cancer; PA, prostate adenocarcinoma. g The survival curve of four PCa-related genes and the combination of them (h) with/without
gene mutations in cBioPortal. P-values are calculated by Log-rank test. i cBioPortal OncoPrint evaluate the mutations attributes of PCRCs from
previous 22 studies shown in Supplementary Fig. 3a
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displayed shorter DFS and trended to develop malignant
phenotype and cancer metastasis. Overall, restrained AGR2 may
associate with the loss of tumor epithelial properties, resulting in
diminished tumor cell adhesion and performing a malignant

phenotype with metastasis-associated traits. Interestingly, the
reduced AGR2 expression levels were not contributed to poor
prognosis in many other cancers in TCGA datasets, suggesting
that AGR2 may play a unique role in PCa (Supplementary Fig. 6).

Fig. 3 Integrative multi-omics analysis of PCMR. a Scatterplot of 155 matched proteins and surface proteins in PCa versus BPH-derived primary
cell samples. 1770 proteins were removed due to nonsignificant p-values in proteome. The color represents the position of the protein in 4
equal parts of protein abundance, where yellow indicates the most abundant. The size of the circle indicates the −log10 (p-value) in proteome.
P-value and Pearman’s correlation between protein and surface protein abundance is shown in the upper left corner of the figure. b, c Volcano
plot of the differential expression proteins solely identified in proteome data (b) or surface proteome data (c). d Number of overlapped DEG/Ps
between protein, mRNA, and cell-surface protein. Bar plot on the left indicate the total number of associated genes in each type. Bar plot on the
top show the number of genes in the singleton or intersection groups as indicated by the dots below. Genes are filtered by p-value < 0.05 and
fold change (protein) >1.2 or <0.83, fold change (surface protein) >1.2 or <0.83 and fold change (RNA-seq) >1.5 or <0.67. e GSEA pathway
enrichment analyses of the RNA-seq and proteomic data using hallmark database revealed pathways that are significantly altered (FDR < 0.05)
in tumors. f, g GSEA (Hallmark gene sets) enrichment of EMT pathway at mRNA or protein scale in tumor samples
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Diversified pharmaceutical responses in PCMR models
We next performed an in vitro drug screening to characterize
diverse pharmaceutical perturbations in PCMR (Fig. 5a). We
assembled 33 anticancer drugs authorized by the FDA, comprising
15 chemotherapeutic and 18 multi-targeted drugs against nine
cellular pathways (Supplementary Data 5). Twenty-nine PCMR
models were screened (Method, Supplementary Fig. 7a) against
this drug panel with 7 concentrations for each drug, yielding
>6,699 measurements of cell-drug associations. Half-maximal
inhibitory concentration (IC50) and activity area (AA) of each cell-
drug interaction were determined to reflect pharmaceutical

responses in PCMR models11,16 (Supplementary Data 6), and they
were shown to be highly correlated (Supplementary Fig. 7b). In
general, drugs with the same target had a tendency to be
clustered together, which suggested the credibility of drug
screening results (Fig. 5a). Interestingly, we identified five drugs
(sorafenib, etoposide, mitomycin C, crizotinib, erlotinib) that
showed selective responses among BPHs and tumors (t.test,
p < 0.05, Fig. 5a). The most effective selective drug was crizotinib, a
kinase inhibitor of the receptor tyrosine kinase anaplastic
lymphoma kinase (ALK) and the c-Met/hepatocyte growth factor
receptor (HGFR) (Fig. 5a). The dose-response plot for crizotinib in

Fig. 4 AGR2-downregulation was an invasive biomarker in PCMR. a–d The AGR2 expression of BPH-versus tumor-derived primary cell in
whole cell (a, b) and surface protein (c, d) lysates was evaluated employing LC-MS/MS (a, c) and western blotting (WB, b, d). The protein blot
bands of WB were quantified utilizing gray scanning (ImageJ). *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 by Wilcoxon rank-sum test.
e IHC staining of AGR2 in different pathological grades (n= 138). The representative AGR2 IHC results (left) performed on Gleason score (GS)
3+ 4, GS 4+ 5, GS 5+ 5 and BPH. The positive rate of AGR2 was analyzed among BPHs (n= 37), early stage of tumors (GS 6–7, n= 80) and late
stage of tumors (GS 8–10, n= 49) (right). *p < 0.05 by Fisher’s Exact test. Scale bar, 200 μm. f Kaplan–Meier plots for disease-free survival (DFS)
of TCGA-PRAD patients grouped by the median of AGR2 levels. Statistics calculated by Log-rank test. g–i Scatter plots showing the Spearman’s
correlation between AGR2 and three epithelium-related genes (CDH1, CTNNA1, CTNNB1) in TCGA PRAD (n= 494) database. The Spearman’s
correlation was analyzed by GEPIA. j Spearman’s Correlation analysis between AGR2 and EMT-related genes (CDH1, CTNNA1, CTNNB1, EHF,
VIM) in PCMR. k, l WB analysis of E-cadherin, Vimentin expression levels in NC/AGR2-KD PC3 cells (k) and xenograft tissues (l)
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all cell lines exhibited a significant sensitivity at 1 μM (Fig. 5b),
indicating that tumor primary cells are more susceptible to
crizotinib-induced inhibition. Although the molecular mechanisms
of these drugs for PCa were unclear, our dataset contained
pharmacological candidates and their repurposing for PCa
therapy. Our observations revealed that the high-throughput
drug screening in PCMR elicited a variety of drug responses and
offered prospects for pharmacoproteomic analysis in PCa.

