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Hypoxic microenvironment in cancer: molecular mechanisms
and therapeutic interventions
Zhou Chen1,2, Fangfang Han1,2, Yan Du3, Huaqing Shi3 and Wence Zhou1,4✉

Having a hypoxic microenvironment is a common and salient feature of most solid tumors. Hypoxia has a profound effect on the
biological behavior and malignant phenotype of cancer cells, mediates the effects of cancer chemotherapy, radiotherapy, and
immunotherapy through complex mechanisms, and is closely associated with poor prognosis in various cancer patients.
Accumulating studies have demonstrated that through normalization of the tumor vasculature, nanoparticle carriers and biocarriers
can effectively increase the oxygen concentration in the tumor microenvironment, improve drug delivery and the efficacy of
radiotherapy. They also increase infiltration of innate and adaptive anti-tumor immune cells to enhance the efficacy of
immunotherapy. Furthermore, drugs targeting key genes associated with hypoxia, including hypoxia tracers, hypoxia-activated
prodrugs, and drugs targeting hypoxia-inducible factors and downstream targets, can be used for visualization and quantitative
analysis of tumor hypoxia and antitumor activity. However, the relationship between hypoxia and cancer is an area of research that
requires further exploration. Here, we investigated the potential factors in the development of hypoxia in cancer, changes in
signaling pathways that occur in cancer cells to adapt to hypoxic environments, the mechanisms of hypoxia-induced cancer
immune tolerance, chemotherapeutic tolerance, and enhanced radiation tolerance, as well as the insights and applications of
hypoxia in cancer therapy.
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INTRODUCTION
Cancer occurrence is markedly associated with increasing age, as
patients aged over 60 years are more than twice as likely to
develop invasive cancers than younger patients. The World
Health Organization (WHO) estimates that by 2050, the propor-
tion of the world population aged over 60 years will have
increased from 12 to 22%, totaling over 2 billion individuals.1 In
the United States, cancer is the second leading cause of death
after heart disease. In humans aged over 60 years, cancer is the
leading cause of death.2 Due to the aging of the global
population, cancer has become a global public health issue, with
a massive economic burden and complex treatment challenges.
The distribution of oxygen partial pressure in tumor tissues is of
particular interest to radiologists because the radiosensitivity of
tumor tissues depends on the tissue O2 tension. Tumor cells living
under adequate hypoxic or hypoxic conditions are relatively
resistant to radiation.3

In 1953, Gray et al. found that well-oxygenated tumor cells
responded trice as well to radiotherapy than hypoxic cells.4

Tumor hypoxia was first proposed in 1955 by Thomlinson et al. in
a study of tumor tissues from patients with lung cancer, and
scientists have confirmed, through over 60 years of clinical and
experimental evidence, that the hypoxic state is a widespread
trait in a variety of solid tumors. The expression of key genes such
as hypoxia-inducible factors (HIFs) and their various subunits, as
well as the molecular regulatory mechanisms, were also explored
under hypoxic conditions.5–14 William Kaelin, Peter Ratcliffe, and

Gregg Semenza have been awarded the 2019 Nobel Prize in
Physiology or Medicine for the contributions of several scientists
who have discovered how human and animal cells sense and
adapt to oxygen supply (Fig. 1).15 Hypoxia is present in 90% of
solid tumors, which is considered a hallmark of cancer.16,17 It is
difficult to determine the hypoxic state in tumors due to
variations in oxygen content between tissues, as well as
differences in tumor size and measurement methods, and tissue
oxygenation is highly variable, also within the same organ.18

However, the available results indicate that the measurement of
tumor partial pressure of oxygen (pO2) in patients (polarographic
technique) has demonstrated the presence of low values
(<10 mmHg) in several different tumor types, including pancrea-
tic cancer, head and neck tumors, breast cancer, cervical cancer,
and melanoma.19–22 Intra-tumor hypoxia is linked to decreased
disease-free survival outcomes in several cancers including
prostate, cervical cancer, and head and neck squamous cell
carcinoma (HNSCC).23–26 The hypoxic environment alters the
expression levels of genes that modulate metabolism and other
processes. Moreover, hypoxic signaling interacts with other
cellular pathways to alter cancer cell malignant behaviors and
is closely associated with cancer cell proliferation, migration,
invasion and angiogenesis, and affects cancer treatment out-
comes.27 This article focuses on the unique hypoxic microenvir-
onment in cancer, the possible mechanisms by which cells
undergo transformation and malignancy, and the potential
applications of these aspects.
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FACTORS CONTRIBUTING TO HYPOXIA IN CANCER
The vasculature ensures the presence of tissue oxygen and energy
substances. Vasculature endothelial cells (ECs) of cancer tissues or
pre-neoplastic tissues are exposed to harmful substances,

