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Dear Editor,
As a successful drug for inflammatory diseases, the application

of TNF-α inhibitor on cancer therapy is limited by repeated
administration and off-target effects.1 A body of evidence
indicated that the anti-tumor efficacy of TNF-α inhibitor is
unsatisfactory, though repeated administration was used to
improve its efficacy in tumor-treating fields, it will also lead to
severe side effects and high cost.2–4 Hence, an efficient and highly
targeted TNF-α antibody delivery system is worth developing.
The genetically modified strain of attenuated Salmonella

typhimurium VNP20009 (VNP) not only has super tumor-
targeting capacity and genetic stability in vivo, but also has
thousands of times higher enrichment in tumors than that of liver
and spleen.5 Thus, in this work, we built a novel VNP delivery
system expressing anti-TNF-α nanobody (VNPαTNF-α) (Fig. 1a and
Supplementary Fig. S1a–g), which could significantly improve the
delivery efficiency by continuous release of the nanobody under a
hypoxic tumor environment (Fig. 1b and Supplementary Fig.
S2a–d). Moreover, another strain of VNPαTNF-α/mCherry was con-
structed with TNF-α nb fused to mCherry for the visualization of
expressed TNF-α nb (Supplementary Fig. S1h–j). The TNF-α nb
secreted by VNP had a similar particle size (75.27 ± 14.08 nm) and
affinity compared with pure nanobody synthesized in our previous
work6 (Supplementary Fig. S2e, f). VNPαTNF-α induced about 40%
apoptosis of B16F10 which was similar to that of VNP, while pure
TNF-α nb couldn’t induce cell apoptosis, the results confirmed the
antitumor activity of VNP and VNPαTNF-α in vitro (Supplementary
Fig. S3b, c). In addition, VNPαTNF-α stimulated dendritic cells (DCs)
activation and cytotoxic CD8+ T cell production in vitro (Fig. 1c, d).
VNPαTNF-α stimulated CD8+ T cell production immediately by
activating macrophage antigen presentation (Fig. 1e, Supplemen-
tary Fig. S3d). To evaluate the neutralization ability of VNPαTNF-α,
the supernatants of M1-type RAW264.7 were collected to measure
the level of TNF-α. The result indicated that VNPαTNF-α treatment
significantly neutralized secreted TNF-α (sTNF-α), thus, decreasing
the level of sTNF-α (Supplementary Fig. S3e).
To evaluate the tumor targeting ability of VNPαTNF-α, the organ

burdens of bacteria were measured (Supplementary Fig. S4a). It
was indicated that both VNP and VNPαTNF-α showed tumor
targeting ability as expected, which were hundreds to thousands
of times higher than other tissue (Fig. 1f, Supplementary Fig. S4c).
To further study the tumor residence time of TNF-α nb in tumor,
we injected TNF-α nb-mCherry (150 µg/kg) and VNPαTNF-α/mCherry

(1 × 108 CFU, the amount of secreted TNF-α nb-mCherry was
equivalent to that of TNF-α nb-mCherry group) according to our
data. At first, the MFI of TNF-α nb-mCherry in tumor tissue was 1.3
times higher than that of VNPαTNF-α/mCherry within 4 hours. After
12 hours, pure TNF-α nb was depleted slowly, while TNF-α nb-
mCherry of VNPαTNF-α/mCherry increased to 2.3 times higher than
pure TNF-α nb as VNP proliferated continuously (Fig. 1g,
Supplementary Fig. S4b).

Next, the antitumor effect of VNPαTNF-α in vivo was evaluated
(Supplementary Fig. S5a). The tumor growth curve indicated that
VNPαTNF-α effectively inhibited melanoma progression (Fig. 1h). In
addition, delayed tumor doubling time (TDT) was 2.38 days in the
VNP group and 3.35 days in the VNPαTNF-α group, and the TDT ratio
of VNPαTNF-α to PBS or VNP reached 1.67 times or 1.4 times
respectively (Fig. 1i). VNPαTNF-α also prolonged tumor-bearing
mouse survival significantly than that of VNP (Fig. 1j). These results
suggested that VNPαTNF-α had an excellent therapeutic effect.
Moreover, the H&E analysis of tumor section showed that more
than 75% of the tumor was necrotic after VNPαTNF-α treatment (Fig.
1k, l). Next, we preliminary explored the therapeutic mechanism of
VNPαTNF-α. Firstly, it is indicated that the level of transmembrane
TNF-α (tmTNF-α) in VNPαTNF-α was reduced, which is lower than
the baseline of the PBS group (Supplementary Fig. S6a). Since it is
reported that low-dose TNF-α induces angiogenesis while high-
dose TNF-α lead to thrombosis within tumor vasculature,7 we then
assessed the distribution and gene expression of tumor vessel by
CD31 and vascular endothelial growth factor (VEGF) staining. It is
shown in Supplementary Fig. S6b, c that VEGF and CD31 was
downregulated in the VNPαTNF-α group, suggesting that VNPαTNF-α
inhibited tumor progression by reducing the density of tumor
vessels. Therefore, VNPαTNF-α induced more cell apoptosis in the
tumor tissue (Supplementary Fig. S6d).
To further elucidate the therapeutic mechanisms, the distribu-

tion of tumor-infiltrating immune cells was detected. The
proportion of CD8+ T cells and CD69+ cells were significantly
increased, approximately 11 and 7%, while the ratio of CD4+