Pharmacoproteomic analysis in PCMR
Pharmacoproteomic analysis was an unbiased approach for
identifying possible protein markers in response to drugs. Overall,
we identified 14,372 significant protein-drug interactions

(Supplementary Fig. 7c, Supplementary Data 6). To further confirm
functional proteins associated with drug efficacy and response, we
identified 19 genes as cancer-related genes (CRGs) in PCa,
whereas 15 were overlapped DEP/Gs (Fig. 3c), and four (TTN,
NBPF14, AHNAK2, COL1A1) were the top mutated genes in PCMR
(Fig. 2g, I). We identified 89 CRG-drug pairs with significant
interactions, in which the drug responses of crizotinib and afatinib
were associated with the highest CRG protein expression levels
(Methods, Fig. 5c and Supplementary Data 6). Specifically, seven
CRGs were significantly related to crizotinib response (Fig. 6a and
Supplementary Fig. 8), of which, four proteins were positively
correlated (AGR2, EML2, S100P, SERPINB4) and three proteins were
negatively correlated (CPT1A, GLIPR2, MYH11). Unexplored

Fig. 5 Diversified drug responses in PCMR models. a Heatmap showing drug responses in 28 PCMR models (left) and bar plot showing the
p-value of drug response between BPH and tumor primary cell models (right). Pink represents tumor and green represents BPH.
Drug–response value is presented as the 7-Activity Area (7-AA). b The mean fluorescence intensity of BPH (n= 10) and tumor (n= 18) primary
cell viability as measured by CellTiter Glo after 72 h of crizotinib treatment. The fluorescence intensities are normalized to the DMSO treatment
of each cell line. c Pharmacoproteomic interaction of CRGs in PCMR. Bar plot showing the number of proteins significantly associated with
drugs (p-value <0.05), Red represents for positively related proteins, blue represents for negatively related proteins. Heatmap showing the
specific correlation values of protein-drug pairs and nonsignificant correlations (p-value > 0.05) have been hidden in white. P-values are
calculated by unpaired two-sided Student’s t test. *p < 0.05, **p < 0.01
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protein-drug associations that could aid clinical design and hasten
precision medicine in PCa need proper confirmation.
Collectively, PCMR offered a protein-drug association resource

that can be investigated as possible predictors of pharmaceutical
responses. We detected affluent protein markers of drugs,
including associations that cannot be explained by our existing
understanding. With adequate validation studies, these potential

indicators may contribute to patient classification and clinical
response prediction.

AGR2 deficiency enhanced the crizotinib inhibition in PCa
Since crizotinib performed best drug selectivity for PCa in our
screening (Fig. 5a), and AGR2 was the most significant DEP (Fig. 3a)
between PCa- and BPH-derived primary cells, the significantly

Fig. 6 Crizotinib sensitivity in PCa was negatively affected by AGR2. a Spearman correlation analysis between crizotinib (7-AA values) and
normalized AGR2 protein intensities in PCMR. b The protein expression levels of AGR2 and log10 (IC50) of crizotinib in PCMR. c Viability
(relative fluorescence intensity) of NC/AGR2-KD PC3 cells treated with crizotinib for 72 h as measured by CellTiter Glo. The data are presented
as mean ± SD. The fluorescence intensities are standardized to the DMSO treatment of each cell line. d The tumor volume of NC/shAGR2-2 PC3
cells after subcutaneous inoculation into nude mice and treated with 25mg/kg crizotinib every two days. Tumor volume was measured once
every two days for 18 days. The data are presented as mean ± SEM, n= 6 mice/group. e Normalized fold change of tumor weight. Tumor
weight data were normalized to the DMSO treatment of each group. The data are presented as mean ± SEM, n= 6 mice/group. f GSEA
enrichment plots of Ras, PI3K-Akt, RTKs and transmembrane RTK activity pathways. g WB analysis of p-AKT (S473), p-ALK (Y1278/1282/1283)
and p-c-MET (Y1234/1235). PC3-NC/shAGR2 cells were treated with 10% FBS prior to crizotinib (5 μM) treatment or left untreated. h Log CI
values show for PC3-shAGR2-2 cell line treated with the drug combination of MK-2206 and crizotinib for 72 h. The higher the size of the circle
is, the higher the CI power. I Proposed work diagram. P-values are calculated by unpaired two-sided Student’s t test. *p < 0.05, **p < 0.01,
***p < 0.001
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positive correlation (Spearman R= 0.58, p= 0.0027; Fig. 6a, b)
between crizotinib and AGR2 was of considerable interest. We
wondered if AGR2 was liable for fine-tuning the inhibition activity of
crizotinib. In vitro, crizotinib showed a more pronounced inhibition
effect on PC3 with AGR2-KD in a dose-depended manner (Fig. 6c
and Supplementary Fig. 9a). The growth rate of PC3 cells with
AGR2-KD was first drastically inhibited but resumed after a week,
which might be the result of parallel signaling activation.
(Supplementary Fig. 9b, c). In vivo, xenografts with AGR2-KD
performed elevated tumor suppression compared to PC3-NC in
response to crizotinib (Fig. 6d, e and Supplementary Fig. 9d, e)
without showing signs of severe toxicity (Supplementary Fig. 9f),
suggesting that AGR2 loss exacerbated crizotinib-induced inhibition
and may serve as a biomarker for crizotinib responses in vivo.
To investigate how AGR2 orchestrated the crizotinib sensi-

tivity, we performed GSEA pathway enrichment analyses of
RNA-seq and proteomics data on three BPHs (BPH1, BPH2,
BPH5) and three tumor (GS6-2, GS7-8, GS9-4) primary cells that
displayed the most noticeably varied crizotinib susceptibility
and AGR2 expression levels (Fig. 6b). Both principal component
analyses (PCAs) of RNA-seq and proteomics data were able to
distinguish between these tumors and BPHs, with the tran-
scriptomics analysis providing the optimal separation (Supple-
mentary Fig. 10a, b). We next performed differentially expressed
gene analysis which identified 1747 genes (Wald test, p < 0.05,
fold change > 2) and 308 proteins (t.test, p < 0.05, fold change >
1.2) that significantly altered between BPHs and tumor samples.
GSEA indicated that tumors significantly activated pathways
such as Ras, PI3K-Akt, signaling by receptor tyrosine kinases
(RTKs) and transmembrane receptor protein tyrosine kinase
activity (Fig. 6f and Supplementary Fig. 10c–e). These results
partially prompted that the restrained AGR2 expression
activated the RTK signaling, which contributed to enhanced
the inhibition performance of crizotinib.
Since crizotinib is a well-known dual inhibitor of the c-Met and