including various high-risk carcinogenic factors, such as drugs,
carcinogens, pathogenic microorganisms, and the uniquely
acidified tumor microenvironment (TME), which damage the
shapes of ECs (for example, edema), resulting in dysregulated
functions of cancer vasculature.28 Cancer cells are characterized by
high proliferative rates and active metabolism; they also consume
high amounts of energy to support their increased cell prolifera-
tion and growth rates.29 When metabolic oxygen demands exceed
supply, the oxygen-deficient areas of cancer cells are exacerbated
and they are change their metabolism.30 Abnormal vascular
structures and patterns that are due to dysregulated angiogenesis
contribute highly to hypoxia. Although the expression of
erythropoietin (EPO) and angiogenic factors are increased under
hypoxic conditions, which promote the proliferation of vascular
ECs, the arrangement is disorganized and non-functional vessels
form.31–34 Cancer rapidly grows such that the cancerous area is
often deficient of vasculature and becomes hypoxic.35 In the TME,
chronic hypoxia occurs as the distance of cancer cells from blood
vessels increases and O2 diffusion decreases, which has been
further validated in a mouse model of breast cancer.36 Hypoxia
can occur in tissues more than 100–200 µM from a functional
blood supply, a phenomenon that is prevalent in solid tumors.37

Additionally, using a model of rat brain gliom, Julien et al. found
that the peritumor vasculature is vaso-responsive to hypoxia
through alpha-smooth muscle actin, which can further exacerbate
hypoxia in areas of tumor tissue with principle blood vessels.38

Some blood vessels become abnormal and malfunction, resulting
in hypoxia.39 Non-cancer components and functions are greatly
altered, including the activation and proliferation of stromal cells
(for example, stellate cells and cancer-associated fibroblasts) and
increased stromal components (for example, fibrin),40,41 leading to
remodeling of cancer morphology, such as vascular compression.
This can result in impaired circulation and inadequate oxygen
supply, further leading to thrombosis and increased tissue
hypoxia.42 Physiological effects of various factors, such as
magnesium, change with the changing hypoxic environment.
Under normoxic conditions, magnesium stimulates angiogenesis,
whereas under hypoxic conditions, Mg inhibits angiogenesis.43

The above factors can cause hypoxia in the TME (Fig. 2).

Fig. 1 A historical and chronological figure of major events in tumor hypoxia research

Fig. 2 Potential factors contributing to tumor hypoxia. Carcinogenic
factors, such as drug, carcinogen, and microbiota dysbiosis, impair
EC shape and function in the vascular system. TME is remodeled by
tumor cells, stromal cells and stromal components (e.g., fibrin),
resulting in vascular deformation due to pressure. High metabolism
in cancer cells, such as increased nucleic acid synthesis and
increased protein anabolism, leads to relative hypoxia. Dysregulated
proliferation and alignment of vascular ECs result in the formation of
non-functional blood vessels. With the increased distance between
tumor cells and blood vessels, O2 diffusion decreases and leads to
hypoxia
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Hypoxic factors are prevalent in most solid tumors. Some
tumors contain transient hypoxic cells, others contain chronic
hypoxic cells, and others contain both components. This may
include three different cell populations. The first type is chronically
hypoxic cells. If left in situ, the cells die. These “doomed” cells
survive alone after the necessary excision in the cell survival assay
and does not affect the response of the tumor when left in situ,
which is considered the main cause of cell necrosis in the central
region of solid tumors. The second type is the chronically hypoxic
cells that are viable if left in situ. These cancer cells are stimulated
by hypoxia to promote proliferation, alter gene expression, and
enhance cellular drug resistance and radioresistance.16,44–49 The
third type is transient hypoxic cells, which are expressed closer to
functional blood vessels, where the duration of hypoxia is short.
Based on current evidence, tumor cells adapt to hypoxia by
altering their signaling pathways. Hypoxia promotes malignant
behavior of cancer cells, including proliferation, migration,
infestation and epithelial-mesenchymal transition (EMT), and
enhances immunotherapy, chemotherapy, and radiotherapy
tolerance.

