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Simplified algorithm for genetic subtyping in diffuse large
B-cell lymphoma
Rong Shen1, Di Fu1, Lei Dong2, Mu-Chen Zhang1, Qing Shi 1, Zi-Yang Shi1, Shu Cheng1, Li Wang1,3, Peng-Peng Xu1✉ and
Wei-Li Zhao 1,3✉

Genetic classification helps to disclose molecular heterogeneity and therapeutic implications in diffuse large B-cell lymphoma
(DLBCL). Using whole exome/genome sequencing, RNA-sequencing, and fluorescence in situ hybridization in 337 newly diagnosed
DLBCL patients, we established a simplified 38-gene algorithm (termed ‘LymphPlex’) based on the information on mutations of 35
genes and rearrangements of three genes (BCL2, BCL6, and MYC), identifying seven distinct genetic subtypes: TP53Mut (TP53
mutations), MCD-like (MYD88, CD79B, PIM1, MPEG1, BTG1, TBL1XR1, PRDM1, IRF4 mutations), BN2-like (BCL6 fusion, NOTCH2, CD70,
DTX1, BTG2, TNFAIP3, CCND3 mutations), N1-like (NOTCH1 mutations), EZB-like (BCL2 fusion, EZH2, TNFRSF14, KMT2D, B2M, FAS,
CREBBP, ARID1A, EP300, CIITA, STAT6, GNA13 mutations, with or without MYC rearrangement), and ST2-like (SGK1, TET2, SOCS1,
DDX3X, ZFP36L1, DUSP2, STAT3, IRF8 mutations). Extended validation of 1001 DLBCL patients revealed clinical relevance and
biological signature of each genetic subtype. TP53Mut subtype showed poor prognosis, characterized by p53 signaling
dysregulation, immune deficiency, and PI3K activation. MCD-like subtype was associated with poor prognosis, activated B-cell (ABC)
origin, BCL2/MYC double-expression, and NF-κB activation. BN2-like subtype showed favorable outcome within ABC-DLBCL and
featured with NF-κB activation. N1-like and EZB-like subtypes were predominated by ABC-DLBCL and germinal center B-cell (GCB)-
DLBCL, respectively. EZB-like-MYC+ subtype was characterized by an immunosuppressive tumor microenvironment, while EZB-like-
MYC- subtype by NOTCH activation. ST2-like subtype showed favorable outcome within GCB-DLBCL and featured with stromal-1
modulation. Genetic subtype-guided targeted agents achieved encouraging clinical response when combined with
immunochemotherapy. Collectively, LymphPlex provided high efficacy and feasibility, representing a step forward to the
mechanism-based targeted therapy in DLBCL.
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INTRODUCTION
Diffuse large B-cell lymphoma (DLBCL), the most common subtype
of non-Hodgkin’s lymphoma, represents a molecularly hetero-
geneous entity.1–3 DLBCL is potentially curable with immuno-
chemotherapy using rituximab, cyclophosphamide, doxorubicin,
vincristine, and prednisone (R-CHOP), but recurrent or progressive
disease occurs in approximately 40% of the patients.4,5 Attempts
to improve the treatment outcome by combining standard
immunochemotherapy with promising novel agents targeting
specific pathways have encountered difficulties likely due to the
biological complexity of DLBCL.6,7 It is thus highly desirable to
further reveal molecular heterogeneity of DLBCL by simplified
algorithm, that may efficiently be translated for therapeutic use,
leading to improved accuracy of outcome prediction and efficacy
of the targeted therapy.
As for the classification of DLBCL, a strategy to categorize DLBCL

is based upon the detection of rearrangements of MYC, BCL2 and/
or BCL6 by fluorescent in-situ hybridization (FISH).2 The most
recent revision of the WHO classification of lymphoid neoplasms
recognizes the high-grade B-cell double-/triple-hit lymphoma,

with MYC rearrangement and BCL2 and/or BCL6 rearrangements,
as a particular entity associated with aggressive behavior and
inferior outcome.8 Gene expression profiling allows to distinguish
three molecular subtypes based on cell of origin (COO), dividing
DLBCL cases into activated B-cell like (ABC), germinal center B-cell
like (GCB), and unclassified subtypes.9,10 The COO distinction has
been proved of prognostic value, as patients with ABC-DLBCL
generally show less favorable responses to standard therapy than
those with GCB-DLBCL.11 Also, the COO categorization helps to
understand the heterogeneous responses of patients with DLBCL
to targeted therapies such as ibrutinib, a novel therapeutic agent
targeting B-cell receptor (BCR) signaling pathway.12 Since the COO
distinction does not solely account for the divergent treatment
outcomes of patients with DLBCL following either R-CHOP or
targeted therapies, additional genetic complexity remains to be
defined.
Genomic studies can illustrate the genetic alterations of DLBCL

and facilitate the categorization of genetic subtypes.13–17 The
GenClass algorithm first identifies four distinct genetic subtypes,
known as MCD (based on co-occurrence of MYD88L265P and CD79B
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mutations), BN2 (based on BCL6 fusions and NOTCH2 mutations),
N1 (based on NOTCH1 mutations), and EZB (based on EZH2
mutations and BCL2 fusions).15 Recently, the LymphGen algorithm
has identified additional subtypes, including EZB-MYC (EZB
subtype with or without MYC rearrangements), ST2 (based on
SGK1 and TET2 mutations), and A53 (based on TP53 mutations and
deletions).17 Meanwhile, five molecular clusters related to COO are
defined: two ABC-DLBCL groups (one with low risk and possible
marginal zone origin (C1) and the other a high-risk group (C5)
enriched in cases with mutations in MYD88 and CD79B), two GCB-
DLBCL groups (one with a favorable (C4) and the other with a poor
(C3) outcome), and an ABC/GCB-independent group (C2) with
biallelic inactivation of TP53 and copy number changes.13