ALK,35 we utilized western blot to examine the activation changes
of p-ALK (Y1278/1282/1283), p-c-MET (Y1234/1235) and p-AKT
(S473) in AGR2-KD cells. The phosphorylation signaling in PC3-
shAGR2 cells was more activated by FBS stimulating which was
greatly inhibited by crizotinib (5 μM) treated for 5 min (Fig. 6g). We
further evaluated the synergy of crizotinib with MK-2206, a highly
selective AKT1/2/3 inhibitor which strikingly reduced AKT signal-
ing.36 We employed the Loewe additivity model as the combina-
tion index (CI) model and the Log-logistic[01] with three
parameters as the drug–response curve model using the app
SiCoDEA.37 Combinations of MK-2206 (between 0.31 and 1.2 M)
with crizotinib (between 0.62 and 10 M) in the PC3-shAGR2-2 cell
line demonstrated a substantial synergy (Fig. 6h and Supplemen-
tary Fig. 10f, g).
These results revealed that AGR2 boosted ALK/c-MET signaling,

which enhanced the performance of crizotinib inhibition efficacy.
Notably, diminished AGR2 downregulated E-cadherin (Fig. 4k, l),
and a prior study has indicated that E-cadherin downregulation
may aid in the ligand-dependent activation of RTK in tumors.38,39

Together, these data unveiled that the low expression of AGR2
diminished E-cadherin expression to activate the ALK/c-MET
signaling which was closely related with the enhanced response
to crizotinib (Fig. 6i) in PCa.

DISCUSSION
We here reported a comprehensive multi-omics analysis of 35
Chinese PCa primary cell lines, quantifying more than 1800
mutations, 17,000 transcripts, 7000 proteins, 2000 cell-surface
proteins as well as responses to 33 FDA-approved drugs. Using
integrated multi-omics analysis, we discovered that disease nature
in PCMR patients is correlated with genomic abnormalities,
transcriptome expressions, and protein/surface protein abundance,

which could be applied to predict drug sensitivity relevant to
precision medicine.
Cell membrane surface proteins are the first line of defense

against the environment and drugs. In-depth screening of cell
surfaceome remains challenging due to the characteristics of low
abundance and high hydrophobicity. We knew very little about
the correlation between membrane proteins and drug sensitivity.
Our study utilized an optimized protocol25 allowing reduced
number of starting cells (105-106 cells per experiment) to enrich
and identify membrane proteins and assessed the potential
interaction between membrane proteins and drugs based on
primary cell lines. Generally, the coverage of proteome is not as
deep as transcriptome yet owing to technical limitation. Since the
number of proteins identified can be influenced by many factors
such as cell type, sample preparation, LC gradient and type of MS
instrument. Further efforts in optimizing sample preparation and
LC-MS/MS parameters will benefit the improvement of the depth
and internal concordance of molecular analysis.
Tumor heterogeneity in PCa elicited a complex molecular

classification for patients.40 Compared with PCa tissue studies, top
mutant genes, such as TP53 and SPOP, were not mutated in PCMR.
This may be a result of the dominant population screened during
CRC cultivation.16 Recent data revealed that metastasis was
typically spread by a tiny group of 10–150 cells in the tumor
interior.41,42 Notably, most of the drug-targeted mutations
occurred in the very early stages, as these variants were present
in the majority of tumor cells43 and were easily detected by
whole-tissue sequencing. However, cells in tumor became
heterogeneous with tumor evolving, while a small subset of
cancer cells acquired new mutations in advanced stages,
contributing to poor prognosis.44

Both BPH and PCa could contribute to cell extensive prolifera-
tion, finding out why tumor cells performed a more aggressive
behavior than BPH cells was indispensable for understanding
tumor progression. Our study showed that AGR2 protein
expression levels in tumors were significantly diminished com-
pared to BPHs, which implied that AGR2 considerably orchestrated
the aggressive phenotypic differences between malignancies and
benign hyperplasia, such as migration and metastasis. AGR2 plays
a crucial role in embryonic development and tissue regeneration45

and has been linked with the initiation and development of
several cancers, including breast,46 lung,47 ovarian,48 pancreatic,49

and prostate32,33 cancers. Most speculation were over AGR2’s pro-
proliferative function, even using it as a tumor biomarker.46–49 This
was primarily supported by the elevated AGR2 expression in
tumors, and overexpression of AGR2 would promote cell growth.
However, these findings cannot account for the fact that lower
AGR2 expression was strongly related with a poor prognosis in
PCa (Fig. 4f). Especially, metastasis is typically spread by a tiny
population inside the tumor,41,42 leading to a poor prognosis. We
proved a substantial positive correlation between AGR2 and
E-cadherin in transcriptome and WB, further indicating a potential
association between AGR2 and EMT process and supporting
earlier discoveries that AGR2 abrogation greatly reduced cellular
attachment50 and showed significantly elevated metastases
lesions.47 In addition, a prior limited study employed an IHC
analysis33 demonstrated the CD10highAGR2low subtype was more
prevalent in high-grade initial tumors and speculated that AGR2
performed a protective function in primary tumors but may
contribute to the distant dissemination of tumor cells. Taken
together, AGR2 appears to have a promoting role in multiple
primary tumors, but we confirmed that its downregulation was
crucial for regulating distant dissemination of PCa cells.
PCMR provided primary cell models to faithfully assess the