HYPOXIA AND CARCINOGENESIS
Hypoxia and genomic damage
Hypoxia damages the cellular genome and drives carcinogenesis.
In in vitro and in vivo hypoxic cancer models, gene mutation
frequencies of hypoxic cancer cells were increased by 2- to
5-fold.50–52 In tissue culture and animal models, gene amplifica-
tion and mutations were associated with induction of DNA strand
breaks during hypoxia, including DNA double-strand break (DSB)
and single-strand break (SSB).53–55 In addition, hypoxic conditions
(<5%) could improve the efficiency of induced pluripotent stem
cell (iPSC) generation from mouse and human somatic cells.56 The
hypoxic signaling microenvironment maintains stem cell self-
renewal by facilitating the reprogramming process.57–59 The
extrapolation of these iPSC studies provides insight into cancer
stem cell (CSC), which can also exist in hypoxic ecological niches.60

Hypoxia is known to promote and maintain CSC phenotypes.61

CSCs are thought to have the potential to form tumor that will
develop into cancer, especially when they metastasize with the
cancer and will give rise to novel sources of cancer.60 Both
mutation due to cellular genomic damage and the maintenance
of CSCs are closely related to the production of large amounts of
reactive oxygen species (ROS) under hypoxic conditions.62,63 The
aforementioned mutations and breaks stimulate expression of
oncogenes, thereby inducing the formation of cancer cell variants
that have the potential to metastasize and grow.64

Hypoxia and genetic repair
Hypoxia activates ataxia telangiectasia mutated (ATM) and ATM
and RAD3-related (ATR) checkpoints. ATM and ATR belong to the
phosphatidylinositol 3-kinase-like protein kinase (PIKK) family and
are the main members of the DNA damage checkpoints. They are
activated by different types of DNA damage and regulate cell
cycle checkpoints by phosphorylating their corresponding down-
stream proteins (CHK1 and CHK2). The specificities and function-
alities of ATM and ATR during DNA damage differ, with ATM being
mainly involved in DNA DSB repair. After hypoxia-mediated DNA
double-strand breaks, the MRE11-RAD50-NBS1 (MRN) complex
activates ATM and is autophosphorylated at serine 367 (ser367),
serine 1893 (ser1893), serine 1981 (ser1981), and serine 2996
(ser2996), thereby inducing MRE11-RAD50-NBS1 (MRN) complex-
associated recruitment of various complex phosphorylation
cascades, such as p53 (cancer suppressor), CHK1, and CHK2, to
the DNA DSB sites. These effects can be blocked by the inhibition
of CDK2 activity. During G1/S or G2/M cell cycle progression, cells
have more time to repair DNA damage before entering mitosis.
ATR kinase phosphorylates p53 and CHK1 under extreme hypoxia

(oxygen concentration <0.02%).65 Once ATR is activated, it
phosphorylates and inactivates CDC25 by phosphorylating CHK1
and CHK2, thereby resulting in failure to activate CDK2. These
lesions can block G1/S or G2/M cell cycle progression by
phosphorylating CDK1.65–67 In glioma mice models, inactivation
of the ATM/CHK2/p53 pathways promoted cancer formation.68

Hypoxia cannot induce G2 arrest in CHK2-deficient cells, but these
cells can undergo apoptosis under hypoxia.67,69 Persistent hypoxia
enhances DNA misreplication and DNA strand breaks, resulting in
mutant cell phenotypes.70 Non-homologous end joining (NHEJ)
and homologous recombination (HR) regulate the repair of human
DNA DSB.71–74 DNA DSB are the most severe and extensive types
of damage; HR can accurately repair these damages, especially in
the S/G2 cell cycle stage. NHEJ is the simplest mechanism of DNA
DSB repair and can act in all cell cycle phases, except for the M
phase. In hypoxic conditions, HR repairs the lesions less frequently,
whereas NHEJ activities are unaffected.75,76 The mismatch repair
(MMR) pathway can also be deregulated under hypoxic condi-
tions. MMR is a DNA repair pathway that targets replication-
related errors and primarily functions to correct the misintegration
of nucleotides during DNA synthesis, thereby preventing perma-
nent DNA damage in dividing cells. Hypoxia decreases the
expression of MLH1 and MSH2, which induces mutations and
dinucleotide repeat instability. These pathways may lead to
sustained damage to intracellular RNA, resulting in cell transfor-
mation, including carcinogenesis.77,78