Furthermore, using clustering techniques on targeted sequencing
data allows characterization of resulting clusters according to the
genetic features most enriched in each cluster, for example,
identification and characterization of NOTCH2-, MYD88-, BCL2-,
TET2/SGK1-, and SOCS1/SGK1-assoicated clusters.14 Interestingly,
the above genetic subtypes share partially overlapping classifica-
tion systems. The MCD subtype (comparable with C5 or MYD88-
associated subtype) is associated with ABC-DLBCL, contributing to
hyperactivation of NF-κB with poor prognosis.13–15,17 The
BN2 subtype (comparable with C1 or NOTCH2-associated subtype)
includes mutations targeting the BCR-dependent NF-κB path-
way.13–15,17 The EZB subtype (comparable with C3 or BCL2-
associated subtype) is related to GCB-DLBCL, exhibiting frequent
mutations in chromatin modifiers with favorable outcome.13–15,17

These findings suggest that genetic subtyping helps reveal the
diversity of DLBCL in oncogenic pathway engagement, gene
expression profile, prognostic value, and therapeutic
vulnerabilities.
Despite the progress made, challenges remain in clinical

practice regarding genetic subtyping. The high demand of
specimen quality for sequencing, the relatively long duration
awaiting whole exome sequencing (WES)/whole genome sequen-
cing (WGS) bioinformatics analysis, and the complexity of
clustering algorithms limited its broad application.13–15,17 To
improve the feasibility in clinical use and permit the timely use
of targeted agents based on genetic subtypes, there is a great
demand to develop simplified but efficient methods for genetic
subtyping. Previously, we developed a 20-gene algorithm using
the information on mutations of 18 genes and rearrangements of
two genes (BCL2 and BCL6) based on the GenClass algorithm,15

and conducted a prospective, phase 2, randomized trial, to
explore genetic subtype-guided targeted agents plus R-CHOP (R-
CHOP-X) immunochemotherapy in newly diagnosed DLBCL
patients (Guidance-1, NCT04025593).18 Here we further developed
a 38-gene algorithm (termed ‘LymphPlex’) using information on
mutations of 35 genes and rearrangements of three genes (BCL2,
BCL6, and MYC) to identify seven genetic subtypes based on the
LymphGen algorithm,17 including the TP53 mutated (TP53Mut),
MCD-like, BN2-like, N1-like, EZB-MYC+-like, EZB-MYC--like, and
ST2-like. We also explore the clinicopathological, prognostic,
molecular, and microenvironmental attributes of these genetic
subtypes in a large cohort of 1001 patients with newly diagnosed
DLBCL. The LymphPlex algorithm may provide a useful tool for
genetic subtyping, thereby facilitating the optimization of
treatment strategies for DLBCL in the era of precision medicine.

RESULTS
Simplified LymphPlex algorithm established for genetic subtyping
in DLBCL
Patient baseline characteristics were summarized in Supplemen-
tary Table 1. Among the Ruijin cohort of 1001 patients, 543
(54.2%) were male, 424 (42.4%) were >60 yr, 104 (10.4%) had poor
performance status, 467 (46.7%) had elevated serum lactate
dehydrogenase (LDH), 457 (45.7%) had advanced Ann Arbor stage,

and 266 (26.6%) had multiple extranodal involvement. Accord-
ingly, 516 (51.5%) were at low-risk and 485 (48.5%) were at
intermediate- or high-risk, as defined by International Prognostic
Index (IPI). Two hundred and forty-three (25.6%) were BCL2/MYC
double-expressor lymphoma. As for COO classification, 148
(31.2%) were GCB-DLBCL, 235 (49.5%) were ABC-DLBCL, and 92
(19.4%) were unclassified subtype. Comparing with the training
cohort, the validation cohorts14,19 had increased prevalence of
elderly patients and poor performance status. Patients with
intermediate/high- or high-risk IPI and GCB-DLBCL were also
increased.
We first applied the LymphPlex algorithm based on the

LymphGen algorithm17 in the training cohort with WES or WGS
data (n= 337) to determine the genetic subtype classifier. The
following genetic subtypes were identified: mutations in TP53 for
TP53Mut; mutations in MYD88, CD79B, PIM1, MPEG1, BTG1, TBL1XR1,
PRDM1, and IRF4 for MCD-like; fusion of BCL6 (FBCL6) and
mutations in NOTCH2, CD70, DTX1, BTG2, TNFAIP3, and CCND3
for BN2-like; mutations in NOTCH1 for N1-like; fusion of BCL2
(FBCL2) and mutations in EZH2, TNFRSF14, KMT2D, B2M, FAS,
CREBBP, ARID1A, EP300, CIITA, STAT6, and GNA13 for EZB-like (with
or without MYC fusion); and mutations in SGK1, TET2, SOCS1,
DDX3X, ZFP36L1, DUSP2, STAT3, and IRF8 for ST2-like subtype (Fig.
1). Among 337 patients with WES/WGS data, 171 patients (50.7%)
were categorized into genetic subtypes, with the remaining 166
patients (49.3%) classified as not otherwise specified (NOS). Of the
171 classified cases, 44 cases (25.7%) were referred as TP53Mut, 37
cases (21.6%) as MCD-like, 39 cases (22.8%) as BN2-like, 12 cases
(7.0%) as N1-like, 19 cases (11.1%) as EZB-like, and 20 cases
(11.7%) as ST2-like subtype. Within the EZB-like subtype, three
(15.8%) had MYC fusion. In terms of our previous 20-gene
algorithm based on the GenClass algorithm,15 five genetic
subtypes were identified: mutations in TP53 for the TP53Mut;
mutations in MYD88, CD79B, PIM1, MPEG1, BTG1, and TBL1XR1 for
MCD-like; FBCL6 and mutations in NOTCH2, TNFAIP3, CD70, and
DTX1 for BN2-like; mutations in NOTCH1 for N1-like; and FBCL2 and
mutations in EZH2, TNFRSF14, CREBBP, EP300, MTOR, and STAT6 for
EZB-like (Supplementary Fig. 1a). The newly developed LymphPlex
was in principle consistent with our previous algorithm.18 The 17
previously unclassified patients were assigned to specific subtype
by using the LymphPlex algorithm: six were assigned to BN2-like
with mutations in BTG2 and CCND3, one was assigned to EZB-like
with mutations in KMT2D, B2M, FAS, ARID1A, CIITA, and GNA13, and
10 were assigned to the newly identified ST2-like subtype
(Supplementary Fig. 1b).