efficacy of drugs and took individual differences into account.
Herein, we underlined the selectivity of crizotinib between BPHs
and tumors while unveiled possible explanations based on multi-
omics scale. Agents targeting AR signaling remained the
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cornerstone for PCa therapy, however, stringent AR disruption
elevated c-MET expression, which contributed to PCa progres-
sion.51 Crizotinib performed an anti-proliferative activity for
advanced PCa especially when paired with androgen ablation
therapy, according to preclinical studies performed in cell lines,
organoids and xenograft models.52–54 Despite a phase I study
discovered that 74% steady-state crizotinib diminished when gave
along with enzalutamide,55 this pathway remained crucial in PCa,
and trials combining novel AR and c-MET inhibitors with fewer
probable pharmacokinetic interactions were under investigation.
Our multi-omics investigation revealed that crizotinib selectively
inhibits PCa cells, particularly AGR2-deficient PCa cells. These
results improved our knowledge of crizotinib-induced inhibition
and supported future therapeutic combinations. More drugs and
biomarkers could be achievable with more validation, hastening
the progress of PCa therapeutic development.
However, it should be noted that AR is only expressed on prostate

luminal epithelial cells but the conditional reprogramming (CR) -based
PCMRmodel are stem-like transit-amplifying epithelial cells56–58 which
cannot sustain AR expression (Fig. 1d, Supplementary Fig. 1b). The
findings were highly consistent with the established PCa primary
cells.59 However, the use of AR-negative primary cell lines to explore
androgen-derived treatments may be limited. Moreover, the CR-
based 2D cell model that does not possess a tumor microenviron-
ment and therefore has limited representation with in vivo drug
responses. Organoids and PDXs have superiority in maintaining
cancer tissue structure and complex microenvironment,54 but 2D cells
were comparatively simple to expand in large quantities, allowing for
pharmacoproteomic analysis. Pharmacoproteomic analysis indicated
the possible proteins and related pathways affected by drugs on
proteome scale, avoiding the epigenetic effects and post-translational
modifications compared to pharmacogenomic. Matching the phar-
maceutical responses with protein abundances to provide insights
into cancer biology and to promote the clinical decision making.
These putative biomarkers may facilitate patient classification and
contribute to the explanation of variability in patient clinical response
if they are validated through the necessary investigations.
In conclusion, our study established a paradigm for enhancing

drug discovery by employing multi-omics in cell platforms. We
constructed a knowledge base on protein-drug interactions in
PCa, which, if adequately confirmed, might aid clinical decision
making and speed up the development of precision medicine. We
hope to conduct biological functions and clinical trials of
numerous candidate drug-protein associations, and to improve
the accuracy with the larger datasets in the future.

MATERIALS AND METHODS
Patient sample collection
Prostate tissue specimens were collected from patients who
underwent prostate biopsy or radical prostatectomy from Huashan
Hospital, Fudan University, consisting of 10 cases of BPHs (number
BPH-1 to BPH-10), 7 cases with Gleason score of 6 (number GS 6-1
to GS 6–7), and 6 cases with Gleason score of 7 (number GS 7-3 to
GS 7-8). Five cases with Gleason score of 8 (numbers GS 8-1 to GS
8-5), six cases with Gleason score of 9 (numbers GS 9-1 to GS 9-6)
and one case with Gleason score of 10 (numbers GS 10-1). Among
them, the sample of GS 6-3 was obtained from PCa with seminal
vesicle invasion, the samples of GS 8-1 and GS 9-3 were obtained
from patients who were sensitive to androgen deprivation therapy.
The samples of GS 8-2 and GS 10-1 were obtained from patients
who were insensitive to androgen deprivation treatment (CRPC).
Pathological examination diagnosed all involved patients with

PCa or BPH (Supplementary Table 1). Ethics Committee at
Huashan (Shanghai, China; approval number: KY2011-009) and
Zhongshan Hospital (Shanghai, China; approval no. B2019-247R)
approved the study procedure. Before collecting samples from
patients, informed consent was acquired. The experimental

methods were executed in conformity with the Huashan and
Zhongshan Hospitals’ authorized Ethics Committees. Immunohis-
tochemistry (IHC) was performed on formalin-fixed, paraffin-
embedded pathological specimens from the repository. The
electronic patient record system at Huashan and Zhongshan
hospitals was mined for patient clinical data.

Cell model generation and immunofluorescence staining
To establish cell models from clinical specimens, we followed the
CR cell culture medium.14 Specifically, the primary culture medium
was prepared by combining DMEM (Gibco, C11995500BT) and
F-12 nutrient (Gibco, 11765-054) as a fix ratio of 3:1 and
supplementing it with 5 µg/mL insulin (Sigma-Aldrich, I-5500),
0.125 ng/mL human epidermal growth factor (Gibco, PHG0313),
25 ng/mL hydrocortisone (Sigma-Aldrich, H-0888) and 10% fetal
bovine serum (Gibco, 2175442P). The medium was filtered
through a 0.2-µm sterile filter and kept at 4 °C after adding
10 µM ROCK (Rho-associated coiled-coil-containing kinase) inhi-
bitor Y-27632 (DC Chemicals, DC1028) up to 2 weeks. Tumor-
derived cell pellets were transferred to a culture dish containing
feeder cells at a density of 1 × 104 cells/cm2 in primary media. The
formation of obvious tumor colonies was seen 24–72 h after
seeding.
Briefly, fresh tissue was obtained from Chinese patients by