T cells were reduced in the VNPαTNF-α group (Fig. 1m). In addition,
the proportions of neutrophils and macrophages were signifi-
cantly increased both in the VNP and VNPαTNF-α group (Fig. 1m,
Supplementary Fig. S7a). Next, the proportion and state of DCs
in vivo were investigated. It is shown that the ratio of DCs and
activated DCs (CD86+DCs) were significantly increased in immune
organs (Fig. 1n, o). The results were consistent with in vitro
experiment, where VNPαTNF-α induced the upregulation expression
of CD86, CD80, and PDL1 of DC2.4 cells in vitro (Fig. 1p). As for
in vivo experiment, the elevated level of CD86 and CD80, and the
decrease level of PD1 and PDL1 in the tumor mixed pool were
observed (Supplementary Fig. S5b). In addition, CD11b+ in DCs
was upregulated 1.6 times higher than that of VNP in tumor,
which means DCs were activated by VNPαTNF-α

8 (Supplementary
Fig. S5c). Together, these results indicated that VNPαTNF-α
stimulated transformation form “cold” tumor with immune
suppression to “hot” tumor with anti-tumor immune activation.
We further investigated whether VNPαTNF-α could stimulate

CD8+ T cell activation. Therefore, we firstly stimulated splenic
T cells in vitro and cocultured them with B16F10-OVA cells as
illustrated in Supplementary Fig. S5d, the cells in lower chambers
were collected and tumor cell-recruited CD8+ T cells and B16F10-
OVA cells apoptosis were analyzed. The results revealed that the
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highest proportion of CD45+cells in the lower chamber was
T cells, which was approximately 90%, and the proportion of CD8+

T cells increased from 32 to 40%, in contrast, CD4+ T cells
decreased after VNPαTNF-α incubation (Fig. 1q), which indicated
that VNPαTNF-α stimulated CD8+ T cell chemotaxis and activation.

As a result, significant tumor apoptosis was induced from 15 to
25% by VNPαTNF-α-stimulated splenic T cells (Fig. 1r, s). Further
detection of relative expression of markers by RT-PCR showed that
VNPαTNF-α induced CD8+ T cell polarization into cytotoxic T cells,
according to the upregulated TNF-α, IFN-γ, IL-2, perforin, and
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granzyme B as well as downregulated markers of exhausted cells,
such as PD1 and TIM3. More importantly, in vivo experiments
showed that splenic CD8+ T cells matured after stimulation
because the markers of naïve T cells were downregulated (CCR7
and TCF7) (Fig. 1t, u). In addition, the percentage of granzyme-B+

CD8+ T cells of VNPαTNF-α group was increased in immune organs,
particularly in tumor, which was four times higher than the control
group (Fig. 1v). And VNPαTNF-α stimulated more Ki67+ cytotoxic
CD8+ T cell, which was five times higher than the control group
(Fig. 1w). These results indicated that VNPαTNF-α mobilized the
systemic immune response. Furthermore, it is noteworthy that
VNPαTNF-α reduced CD8+ T cell death approximately two-fold
(Supplementary Fig. S5f). Notably, the same results were
previously reported that anti-TNF-α inhibitor lessened CD8+ T
cell death in vivo.9 Meanwhile, CD8 Tregs were reduced in the
tumor draining lymph nodes (TdLNs) and tumor after VNPαTNF-α
administration (Fig. 1x, Supplementary Fig. S5g, i). As expected,
the percentage of Annexin V-positive CD8 Tregs was increased
approximately twice after VNPαTNF-α administration (Supplemen-
tary Fig. S5h), which means that the tumor immunosuppression
was alleviated.
Based on our strategy, TNF-α nb could be delivered into tumor

tissue by VNP safely and efficiently, and this system exerted robust
antitumor effects with controllable TNF-α nb secretion in
melanoma with only one dosage, which could also avoid the side
effects and high costs of TNF-α inhibitors. Moreover, VNPαTNF-α
promoted antitumor immune responses in a melanoma tumor
microenvironment by mobilizing tumor immune response as
follows, (1) VNPαTNF-α reduced tumor angiogenesis. (2) VNPαTNF-α
stimulated DCs maturation manifesting as elevated CD86. DCs
activated CD8+ T cells by antigen-presentation and induced CD8+

T cells to upregulate Granzyme-B and Ki67, stimulated cytotoxic
CD8+ T cell induced tumor apoptosis. (3) CD8 Treg reduced after
administration of VNPαTNF-α. (4) VNPαTNF-α directly induced tumor
apoptosis in vivo and in vitro (Fig. 1y). In addition, VNPαTNF-α
causes acceptable splenomegaly but has better biosafety than
VNP (Supplementary Fig. S8a–f).
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