Evaluation of the LymphPlex algorithm
We applied both the LymphPlex and the LymphGen17 algorithm
on the 337 patients with WES/WGS data in the Ruijin cohort. All
WES/WGS mutations and copy number variants were used as the
input for LymphGen. The LymphGen results were utilized as
performance benchmarking. The LymphPlex algorithm assigned a
genetic subtype in 50.7% (171/337) cases, while the LymphGen
algorithm assigned a genetic subtype in 35.6% (120/337) cases
(Fig. 2a). One hundred and six cases were classified into a unique
genetic subtype by both algorithms (Fig. 2b). Excluding the
TP53Mut cases from LymphPlex and the A53 cases from Lymph-
Gen, we calculated the sensitivity, specificity, and precision
(positive predictive value) of the LymphPlex algorithm for the
subtype assignments in the remaining 87 cases (Fig. 2c). The
LymphPlex algorithm performed acceptably, with sensitivity all
above 94%, specificity all above 99%, and precision all above 90%
(Fig. 2d). The LymphPlex subtypes generally belonged to the
corresponding LymphGen subtypes.

Genetic and phenotypic attributes of DLBCL genetic subtypes
To evaluate the reproducibility of the LymphPlex algorithm, we
analyzed the genetic and phenotypic features of the LymphPlex-
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assigned subtypes in the Ruijin cohort (n= 1001), BCC cohort
(n= 320), and HMRN cohort (n= 928). The distributions of the
LymphPlex-assigned subtypes were compared among three
cohorts. Comparing with BCC cohort and HMRN cohort,
increased incidence of the BN2-like and N1-like subtypes, but
decreased incidence of the EZB-like subtype, was observed in
Ruijin cohort (Fig. 3a and Supplementary Table 2). Of note,
similar distribution pattern of genetic subtypes was observed in
both low-risk (IPI 0–1) and intermediate- and high-risk (IPI 2–5)
patients (Fig. 3b), indicating that different incidence of genetic
subtypes was not resulted from uneven IPI risk group distribu-
tion among three cohorts. The clinical characteristics associated
with each genetic subtype in the Ruijin cohort were also
summarized in Supplementary Table 3. MCD-like had increased,
while N1-like had decreased number of elderly patients. TP53Mut

and MCD-like had increased, while ST2-like had decreased
prevalence of elevated serum LDH. MCD-like had increased,
while ST2-like had decreased prevalence of multiple extranodal
involvement. Accordingly, patients with intermediate/high- or

high- risk IPI were also increased in MCD-like, while decreased in
ST2-like.
Regarding COO classification, the majority of MCD-like patients

were ABC-DLBCL, whereas most EZB-like patients were GCB-
DLBCL (Fig. 3c), consistent with relatively lower incidence of GCB-
DLBCL in Chinese patients.14,19 BCL2/MYC double-expression was
frequently observed in the MCD-like subtype (Fig. 3d). The
compositions of COO and BCL2/MYC double-expression (Fig. 3c,
d) within the genetic subtypes were comparable among three
cohorts, with gene mutations and BCL2/BCL6 rearrangements as
well (Fig. 3e). To evaluate this genetic coherence, we computed
subtype-associated scores using the particular gene sets and
compared the scores between gene sets, in which the subtype-
defining genetic features were present or absent. In this analysis,
we observed significant similarity in the genetic coherence of
features defining the MCD-like, BN2-like, EZB-like, and ST2-like
subtypes in the training cohort and two validation cohorts
(P ≤ 1.3 × 10–9, Supplementary Table 4). The TP53Mut and N1-like
subtypes could not be evaluated by this method since TP53Mut

Fig. 1 Genetic subtypes based on the LymphPlex algorithm derived from the Ruijin cohort with WES/WGS data (n= 337). Overall landscape of
genetic subtypes based on the LymphPlex algorithm derived from the Ruijin cohort with WES/WGS and FISH data (n= 337). Shown on the left
panel are genetic features in DLBCL samples that have been classified into each subtype. Shown on the right panel are the mutation rates of
corresponding genes. Shown at bottom are MYC rearrangement, COO classification including GCB-DLBCL, ABC-DLBCL, and unclassified
subtype, as well as BCL2/MYC double-expression (DE) status. GCB germinal center B-cell, ABC activated B-cell, UNC Unclassified
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and N1-like subtypes were dominated by TP53 mutations and
NOTCH1 mutations, respectively.