surgical excision or biopsy (Supplementary Table 1). Tissues with
necrosis were discarded. The remainder was sliced into 2 to 3mm
fragments with scissors and digested with 0.15% Collagenase
Type I (Sigma-Aldrich, C0130), 0.1% Dispase (Gibco, 17105-041),
and 0.04% Hyaluronidase (Sigma-Aldrich, H3506) in primary
medium for 30–180 min at 37 °C. The cell suspension was then
filtered using a 70 μm cell strainer and centrifuged at 1000
revolutions per minute for 5 minutes. The cancer cells were
resuspended in primary medium, transferred to feeder cell-coated
plates, and then cultured in a humidified incubator with 37 °C and
5% CO2. Frequent microscopy was utilized to observe the
expansion and proliferation of epithelial cell clones. Picking out
epithelial cell clones were picked out to avoid fibroblast
contamination. Once cells reached 80% to 90% confluency,
epithelial cells were enzymatically detached with 0.25% trypsin-
EDTA (Gibco, 25200114) and passaged at a ratio of 1:3. Fresh
primary medium was changed every 2 to 3 days. Most primary
cells could proliferate on dishes coated with rat tail collagen I
(Corning, 354236) after 10 passages, but cannot proliferate
normally as epithelial phenotype without collagen. Few primary
cells lost their epithelial features after 20 passages, but the
majority of initial cells could undergo more than 30 passages. To
close the patient’s tumor characteristics as much as possible, we
manage all of our sequencing within 2–5 passages to minimize
the impact of mutations and status changes caused by in vitro
culture. Primary cell lines were publicly available.
To validate the features of primary cells, immunofluorescence

labeling was performed. After primary cell digestion, inoculate a 24-
well culture plate at a density of 2000 per well. Following 24 h, the
slides were washed three times with PBS and fixed at room
temperature for 15minutes with 4% paraformaldehyde. The slides
were then washed with PBS three times. The slides were perforated
for 20minutes at room temperature with 0.5% Triton X, washed
three times with PBS, and then incubated for 30minutes with 3%
BSA. Dropwise add diluted AMACR (Abcam, ab246927, 1:100) or CK5
(Abcam, ab52635, 1:100) and incubate at 4 °C for 12 h. The slides
were washed three times with fluorescent secondary antibody
coupled with primary antibody, incubated for 1 h at 37 °C in a humid
box, and then rinsed three times with PBST. Add DAPI dropwise to
cover the plate in the dark for 5minutes and acquire images.

Subcutaneous xenograft
PC3 and its knockdown cell lines were grown in RPMI 1640 (Gibco)
medium with 10% FBS, 1% penicillin/streptomycin and GlutaMAX
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(Gibco), in a 37 °C incubator with 5% CO2. The PC3-NC and PC3-
shAGR2-2 cells were amplified and resuspended in PBS. A total of
2 × 106 PC3-NC and PC3-shAGR2-2 cells mixed with Matrigel
(354234, Corning, Corning, NY) were injected subcutaneously into
the flank of male nude mice aged six weeks. In the 7th day after
injection cells, the diameter of the tumor reached around 0.5 cm.
Crizotinib was administered at 25mg/kg once every two days by
intraperitoneal injection. The tumor size was measured with a
caliper during the entirety of the experiment. The volume of the
tumor was determined using the formula: v= 0.5 × a × b2 (v, the
tumor volume; a, the major diameter of the tumor; b, the minor
diameter of the tumor). The animals were housed in a facility free
of particular pathogens (12 h light/dark cycle, 21–23 °C tempera-
ture, and 30–70% relative humidity). All animal experiments were
conducted in compliance with the Animal Care & Use Committees
of Department of Laboratory Animal Science, Fudan University
(approval number: 2022JS Huashan-160).

Whole-exome sequencing
MagPure Tissue & Blood DNA LQ Kit was used to extract genomic
DNA (D6312-02). Biorupter (Diagenode, Belgium) was used to
generate 150–200 bp fragments from 200 ng genomic DNA from
each individual. DNA fragment ends were repaired, and an
Illumina Adaptor was attached (Fast Library Prep Kit, iGeneTech,
Beijing, China). Following the preparation of the sequencing
library, the whole exons were collected with AIExome Enrichment
Kit V2 (iGeneTech, Beijing, China) and sequenced on the Illumina
NovaSeq 5000 platform (Illumina, San Diego, CA) with 150base
paired-end reads. FastQC (version 0.11.9) was used for quality
assurance. Linkers and low-quality readings were eliminated using
Trimmomatic (version 0.39) software.60 We eliminated adapters
and leading N bases that were of lower-than-grade 3 quality. We
examined the scans with a sliding window that was four bases
wide, eliminating reads when the average quality per base fell
below 15 and discarding those that were less than 36 bases long.
The clean data were aligned to human reference genome
(UCSC_hg38) and mouse genome (mm10) by software BWA
MEM (Version: 0.7.17-r1188).61 Use the software Samtools [Version:
1.9 (using htslib 1.9)]62 to convert sam format files to bam format
files, sort and build indexes. R package XenofilteR (v1.6)63 was
then used to remove the murine genes in the bam file. Duplicate
reads were removed using Picard (v2.23.8-0) software. Base quality
recorrection (BQSR) was performed using GATK software
(v4.1.9.0),64 using Mutect2 to call SNP and indel following best
practice. Results are annotated using ANNOVAR.65 Downstream
analysis uses the R package maftools (v2.6.05). Because of the
absence of matched normal tissues in the available PCa cell
models, we employed the frequently used workflow to call
probable somatic mutations in cancer cell model analysis.16,66 The
variations were compared to recognized databases of germline
variation, such as dbSNP146, 1000 Genomes, and GnomAD. If
the variant was present in the COSMIC database, it would be
maintained. The remaining variants were considered to be
potential somatic mutations.

RNA sequencing
Trizol (Invitrogen) was used to extract total RNA in accordance
with the manufacturer’s instructions. Illumina Novaseq 5000 was
used to perform paired-end 150 bp sequencing on all 25 cell
models, per the manufacturer’s instructions. Before to applying
any data filtering criteria, the RNA-Seq data quality was evaluated
with the FastQC (version 0.11.7) program. Using HISAT2 (v2.2.0),67

reads were mapped to the human reference genome (GRCh38
assembly). XenofilteR (v1.6) R packages63 were used to screen out
mouse genes after mapping. StringTie software (v2.1.2) and the
genome annotation file (EMBL Homo sapiens.GRCh38.101.gtf)
were utilized to assemble the mapped reads into transcripts or
genes. The retained genes had a raw count greater than one,

resulting in a total of 19,359 gene IDs. TPM (transcripts per million)
was utilized to standardize the expression profiles (Supplementary
Data 2).
The relative abundance of the transcript/gene was quantified

using a metric standardized by the R package DESeq2 (v1.28.1).68

DESeq2 identified upregulated DEGs as those with a p-value <0.05
and a fold change ≥1.5, and downregulated DEGs as those with a
p-value < 0.05 and a fold change ≤−1.5. GSEA was conducted
utilizing the Desktop Application69 and clusterProfiler70 R package.