HYPOXIA SIGNALING PATHWAYS AND CANCER CELLS
HIFs and cancer cells
To survive under hypoxic conditions, cancer cells reprogram their
metabolism, protein synthesis, and cell cycle progression through
the synergy of transcription factors.79 One of the main reasons
why cancer cells can survive in hypoxic environments is the
activation of HIFs, which reprogram metabolism, protein synthesis,
and cell cycle progression.79,80 The HIF family has two distinct
subunits: α (HIF-1α, HIF-2α, and HIF-3α) and β (HIF-1β). HIF-1α is
widely expressed in all body tissues, whereas HIF-2α and HIF-3α
only occur in specific tissues.27 HIF-1α is an oxygen-unstable
protein that becomes stable in response to hypoxia, iron chelators,
and divalent cations.81,82 In cell culture under hypoxic conditions,
HIF-1α mRNA levels did not change, but HIF-1α protein levels
increased.83 HIF-1β is constitutively expressed in mammalian cells
under normoxic conditions.84 Owing to the presence of the
oxygen-dependent proline hydroxylase family (PHD), under
sufficient oxygen conditions, the HIF-α protein is hydroxylated
and interacts with von Hippel-Lindau tumor suppressor protein
(pVHL) to promote HIF-1α ubiquitin-proteasomal degradation.85–87

Ectopic expression of PHD1 inhibited HIF-1α and suppressed
tumor growth.88 However, under hypoxic conditions, enzymatic
activity of PHD is inhibited, preventing HIF-α hydroxylation and
ubiquitin-mediated proteasomal degradation, leading to abnor-
mal accumulation of HIF-α in cells. Significantly elevated mRNA of
HIFs was detected after 1 h at O2 concentrations <10%.89 In
addition, high expression of the CSN subunit CSN5 stabilizes HIF-
1α aerobically by inhibiting HIF-1α prolyl-564 hydroxylation.90 Also
under normoxic conditions, elevated intracellular ROS induced
sustained expression of HIF-1α protein.91 The accumulated HIF-1α
binds to HIF-1β and enters the nucleus to bind the hypoxia
response element (HRE) in the promoter region of the target gene
to reduce cellular oxygen consumption.92,93 HIF-3α exerts the
opposite effects in cancer cells by impairing angiogenesis,
proliferation, and metabolism.94 Biologically, HIF is regulated by
multiple signaling pathways, including the PI3K-mTOR signaling
pathway;95–98 JAK-STAT3 signaling pathway;99 NF-κB path-
way;100,101 mitogen-activated protein kinase (MAPK) path-
way;102,103 Wnt/β-catenin pathway;104 Notch pathway;105 cancer
suppressor gene deletion, such as p53,106 phosphatase, and tensin

Hypoxic microenvironment in cancer: molecular mechanisms and therapeutic. . .
Chen et al.

3

Signal Transduction and Targeted Therapy            (2023) 8:70 



homolog (PTEN);107 and IDH1-R132H-FAT1-ROS-HIF-1α signaling
pathway (Fig. 3).108 Mechanistically, HIF regulates cancer cell
growth by regulating genes encoding enzymes that hydrolyze
sugars, angiogenic signaling genes, and apoptosis/stress response
genes.109

Hypoxia and cancer cell behaviors
Among various cancers, patients whose primary cancers are
hypoxic at diagnosis are more likely to have local recurrence and
metastatic site recurrence, regardless of whether the initial
treatment is surgery or radiation therapy. Cancer patients with
conditions such as anemia or chronic obstructive pulmonary
disease tend to have poorer prognostic outcomes and may have
cancer-related hypoxia, at least in part, owing to increased
propensity to develop metastatic disease.26,110 Young et al.
reported that exposure of cancer cells to a hypoxic environment
in vitro or in vivo enhanced spontaneous metastasis.111,112 Similar
results were obtained in mouse models of fibrosarcoma and
cervical cancer.53,113 To an extent, hypoxic conditions eliminate
tumor cells that are sensitive to hypoxia, and the surviving tumor
cells adapt to hypoxia through their own molecular transforma-
tion.114 Several early experiments have supported that hypoxia-
induced increases in HIF-1α expression can drive the metastatic
phenotype by upregulating genes involved in the metastatic
cascade, such as urokinase-type plasminogen activator receptor
(uPAR), matrix metalloproteinase 1 (MMP1), chemokine receptor 4
(CXCR4), osteopontin (OPN), known as secreted phosphoprotein 1
(SPP1), lysine oxidase (LOX), interleukin 8 (IL-8), and vascular
endothelial growth factor (VEGF).115–123 Hypoxia-exposed cancer
cells are selective for the loss of p53 functions or increased
expressions of the p53 negative regulator (MDM2), leading to
increased resistance to apoptosis and increased metastasis.124,125