Prognostic value of DLBCL genetic subtypes
We next examined the prognostic impact of the LymphPlex-
assigned genetic subtypes in each cohort. Survival analysis was
performed on the patients received R-CHOP. The TP53Mut and
MCD-like subtypes presented relatively inferior progression-free
survival (PFS), as compared to the BN2-like, EZB-like, and ST2-like
subtypes (Fig. 4a). Among GCB-DLBCL, the ST2-like subtype was
relatively favorable; among ABC-DLBCL, the BN2-like subtype was
relatively favorable (Supplementary Fig. 2). Given these consistent
trends in survival, we integrated data from all three cohorts to
estimate combined hazard ratios (Fig. 4b). In this model, PFS of
the TP53Mut subtype was inferior to the TP53WT patients
(P < 0.0001); PFS of the MCD-like subtype was inferior to all
non-MCD-like subtypes (P= 0.0038); PFS of the ST2-like subtype
was superior to all non-ST2-like subtypes within GCB-DLBCL
(P= 0.0005); PFS of the BN2-like subtype was superior to all non-

BN2-like subtypes within ABC-DLBCL (P= 0.0233). In the Ruijin
cohort, we sub-divided the EZB-like subtype according to MYC
rearrangement. Within the EZB-like subtype, PFS of the MYC+

cases were significantly inferior to that of the MYC- cases
(P= 0.0003, Fig. 4c). The MYC+ subset presented relatively higher
IPI risk and more BCL2/MYC double-expression cases (Supple-
mentary Fig. 3a, b). All cases in the MYC+ subset were GCB-DLBCL,
while only 66.7% cases in the MYC- subset were GCB-DLBCL
(25.0% were ABC-DLBCL and 8.3% were unclassified subtype,
Supplementary Fig. 3c). The gene alterations were similar in the
MYC+ and MYC- subsets of the EZB-like subtype (Supplementary
Fig. 3d). As for the overall survival (OS), upon R-CHOP treatment,
TP53Mut patients showed unfavorable outcome in the Ruijin
cohort (P= 0.0153), BCC cohort (P= 0.0042), and HMRN cohort
(P= 0.0007), as compared to TP53WT patients (Supplementary
Fig. 4a). Furthermore, the OS showed significant differences
among genetic subtypes assigned by the LymphPlex algorithm in
the BCC cohort and HMRN cohort (P= 0.0005 and P < 0.0001,
respectively), but not in the Ruijin cohort, probably because

Fig. 2 Comparison of the LymphPlex and LymphGen algorithms. a Sankey plots showing comparison of the LymphPlex and the LymphGen
algorithms in the 337 patients with WES/WGS data including copy number data in the Ruijin cohort or b in the 106 cases for whom a unique
genetic subtype was assigned by both algorithms. c Confusion matrixes showing numbers of cases for each subtype assigned by LymphPlex
and LymphGen. d Sensitivity, specificity, and precision (positive predictive value (PPV)) of the LymphPlex algorithm for the subtype
assignments, as compared to the assignments using the LymphGen algorithm
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27.0% of the patients had a follow-up less than 5 years
(Supplementary Fig. 4b).
Given the distinct prognostic value of the TP53Mut subtype, we

further investigated the genetic signature of the TP53Mut subtype.
Among the 147 TP53Mut patients in the Ruijin cohort, 116 patients
(78.9%) possessed mutations in the DNA binding domain (DBD),
16 patients (10.9%) possessed mutations in the non-DBD, and 15
patients (10.2%) possessed multiple TP53 mutations (Supplemen-
tary Fig. 5a). Survival analysis was performed on the patients

received R-CHOP. No differences on PFS were observed in the
patients with DBD and non-DBD TP53 mutations (Supplementary
Fig. 5b). To determine the clinical and biological impact of TP53
mutations on DLBCL, we analyzed the molecular alterations
accompanied with TP53 mutations (Supplementary Fig. 5c). TP53
mutations were associated with increased frequency of KMT2D
mutations in all three cohorts. Additionally, in the Ruijin cohort,
TP53Mut patients had significantly increased mutations in EP300
and NOTCH2, but decreased mutations in SOCS1 and CD70. In the

Fig. 3 Genetic and phenotypic attributes of DLBCL genetic subtypes. a Distribution of genetic subtypes based on the LymphPlex algorithm.
b Distribution of genetic subtypes according to International Prognostic Index (IPI). c Prevalence of COO subgroups among genetic subtypes.
GCB germinal center B-cell, ABC activated B-cell, UNC Unclassified. d Prevalence of BCL2/MYC expression (DE) status among genetic subtypes.
e Prevalence of the indicated genetic features among genetic subtypes defined in the BCC and HMRN cohorts, as compared to the
Ruijin cohort
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BCC cohort, TP53Mut patients had significantly decreased APF36L1
mutations. In the HMRN cohort, TP53Mut patients had significantly
increased mutations in EP300 and NOTCH1, but decreased
mutations in MYD88, EZH2, and IRF4. With respect to gene
functions, in the Ruijin cohort, TP53Mut patients presented
decreased mutations associated with response to interferon-γ. In
the HMRN cohort, TP53Mut patients had decreased mutations
associated with T cell activation, but increased mutations
associated with Histone/DNA methylation (Supplementary Fig.
5d and Supplementary Table 5).

Gene expression pattern of DLBCL genetic subtypes
To better understand the biological signatures of genetic
subtypes, we analyzed gene expression profile using RNA
sequencing (RNA-seq) data of 475 patients in the Ruijin cohort
(Fig. 5). The subtypes differed with respect to various biological
processes, with the TP53Mut and MCD-like subtypes highly
expressing signatures of cell proliferation and MYC oncoprotein,
with the TP53Mut and EZB-like-MYC+ subtypes expressing low level
signatures of quiescence. Metabolic distinctions among genetic

subtypes included highly expressing signatures of glycolytic
pathway in the TP53Mut, MCD-like, and BN2-like subtypes, and
high expressing signatures of lipid synthesis in the TP53Mut

subtype.
The subtypes also appeared to vary from different B cell stage.