Proteomic analysis
Protein extraction. Cells were washed with PBS buffer three times
and lysed in 8 M Urea in 100 mM NH4HCO3 containing protease
and phosphatase inhibitors (Roche, Mannheim, Germany). Then,
samples were incubated on ice for half an hour and sonicated for
4 min (2 s of sonication time at 5 s intervals). Next, the protein
solution was transferred into a clean tube after centrifugation at
21,130 g at 4 °C for 15 min. Protein concentration was determined
with a BCA protein assay kit (Beyotime Biotechnology, Shanghai,
China).

In-solution digestion. Protein lysates were reduced by 5mM
dithiothreitol (DTT) at 56 °C for 30min, and then incubated with
15mM iodoacetamide (IAA) at room temperature away from light
for another 30min. After incubation, 30 mM cysteine was added to
quench the alkylation reaction. Next, the protein solution was
subjected to trypsin digestion with enzyme-to-substrate ratio of
1:50 at 37 °C for 16 h. Trypsin was added again at a ratio of 1:100
(w/w) for 4 h at 37 °C. Finally, those peptides were desalted by a
Sep-Pak C18 column (Waters, Milford, MA, USA)

Tandem mass tag (TMT) labeling. 10-plex TMT reagents were
used to label the desalted peptides from each sample according
to the manufacturer’s instructions (Thermo Fisher Scientific, San
Jose, CA, USA). Internal reference sample was prepared by mixing
all samples at equal amounts, and then was used in Channel 126
throughout the sample analysis. The labeling efficiency of TMT
reagents was checked with an EASY-nLC 1200 system coupled to
an Q Exactive HF-X mass spectrometer (Thermo Fisher Scientific,
San Jose, CA, USA). After labeling efficiency confirmation (TMT
modification ratio > 95% for both lysine residue and peptide N-
termini), the peptides labeled by different TMT reagents were
mixed with equal contribution, dried using Speed-Vac, and
desalted by SepPak C18 cartridges (Waters, Milford, MA, USA). In
total, the samples were labeled into four batches in the TMT 10-
plex experiment.

HPLC fractionation for proteomic analysis. To reduce the com-
plexity of the tryptic peptides, high-pH reversed-phase HPLC with
a Waters XBridge Prep C18 column (5 μm particles, 4.6 × 250mm)
was applied to separate the TMT labeled peptides. Mobile phase A
composed of 2% acetonitrile and ammonium hydroxide solution
(pH = 10). Mobile phase B contained 2% mobile phase A and 98%
acetonitrile. The TMT labeled peptides were dissolved in mobile
phase A. After sample loading, tryptic peptides were separated
with a 97 min gradient at a flow rate of 1.0 mL/min. The LC
gradient started with an increase of solvent B to 5% in 2min, 5%
to 12% B for 8 min, followed by linear rise to 33% B in 57min,
2 min to 95% B, then constantly 95% B in 13min and another
12min for 5% B. Finally, the peptides were incorporated into
twenty fractions and dried by a Speed-Vac for further experiments.

LC-MS/MS analysis. LC-MS/MS analysis was performed by Q
Exactive HF-X mass spectrometer (Thermo Fisher Scientific, San
Jose, CA, USA) following an EASY-nLC 1200 system (Thermo Fisher
Scientific, San Jose, CA, USA). A homemade reverse-phase C18
column (21 cm × 75μm column containing ReproSil-Pur 120 C18-
AQ, 1.9 μm particle size, 120 Å pore size, Dr. Maisch GmbH,
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Germany) was used to further separate peptides. First, peptides
were dissolved in mobile phase A (0.1% formic acid in 2%
acetonitrile). After sample loading, peptides were eluted with a
70minutes gradient from 6 to 30% mobile phase B (0.1% formic
acid in 90% acetonitrile) in 57 minutes, 30 to 45% mobile phase B
in 4 minutes at a flow rate of 300 nL/min, then 45 to 80% mobile
phase B in 4 min, 5 minutes for 80% B at a flow rate of 400 nL/min.
After nanoflow HPLC, precursor spectra were collected from m/z
350–1550 with a resolution of 60,000 at m/z 200, the automatic
gain control (AGC) of 3e6 and maximum injection time (MIT) of
45ms. In MS/MS acquisition, the 20 most intense ions were
chosen to be fragmentized by Higher-energy Collision Dissocia-
tion (HCD) with the normalized collision energy (NCE) of 32%, then
the fragment ions were detected in the Orbitrap with a resolution
of 45,000 at m/z 200. AGC was set to 1e5, and the MIT was 30 ms.
The isolation window was set to 0.8m/z and dynamic exclusion
duration was 30 s.

Proteomic database search. All MS/MS spectra were analyzed
using MaxQuant software (1.6.7.0) against the Uniprot human
database including 96,464 sequences (downloaded in September
2019). TMT 10-plex-based MS2 reporter ion quantification with a
mass tolerance of 0.003 Da was selected. To reduce the
interference of precursor co-fragmentation, the precursor intensity
fraction (PIF) filter was set at 0.75. Cysteine carbamidomethylation
was included as fixed modification. Methionine oxidation and
protein N-term acetylation were set as variable modifications. Less
than six modifications per peptide were required for each peptide.
Enzyme specificity was set as trypsin/P. The maximum missed
cleavages were set as two. The tolerances of first search and main
search for peptides were set at 20 ppm and 4.5 ppm, respectively.
The FDR cutoff for protein level was set as 0.01. For each batch of
TMT labeling data, the purities of TMT labeling channels were
corrected based on the kit LOT number.