Other experiments did not find correlation between hypoxia and
p53.126 HIF-1α binds and activates the MAX interactor-1 (MXI1), a
repressor of the c-MYC transcriptional activity, and reduces the
expressions of c-MYC, a factor that encodes mitochondrial DNA
replication and promotes mitochondrial biogenesis,127,128 which

inhibits cancer cell mitochondrial biogenesis and cellular oxygen
consumption, resulting in cancer growth and survival in a hypoxic
environment.129 Unfortunately, MYC overexpression occurs in 70%
of human cancers.130 HIF-2α promotes the expressions of the MYC
and E2F target genes, which are involved in lipoprotein
metabolism and ribosome biosynthesis.131 Conversely, MYC
maintains cancer stem cell self-renewal properties by selectively
binding the promoter and activating the HIF-2α stemness
pathway.132 Both HIF-1α and MYC can enhance the glycolytic
pathway and drive cancer proliferation and progression.79,133

Under hypoxic conditions, HIF-1α directly and positively regulates
ephrin A3 (EFNA3) expressions. Ephrin type-A receptor 2 (EphA2),
a key functional mediator downstream of EFNA3, promotes sterol
regulatory element binding protein (SREBP1) maturation, which
drives the self-renewal, proliferation, and migration of hepatocel-
lular carcinoma (HCC) cells.35 Under the effects of HIF-1α, prostate
intraepithelial neoplasia (PIN) cells highly express transglutami-
nase 2 (TGM2) and exhibit impaired androgen signaling, enhan-
cing malignant progression.23 In addition, some factors, such as
Orai1;134 phospholipase D2 (PLD2);135 annexin A3 (ANXA3);136

CXCR4;137 cysteine-rich protein 2 (CSRP2);138 hematopoietic pre-B
cell leukemia transcription factor-interacting protein (HPIP);139

twist family bHLH transcription factor 2 (TWIST2);140 and non-
coding RNAs, such as long-stranded non-coding RNA (lncRNA)
PVT1,141 lncRNA-GAPLINC,142 and LncRNA-MTA2TR;143 and micro-
RNAs, such as miR-525-5p,144 miR-301a-3p,145,146 and miR-141-
3p,147 play important roles in regulating hypoxia-induced cancer
cell proliferation, migration, invasion, and angiogenesis in the TME
under hypoxic conditions (Table 1).

HYPOXIA AND CANCER CELL METABOLISM
Hypoxia and glycolysis
The majority of cancer cells increase glucose uptake and rely on
glycolysis through a phenomenon known as the “Warburg
effect”.30,148,149 The “Warburg effect,” activated by MYC and HIF-1
in response to growth factors and hypoxia, is aerobic glycolysis