The MCD-like subtype revealed a predominance of ABC-DLBCL,
while the EZB-like and ST2-like subtypes expressed signatures of
GCB-DLBCL. The BN2-like subtype was consisted of both GCB- and
ABC-DLBCL. The MCD-like and ST2-like subtypes had low
expression of plasma cell signatures and memory B cell signatures,
respectively. Among transcriptional factors, genes induced by IRF4
were overexpressed in the MCD-like and BN2-like subtypes, genes
induced by OCT2 were highly expressed in the MCD-like and EZB-
like-MYC+ subtypes, genes repressed by BCL6 were lowest in the
TP53Mut and EZB-like-MYC+ subtypes, and genes transactivated by
TCF3 were highest in the EZB-like subtype. With respect to
oncogenic pathways, NF-κB signaling was activated in the MCD-
like and BN2-like subtypes, but not in the EZB-like-MYC+ subtype.
The expression of p53-target genes was lowest in the TP53Mut

subtype. NOTCH signaling was activated in the BN2-like and EZB-

Fig. 4 Prognostic attributes of DLBCL genetic subtypes. a Kaplan–Meier plots for PFS in all cases of the indicated DLBCL cohorts. b Hazard
ratios (-log2 transformed) for the comparisons between genetic subtypes in the indicated DLBCL cohorts. c Kaplan–Meier plots for PFS in the
EZB-like cases of the Ruijin cohort
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like-MYC- subtypes. PI3K signaling was activated in the TP53Mut

subtype. JAK2 signaling was activated in the MCD-like and BN2-
like subtypes.
The tumor microenvironment alterations of genetic subtypes

were also strikingly discordant: the TP53Mut subtype generally
presented low expression of all immune signatures, the MCD-like
subtype presented low expression of T cell signatures, the EZB-
like-MYC+ subtype had low expressing CD8+T cell signatures,
while the EZB-like-MYC– subtype had high expressing GC TFH and
CD4+T cell signatures. The stromal-1 signatures, which are
prognostically favorable and reflect a fibrotic, macrophage-rich
microenvironment, were upregulated in the ST2-like subtype,
consistent with their relatively favorable outcomes.
To investigate the potential effect of the LymphPlex algorithm

on mechanism-based targeted therapy in DLBCL, we applied
R-CHOP in combination with different targeted agents based on
the LymphPlex algorithm (R-CHOP-X). Indeed, the TP53Mut patients
were treated with intravenous decitabine, the MCD-like, BN2-like,
and N1-like patients were treated with BTK inhibitors (ibrutinib,
zanubrutinib, or orelabrutinib), the EZB-like, ST2-like, and NOS
patients were treated with lenalidomide (Supplementary Fig. 6a).
Forty-eight patients were available for response assessment,

including 13 TP53Mut, 12 MCD-like, 10 BN2-like, one N1-like, one
EZB-like, one ST2-like, and 10 NOS patients (Supplementary Table
6). The overall and complete response rates were 91.7% and
83.3%, respectively (Supplementary Fig. 6b). In terms of genetic
subtypes, the overall response rates of the TP53Mut, MCD-like, BN2-
like, N1-like, EZB-like, ST2-like, and NOS patients were 92.3% (12/
13), 91.7% (11/12), 100% (10/10), 100% (1/1), 100%
(1/1), 100% (1/1), and 80.0% (8/10), respectively; the complete
response rates of the TP53Mut, MCD-like, BN2-like, N1-like, EZB-like,
ST2-like, and NOS patients were 76.9% (10/13), 83.3% (10/12),
90.0% (9/10), 100% (1/1), 100% (1/1), 100% (1/1), and 80.0% (8/10),
respectively (Supplementary Fig. 6c).

DISCUSSION
In the present study, we successfully developed a simplified
LymphPlex algorithm and defined distinct genetic subtypes,
termed as TP53Mut, MCD-like, BN2-like, N1-like, EZB-like-MYC+,
EZB-like-MYC-, and ST2-like. The clustering of the LymphPlex
algorithm showed a good concordance with that of the
LymphGen algorithm. Integrating transcriptomic profiling with
these genetic subtypes, we provided further evidence of

Fig. 5 Gene expression signature according to DLBCL genetic subtypes. Shown is average normalized expression of signature genes in each
subtype versus other DLBCL samples in the Ruijin cohort (n= 475)
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molecular features and suggested potential targeted approaches
in DLBCL.
TP53 mutations are critically involved in tumor progression and

indicate poor prognosis in DLBCL.20–22 Despite diversity in gene
mutations correlated with TP53 mutations among the studied
cohorts, we showed similar alterations of response to interferon-γ
and T cell activation, indicative of an essential role of TP53
mutations on immune evasion.23 Accordingly, gene expression
pattern confirmed dysregulation of p53 signaling and deficiency
of anti-tumor immunity. The TP53Mut subtype generally presented
low expression of immune signatures including T cells, NK cells,
macrophages, and dendritic cells. As reported in our recent phase
1/2 study, decitabine improved clinical efficacy of R-CHOP on
TP53Mut DLBCL through targeting tumor immune microenviron-
ment.23,24 Given the above evidence that TP53 mutations had
significant biological features and specific response to decitabine
treatment, we grouped patients with TP53 mutations as a specific
entity of DLBCL, different from previous subtyping as A53 and
C2.13,17 Meanwhile, PI3K signaling and lipid synthesis were altered,
suggesting that PI3K inhibitors and lipid metabolism reprogram-
ming may also be effective options for the TP53Mut-subtype
DLBCL.25,26