Proteomic data analysis
Data normalization: Proteins from the reverse database or
potential contaminant database were removed. For each sample,
the reporter ion intensities from the same gene were grouped.
Then the intensity was normalized by the median in each sample
to calibrate sample loading differences. After calculating relative
abundance as the ratio of sample abundance to internal reference
sample abundance, the data were log2-transformed for further
analysis.

Quality control and assessment of LC-MS/MS data: The density
plot of the normalized intensities of the proteins quantified in
each sample and dip statistic test was used to examine whether all
samples passed the quality control with expected unimodal
distribution. Pearson correlation of internal reference samples
from different batches were used for evaluating the reproduci-
bility of TMT labeling experiments.

Differential protein analysis: The Wilcoxon rank-sum test was
utilized to identify proteins that varied significantly between
tumor and BPH. Significant upregulated proteins were defined as
those with a p-value <0.05 and a fold change >1.2, whereas
downregulated proteins were defined as those with a p-value
<0.05 and a fold change <1/1.2.71

Surface proteomic analysis
Cell-surface proteome profiling by amine-reactive cell-surface
biotinylation method. Cell-surface proteins were enriched by
covalently coupling with primary amines via sulfo-NHS-SS-biotin.25

Briefly, primary cells were washed twice with ice-cold PBS and
then labeled for 30 min at 4 °C with 0.25 mg/ml sulfo-NHS-SS-
biotin. Subsequently, the cells were subjected to quench buffer of
100mM glycine and then washed twice with 20 mM Tris-HCl and

150mM NaCl (pH7.4). The cells were lysed in ice-cold radio-
immunoprecipitation assay (RIPA) buffer with 0.2% (v/v) protease
inhibitors (pH 8.0). Streptavidin agarose beads were then
incubated with the biotinylated cell lysates for 3 h at room
temperature, followed by six washes with PBS. The biotinylated
proteins were eluted with PBS containing 50mM DTT, 6 M urea,
and 0.2% SDS for 30 min at 65 °C. This procedure was repeated
once for complete elution. The combined proteins were digested
with trypsin (1:25, w/w) via filter-aided sample preparation (FASP)
method. Finally, the digest was acidified to 3% formic acid (FA)
and was then dried for the following reverse-phase liquid
chromatography–tandem mass spectrometry (RPLC-MS/MS)
analysis.

RPLC-MS/MS analysis and data searching. The dried peptides
were resuspended in 0.1% FA and analyzed with a Q Exactive HF
mass spectrometer. Each sample was analyzed by two LC-MS/MS
runs. All of the raw files were loaded onto Proteome Discoverer
(versions 2.1.1.21) incorporated with mascot (versions 2.5, Matrix
Science Inc.) for protein identification and andromeda search
engine integrated into the MaxQuant environment (versions
1.5.2.8)72 for label-free quantification (LFQ) of proteins, and
searched against a non-redundant UniProt human database
(20,325 sequences) using default settings with the following
minor changes. The parameters were set as follows: trypsin
enzyme, maximum two missed cleavages, precursor-ion mass
tolerance was set to 10 ppm; fragment-ion mass tolerance was set
to 0.05 Da, carbamidomethyl (C) as static modification and several
dynamic modifications were oxidation (M). In addition, thioacyla-
tion (K and protein N-term) and CAMthiopropanoyl (K and protein
N-term) were also set as dynamic modifications for protein
identification. The matching time window of “match between
runs” was set as 0.7 min, and the parameters of “Min. peptides”,
“Min rator + unique peptides” and “Min. unique peptides” were
set as 2, 2, 1 for protein quantification, respectively. The FDR was
controlled < 1% in every search result.

Bioinformatic analysis. Protein cellular localization and statistical
enrichment test were analyzed by PANTHER software (http://
pantherdb.org/)73 and UniProt database (http://www.uniprot.org).
To compare the surface proteins between BPH and tumor

samples, LFQ intensities for proteins without missing values or two
missing values in both runs were first averaged, or the unique LFQ
intensity for proteins with one missing value was directly retained
in each sample. The method of analyzing the differential
expression of surface proteins between BPH and tumor samples
is the same as the method of analysis of proteomic data.

High-throughput drug screening
Thirty-three FDA-approved drugs were selected for drug screening
(Supplementary Data 5). The majority of medication stocks (10 mM
in DMSO, excluding platinum compounds) were kept at −80 °C.
Due to the fact that DMSO might deactivate platinum complexes,
cisplatin, carboplatin, and nedaplatin were dissolved in 20 mM
PBS. To assure that each primary cell line was in the growth phase
at the termination of the assay (85% confluency), we seeded cells
in 384-well microplates at 15% confluency and estimated the ideal
cell number for each cell line based on cell proliferation rate
(Supplementary Fig. 7a). During screening, the cells were grown in
the primary medium at 5% CO2 and 37 °C. The pharmaceutical
screening was performed on high-throughput drug screening
platform in our institute.
Cells were seeded in 384-well plates at a predetermined cell

density and volume of 50 μL using a Multidrop Combi Reagent
Dispenser for drug screening (Thermo Fisher Scientific). After an
overnight incubation, cells were treated using JANUS (PerkinEl-
mer) with 10-fold serial dilutions of seven doses of a single drug
and then transferred to an incubator for 72 h.9,10,16 Upon
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completion of drug treatment, each well was added 25 μL
CellTiter-Glo reagent (Promega), and after 10min incubation at
room temperature, the luminescent signal was evaluated using
EnSpire Multilabel Reader (PerkinElmer) to quantify cell viabilities.
Every treatment was carried out in triplicate wells. On every
screening plate, a high single-point concentration of Bortezomib
that caused total cell death was employed as a positive control.
Multi-parametric analysis of drug–response curves of IC50 and

activity area (AA) was performed using Python. IC50 assesses drug
potency and efficacy,74 whereas AA represents drug–response
magnitude.11 The IC50 and AA values can be used to describe the
drug reaction and offer information about various elements.

mRNA-protein correlation
Gene-wise correlation was used for the correlation assessment of
RNA-Seq and TMT proteomics platforms.75 Spearman’s correlation
was calculated for each gene across all the samples. Gene without
missing values and with top 10% SD in RNA-Seq and TMT datasets
were chosen for analysis.