The MCD-like subtype was characterized by the co-occurrence
of MYD88 and CD79B mutations.13,14,17 We found that the MCD-
like subtype was associated with ABC-DLBCL, BCL2/MYC double-
expression, and poor prognosis. Subsequent investigation using
gene expression data showed strong enrichment in ABC-DLBCL
signatures, NF-κB activation, as well as IRF4 and MYC upregula-
tion.17,27 BTK inhibitors targeting BCR and NF-κB signaling are
promising agents for the MCD-like subtype.12,28 Recent report
from the PHOENIX trial further proved that addition of ibrutinib
improves the survival of young DLBCL patients with the MCD
subtype.29 The BN2-like subtype was featured by FBCL6 and
NOTCH2 mutations and comprised of ABC-, GCB- and unclassified
DLBCL.13,14,17 In our cohort, the BN2-like subtype presented
favorable outcome among ABC-DLBCL patients, consistent with
the results from the NCI study.17 Gene expression profiling also

revealed the signatures of BCR-dependent NF-κB activation,
indicating the potential response to BTK inhibitors.17 The N1-like
subtype was dominated by NOTCH1 mutations, mainly consisted
of ABC-DLBCL, and exhibited poor prognosis.14 Limited biological
feature and therapeutic targets were disclosed, however, ibrutinib
was reported to bring survival benefit in N1 subtype according to
the PHOENIX trial.29

The EZB-like subtype was characterized by FBCL2 and EZH2
mutations.13,14,17 This group revealed a predominance of GCB-
DLBCL and was generally associated with favorable outcome.
According to MYC rearrangement, the EZB-like-MYC+ subtype was
distinguished by poor prognosis and CD8+T cell deficiency within
tumor microenvironment. Lenalidomide showed survival benefit
in ABC-DLBCL and may also had an impact on immunomodulation
in the EZB-like-MYC+ subtype.7,30,31 In the EZB-like-MYC- DLBCL,
NOTCH pathway was activated, suggesting possible effect of
NOTCH inhibitors. In addition, EZH2 inhibitors may be effective in
treating the EZB-like DLBCL patients bearing EZH2 mutations via
suppressing methyltransferase activity.32 The ST2-like subtype was
distinguished by mutations in SGK1, TET2, and SOCS1.13,14,17

Predominantly GCB-DLBCL in origin, the ST2-like subtype was
associated with favorable outcome. With respect to gene
expression profile, the expression of stromal signatures was
increased in the ST2-like subtype, which could be related to
stroma modulation induced by SOCS1 mutations and resulted in
attenuated tumor growth.33 Moreover, TET2 mutations were
reported to be involved in T-cell deficiency. These results may
indicate potential efficacy of lenalidomide in ST2-like DLBCL
through modulating tumor immune microenvironment.34 To try to
translate LymphPlex into clinical practice, we applied R-CHOP in
combination with different targeted agents selected by Lymph-
Plex to treat 48 patients with newly diagnosed DLBCL and showed
encouraging results. A prospective, phase 3, randomized trial of
genetic subtype-guided R-CHOP-X immunochemotherapy in
newly diagnosed DLBCL (Guidance-02, NCT05351346) is ongoing.
In conclusion, the simplified LymphPlex algorithm of genetic

subtyping displayed high efficacy and clinical practicability in

Fig. 6 Flow chart of the study. DLBCL diffuse large B-cell lymphoma, WES whole-exome sequencing, WGS whole-genome sequencing,
R-CHOP rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone
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DLBCL. LymphPlex is implemented with a small number of gene
alterations revealed by targeted sequencing and FISH and can be
applied to paraffin biopsies instead of frozen biopsies, which
reveals a good availability for clinical use. Also, the LymphPlex
results can be output using targeted sequencing data instead of
WES/WGS data, which simplifies the process of data analysis and
ensure its application in multicenter clinical trials and timely use of
targeted agents based on genetic subtypes. This simple but
efficient algorithm facilitated to disclose molecular heterogeneity
in DLBCL, thereby contributing to the design of the mechanism-
based therapy in the era of precision medicine.

MATERIALS AND METHODS
Patients and procedures
This study was conducted on 1001 patients with newly diagnosed
DLBCL (Fig. 6). The patients were included from May 2006 to
December 2020, with the last follow-up through September 2021.
Histological diagnosis was established according to World Health
Organization (WHO) Classification.35 WES and WGS were per-
formed on 228 and 109 patients with available tumor samples,
respectively. The remaining 664 cases were analyzed with
targeted sequencing data covering 35 lymphoma-associated
genes (ARID1A, B2M, BTG1, BTG2, CCND3, CD70, CD79B, CIITA,
CREBBP, DDX3X, DTX1, DUSP2, EP300, EZH2, FAS, GNA13, IRF4, IRF8,
KMT2D, MPEG1, MYD88, NOTCH1, NOTCH2, PIM1, PRDM1, SGK1,
SOCS1, STAT3, STAT6, TBL1XR1, TET2, TNFAIP3, TNFRSF14, TP53, and
ZFP36L1), as well as rearrangements in BCL2, BCL6, and MYC. A
total of 475 patients were available for RNA-seq, including 207
cases of WES/WGS group and 268 cases of targeted sequencing
group.
Clinical parameters included gender, age, Eastern Cooperative

Oncology Group performance status, Ann Arbor stage, serum LDH,
and number of extranodal involvement. As for BCL2/MYC double-
expressor lymphoma, cut-off value of BCL2 and MYC were 50%
and 40%, respectively.35 COO classification including GCB-DLBCL,
ABC-DLBCL, and unclassified subtype was determined using RNA-
seq.36 Rearrangements of BCL2, BCL6, and MYC were assessed by
FISH. Survival analysis was performed on 730 patients received
R-CHOP immunochemotherapy, excluding those received immu-
nochemotherapy other than R-CHOP (n= 227) or chemo-free
regimen (n= 44). The study was approved by the Shanghai Ruijin
Hospital Review Board, and informed consent was obtained in
accordance with the Declaration of Helsinki.

Sample processing
Genomic DNA (gDNA) was extracted from frozen tumor tissues
using a QIAamp DNA Mini Kit (Qiagen, Hilden, Germany), or from
formalin-fixed paraffin-embedded (FFPE) tumor tissues using a
GeneRead DNA FFPE Tissue Kit (Qiagen, Hilden, Germany), based
on the manufacturer’s guidelines. The concentration of gDNA was
measured using Qubit 3.0 Fluorometer (Thermo Fisher Scientific,
Waltham, MA, USA), and the gDNA was quantified by Qsep100
System (BIOptic, China).
Total RNA was extracted from frozen tumor tissues using Trizol

and RNeasy Mini Kit (Qiagen, Hilden, Germany). RNA quantity was
assessed on Nanodrop, and the integrity of total RNA was
estimated by RNA 6000 Nano Kit on Aligent 2100 Bioanalyzer.

Whole-exome sequencing (WES)/whole-genome sequencing
(WGS)
WES was performed on the frozen tumor tissues of 146 patients
and the FFPE tumor tissues of 82 patients. Whole exome capture
was performed using the SeqCap EZ Human Exome kit (version
3·0), and sequencing was performed on HiSeq 4000 platform with
150 bp paired-end strategy (Shanghai Rightongene Biotechnology
Co., Ltd, Shanghai, China). WGS was performed on the frozen
tumor tissues of 109 patients. Detailly, library was validated by

Agilent 2100 Bioanalyzer, and sequencing was performed on
Illumina HiSeq platform with 150 bp paired-end strategy in WuXi
NextCODE (Shanghai, China). Also, 42 randomly selected matched
peripheral blood samples were submitted to WES (n= 25, divided
into five groups) and WGS (n= 17) to build a somatic mutation
calling principle, thereafter, excluding the germ-line polymorph-
isms. The quality control data of 315 samples received WES/WGS
were described as previously reported.37 The median depth of the
additional samples measured with WES was 158.0X (IQR, 147.1X,
179.6X), with a median mapping ratio of 99.5% (IQR, 98.2%,
99.5%), a median Q30 of 90.6% (IQR, 90.0%, 90.9), and a median
100X coverage rate of 86.2% (IQR, 85.5%, 91.4%).
After sequencing, read pairs were aligned to Human Reference

Genome version hg19 (downloaded from UCSC Genome Browser,
URLs) by Burrows-Wheeler Aligner38 (BWA) (version 0·7·13-r1126).
Samtools39 (version 1.3) was used to generate chromosomal
coordinate-sorted bam files and to remove PCR duplications. The
reads were then realigned around potential indel regions by
Genome Analysis Toolkit40 (GATK) (version 3·4) IndelRealigner with
the recommended pipeline. GATK Haplotype Caller and GATK
Unified Genotyper were applied to call SNVs (single nucleotide
variations) and Indels (Insertion and deletion). Mutation detection
and analysis of BAM files were performed using the cancer
genome analysis program Mutect2 at the Broad Institute and
annotated with ANNOVAR. Noticeably, to reduce systematic error
for FFPE samples as the formaldehyde deaminates cytosines and
thereby results in C→ T transition mutations, the F1R2 and F2R1
annotations were adopted and FilterByOrientationBias was
performed to filter the orientation bias.
Next, all the somatic functional mutations, including nonsynon-

ymous SNVs, frameshift or in-frame indels, stopgain or stoploss
were obtained. Visual inspection was used to exclude potential
false positive results. Homemade pipeline was used to filter SNVs
and indels detected by the above software, based on the
following criteria: (1) variants with mapping quality >30 were
retained; (2) SNVs or Indels with a mutation allele frequency (MAF)
<0.001 in databases of 1000 genomes project, 1000 genome East
Asian, ExAC all or ExAC East Asian and genomAD were retained; (3)
variant allele frequency (VAF) >5% and read depth >10; (4) dbSNP
(v147) sites existed COSMIC database (the Catalog of Somatic
Mutations in Cancer, version 77) were retained; (5) SNPs or Indels
including stopgain, stoploss, frameshift, nonframeshift and spli-
cing sites were retained; (6) duplicate frameshifts found in
multiple samples, variants found in repetitive regions, variants
found in regions with poor coverage were excluded; (7) germline
variants found in control samples or detected by sanger
sequencing in paired peripheral blood samples were excluded.
A list of variants called was provided in the Supplementary
Information (see Supplementary Table 7).
Copy number analyses of WGS/WES samples were conducted

with CNVkit41 using recommended pipeline (https://
cnvkit.readthedocs.io/en/stable/pipeline.html). GISTIC 2.042

(q < 0.1) was used to verify the.cnv files and determined the copy
number profiles.

Targeted sequencing
Targeted sequencing of the lymphoma-related genes was
performed on 664 FFPE tumor samples using MultipSeq Custom
Panel (Shanghai Rightongene Biotechnology Co., Ltd, China). The
capture probes were designed based on ~0.39 Mb genomic
regions of the lymphoma-related genes that are frequently
mutated in DLBCL, other common lymphoma and hematologic
malignancies. In summary, gDNA was fragmented, end repaired,
linked with sequencing adapters, purified and went through pre-
PCR using Enzyme Plus Library Prep Kit (iGeneTech, Beijing, China).
After hybridization and concentration, sequencing was performed
on the Novaseq (Illumina) sequencing platform. The mean depth
of each sample measured with targeted sequencing was 1261X
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(IQR, 1085X, 1482X), with a median mapping ratio of 97.0% (IQR,
95.8%, 99.0%), a median Q30 of 93.6% (IQR, 92.9 %, 94.4%), and a
median 200X coverage rate of 96.0% (IQR, 93.0%, 97.0%).
After sequencing, the quality of the raw sequencing data was