Pathway enrichment analysis
Gene set enrichment analysis (GSEA) software was used for
pathway enrichment (KEGG and Hallmark, MSigDB v7.1.).69 The
permutation type was set as “gene-set”. For proteomic and surface
proteomic datasets, proteins (gene level) with less than 20% of
missing values were selected, the missing values were then
imputed via KNN method using R package “impute”.36 Pathway
with FDR less than 0.05 was used.

Pharmacoproteomic analysis in PCMR
Correlation between drug sensitivity and proteome expression
level was evaluated by Spearman correlation coefficients between
7-AA values and normalized protein intensities. Proteins with less
than 50% missing value across all samples were preserved in the
analysis. Drug/proteins pairs with a cutoff of p-value <0.05 were
considered as significantly associated, otherwise, the correlation
coefficients were reset to missing values. For each drug, the
number of CRGs positively or negatively associated with the drug
(p-value < 0.05) was calculated respectively.

Experimental validation of gene functions
PEI reagent was used to deliver the pGREEN plasmids containing
shAGR2 into 293T cells along with the plasmids psPAX2 and
pMD2.G (Addgene) for lentivirus packaging. The lentivirus-
containing supernatant was collected on the second and third
day after transfection, then filtered with 0.45 μm syringe filters
(PALL Life Sciences). Lentiviruses were extracted from the super-
natant and kept at −80 °C until use. Infecting 1 × 105 PC3 cells in a
6-well format with 2 μg/ml polybrene (Sigma) using viral super-
natant, then the cells were centrifuged at 1500 rpm for 2 h.
Western blotting was used to evaluate the knockdown

effectiveness. For 6-well format siRNA transfection, 2.5 μL siRNA
in 250 μL serum-free opti-MEM medium (Gibco, 31985070) was
combined with 4 μL RNAiMax (Invitrogen) in an equivalent volume
of serum-free opti-MEM media. After 20 minutes, the siRNA-lipid
mixture was transferred to a 6-well plate and 5 × 105 cells were
seeded per well. After 48 h, the transfected cells were treated with
the drug at the specified dosages and times. In this investigation,
pairs of AGR2 primers were presented in Supplementary Table 2.

Western blot assay and antibodies
Using RIPA lysis buffer supplemented with PMSF and Protease
Inhibitor Cocktail, primary cells were lysed on ice and quantified
using the BCA Protein Assay Kit. 20 μg protein of cell lysates were
separated using 10% SDS-polyacrylamide gel electrophoresis
(SDS-PAGE) and transferred to a nitrocellulose (NC) membrane
(Pall). After blocking membranes with 10% non-fat dried milk in
phosphate-buffered saline and 0.1% Tween 20 solution, the

following primary antibodies were incubated overnight at 4 °C
with the membranes: Phospho-AKT (CST, 4060), AKT (CST, 4691),
Phospho-c-MET (CST, 3077), c-MET (CST, 3127), Phospho-ALK
(CST, 3983), ALK (CST, 3633), AMACR (Abcam, ab246927), AR
(Abcam, ab268062), CK5 (Abcam, ab52635), E-cadherin (HuaAn,
EM0502), Vimentin (HuaAn, EM0401), AGR2 (Proteintech, 12275-1-
AP), Tubulin (Sigma-Aldrich, T6793), GAPDH (Proteintech, 10494-1-
AP). The membranes were then incubated with the appropriate
secondary antibody for 6 h at 4 °C. Target proteins were visualized
using the EZ ECL pico luminescence reagent (Life-iLab, AP34L025)
with the ChemiScope S6 system (Clinx, China). Relative expression
was normalized to GAPDH using the ImageJ software (Version
1.52q, National Institutes of Health, MD, USA).
To evaluate the efficiency of biotin labeling, 20 μg of labeled cell

lysates via EZ-LinkTM Sulfo-NHS-SS-biotin were re-dissolved in non-
reducing SDS-PAGE sample buffer and then run on two SDS-PAGE.
One was stained by Coomassie Brilliant Blue method as protein
level control and the other was transferred onto a PVDF
membrane (0.45 μm, Millipore). Subsequently, the membrane
was treated overnight at 4 °C with HRP-labeled streptavidin (CST,
3999) diluted 1:4000 in blocking buffer. ChemiScope S6 system
was used to visualize the target proteins.
To confirm the protein abundance of AGR2 on the cell surface

and whole cell lysate across BPH and prostate primary cell
samples, 100 μg of labeled primary cell samples via EZ-LinkTM

Sulfo-NHS-SS-biotin were first enriched by affinity purification,
followed by pulldown with non-reducing SDS-PAGE sample buffer.
Simultaneously, 20 μg of total cell lysates for each sample were
boiled with non-reducing SDS-PAGE sample buffer. The enriched
surface fraction and total cell lysates were then run on SDS-PAGE,
transferred onto a NC membrane, and blocked, respectively. The
membranes were then incubated with AGR2 or GAPDH overnight
at 4 °C. Target proteins were visualized using the EZ ECL pico
luminescence reagent with the ChemiScope S6 system.

Statistics
For statistics, Python(3.6), R (3.6.1) and GraphPad (8.4.0) were
utilized. When applicable, the Fisher’s exact test or Wilcoxon rank-
sum test was used to investigate group differences. Unless
otherwise specified, all examinations were two sided. The survivals
of groups were compared using the log-rank test. Cox propor-
tional hazard model was utilized to calculate HR and its 95%
confidence interval.
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