assessed using FastQC software (version 1.11.4). In addition,
Trimmomatic (version 3.6) software was used to process raw
sequencing data to remove adaptor sequences and low-quality
fragments. The data processing process of Broad Institute was
used to process all sequence data, and the original sequencing
sequence was aligned with the human reference genome hg19
using BWA (0·7·13-r1126). The repeats were eliminated, and the
base quality was recalibrated. GATK was used for SNP calling.
Mutation detection and analysis of BAM files were performed
using the cancer genome analysis program Mutect2 at the Broad
Institute and annotated with ANNOVAR. Also, F1R2 and F2R1
annotations were adopted and FilterByOrientationBias was
performed to filter the orientation bias. The SNVs and Indels were
screened based on the filtering conditions: (1) variants with
mapping quality >30 were retained; (2) SNVs or Indels with a
mutation allele frequency (MAF) <0.001 in databases of 1000
genomes project, 1000 genome East Asian, ExAC all or ExAC East
Asian and genomAD were retained; (2) SNVs or Indels with a VAF
≥5% was retained; (3) dbSNP (v147) sites existed COSMIC database
were retained; (4) SNPs or Indels including stopgain, stoploss,
frameshift, nonframeshift and splicing sites were retained; (5)
missense mutation type require meet the conditions of sift ≤ 0.05,
Polyphen2_HVAR_pred ≥0.447 and CADD > 4 were retained. A list
of variants called was provided in the Supplementary Information
(see Supplementary Table 7).

RNA sequencing
RNA purification, reverse transcription, library construction and
sequencing were performed in WuXi NextCODE according to the
manufacturer’s instructions (Illumina San Diego, CA, USA). PolyA
mRNA was purified from total RNA using oligo-dT-attached
magnetic beads and then fragmented by fragmentation buffer.
The synthesized cDNA was subjected to end-repair, phosphoryla-
tion, and ‘A’ base addition according to Illumina’s library
construction protocol. Then Illumina sequencing adapters were
added to both size of the cDNA fragments. After PCR amplification
for DNA enrichment, the target fragments of 200–300 bp were
cleaned up. After library construction, Qubit (Thermo Fisher
Scientific) was used to quantify concentration of the resulting
sequencing libraries, while the size distribution was analyzed
using Agilent BioAnalyzer 2100 (Agilent). After library validation,
Illumina cBOT cluster generation system with HiSeq PE Cluster Kits
(Illumina) was used to generate clusters. Paired-end sequencing
was performed using an Illumina HiSeq system following Illumina-
provided protocols for 2 × 150 paired-end sequencing.
Read pairs were aligned to Refseq hg19 by STAR (version

020201). The HTSeq was applied to generate table files containing
transcript counts.43 Further analyses were performed by R (v4.0.2).
Voom function from R package “limma” (v3.38.3) was used to
remove batch effect and normalize raw reads.44 R package
“clusterProfiler” (v3.10.1) was used for Gene Ontology enrichment
analysis.45

Simplified LymphPlex algorithm
LymphPlex was a novel clustering strategy, based on the
LymphGen algorithm17 but designed in a simplified manner.
More specifically, a given DLBCL sample was assigned into one of
the defined genetic subtypes (TP53Mut, MCD-like, BN2-like, N1-like,
EZB-like with or without MYC rearrangements, and ST2-like) by
applying the Partitioning Around Medoids (PAM) method with
mutation data of 35 genes and rearrangement data of three genes
BCL2, BCL6, and MYC.46 These mutated genes (see Supplementary
Table 8) were identified from WES and WGS of 337 patients and
also were supported by RNA-seq data available for 207 patients

(that is, differentially expressed and involved in the functional
pathways as revealed by Gene Ontology enrichment analysis).
Patients with TP53 mutations were assigned into a particular
subtype with a higher priority. The set of features considered for
possible association with a class are based on those used in the
LymphGen algorithm: TP53Mut (TP53 mutations), MCD-like (MYD88,
CD79B, PIM1, MPEG1, BTG1, TBL1XR1, PRDM1, IRF4 mutations), BN2-
like (BCL6 fusion, NOTCH2, CD70, DTX1, BTG2, TNFAIP3, CCND3
mutations), N1-like (NOTCH1 mutations), EZB-like (BCL2 fusion,
EZH2, TNFRSF14, KMT2D, B2M, FAS, CREBBP, ARID1A, EP300, CIITA,
STAT6, GNA13 mutations, with or without MYC rearrangement),
and ST2-like (SGK1, TET2, SOCS1, DDX3X, ZFP36L1, DUSP2, STAT3,
IRF8 mutations). Computational procedures on the LymphPlex
algorithm are shared on https://github.com/difuSJTU/LymphPlex.
The online version of the LymphPlex algorithm is provided on
https://kylinmu.shinyapps.io/LymphPlexR/.

Validation DLBCL cohorts
To evaluate the LymphPlex, we used two validation cohorts: the
BC Cancer (BCC) cohort which consisted of 320 newly diagnosed
DLBCL patients received R-CHOP, with available clinical and
genomic data from a targeted gene sequencing panel and FISH
results,19 and the UK population-based Hematological Malignancy
Research Network (HMRN) cohort which consisted of 928 DLBCL
patients from a real-world study (617 patients received R-CHOP),
with available clinical and panel-based DNA sequencing data.14

Statistical analysis
Fisher’s exact test was used for between-categorical data
comparisons. Differences of normalized gene expression in two
groups were analyzed using Mann–Whitney U test. PFS was
measured from the date of diagnosis to the date when disease
progression/relapse was recognized or the date of last follow-up.
OS was calculated from the date of diagnosis to the date of death
or the date of last follow-up. Survival analysis was performed using
the Kaplan–Meier curves and Cox proportional hazards regression
models. Statistical significance was defined as two-sided P < 0.05.
The above statistical analyses were performed by Statistical
Package for the Social Sciences (SPSS) v26.0 (SPSS Inc., Chicago,
IL) and R v4.0.2 (R foundation, Vienna, Austria).
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