Fig. 3 Biological changes in cancer cells adapt to hypoxia. Hypoxia promotes carcinogenesis by inducing DNA strand breaks, including DNA
DSB and SSB, and by weakening DNA repair pathways, such as HR and MMR. HIF-1α is upgraded by PI3K-mTOR, JAK-STAT3, NF-κB, MAPK, Wnt/
β-catenin, and Notch pathway. Deletion of tumor suppressor genes, such as p53, PTEN, and ROS production, also contributes to the
upregulation of HIF-1α. The loss of pVHL function under hypoxic conditions indirectly leads to HIF-1α accumulation. HIF-1α dimerizes with
HIF-1β and enters the nucleus to bind to HRE, which regulates various downstream target genes (Table 1) to promote cancer cell proliferation,
migration, invasion, EMT and angiogenesis
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with the purpose of meeting the nutrient and energy require-
ments for rapid genome replication. HIF-1α is the main transcrip-
tion factor that promotes Warburg-like metabolism.131,133,150 HIF-
1α stimulates various enzymes such as glycolysis regulator
phosphoglycerate mutase 1 (PGAM1), pyruvate kinase M (PKM),
recombinant phosphoglycerate kinase 1 (PGK1), lactate dehydro-
genase A (LDHA), lactate dehydrogenase C (LDHC), and lactate
dehydrogenase-5 (LDH-5) to induce anaerobic metabolic shifts
that lead to energy production.151–156 HIF-2α promotes MYC
target gene expression and enhances constitutive expression of
LDHA.131,157 In addition, HIF-1α inactivates pyruvate dehydrogen-
ase (PDH) by activating pyruvate dehydrogenase kinase 1 (PDK1),
which in turn fails to convert pyruvate to acetyl-CoA, preventing
the entry of pyruvate into the tricarboxylic acid (TCA) cycle. This
leads to lactate accumulation that increases intracellular adeno-
sine triphosphate (ATP) levels and reduces hypoxic ROS produc-
tion, thus rescuing these cells from hypoxia-induced
apoptosis.158–160

Lactate and H+ generated by glycolysis cross cell membranes
through monocarboxylate transport proteins (that is, MCT1/4),
sodium hydrogen (Na+/H+) exchanger (NHE) isoform 1 (NEH1),
and carbonic anhydrase 9 (CAR9), contributing to cellular pH
homeostasis and driving cancer proliferation and progres-
sion.79,133,161–163 Interestingly, cancer cells relying on MCT1 can
autonomously consume lactate, predominating as a carbon source
for the TCA cycle.164 Pyruvate is converted from glycolysis to
lactate, while lactate is used as a respiratory fuel to support the
energy and synthetic functions of the TCA cycle, which is
significant for the proliferation of cancer cells.164

Hypoxia and lipid metabolism
Lipid metabolism confers aggressiveness to malignant tumors by
promoting membrane formation, energy storage, and production
of signaling molecules, as well as by providing an important
source of ATP production through fatty acid oxidation (FAO).165

Lipids are composed of triglycerides and lipoids such as
phospholipids, cholesterol, and cholesteryl esters. Lipid metabo-
lism involves lipid synthesis, storage, and degradation. Fatty acid
(FA) are essential for lipid biosynthesis and are dependent on the
activities of fatty acid synthase (FASN), adenosine triphosphate
citrate lyase (ACLY), acetyl-CoA carboxylase (ACC), and stearoyl-
CoA desaturases (SCD). Endogenous FA biogenesis constitutes an
oncogenic stimulus that drives malignant tumor progression. HIF-
1 significantly upregulates sterol regulatory element-binding
protein (SREBP)-1, a major transcriptional regulator of the FASN
gene, which in turn promotes FASN expression.166 Activation of
FASN under hypoxic stress promotes de novo lipid synthesis and
cell survival.167,168 ACLY is the main enzyme responsible for the
production of acetyl-CoA in the cytosol in most tissues, and its
product, acetyl-CoA, is used to provide a variety of biosynthetic
pathways, including lipid synthesis and cholesterol synthesis.
ACLY is responsible for catalyzing the conversion of citrate and
CoA to acetyl-CoA and oxaloacetate.169 Studies have suggested
that miR-27 and miR-195 are also upregulated in hypoxia-induced
cardiomyocytes, suppressing the expression of ACLY and
ACC.170,171 The mechanism of ACLY regulation in tumor cells
under hypoxic conditions is still unclear. ACC (including ACC1 and
ACC2) is the rate-limiting enzyme in the FA synthesis pathway.165

Under hypoxic conditions, the inhibition of ACC1 and ACLY
increases the level of α-ketoglutarate by decreasing the level and
activity of ETV4 to prevent hypoxia-induced apoptosis.172 ACC2 is
hydroxylated by PHD3, which inhibits FAO. Under hypoxic
conditions, PHD3 loss reduces ACC2 hydroxylation and promotes
FAO to provide energy.173,174 SCD is a membrane protein of the
endoplasmic reticulum that catalyzes the formation of mono-
unsaturated FA (MUFA) from saturated FA, promotes tumor
progression, and is associated with tumor recurrence and poor
prognosis.175–177 The main products of SCD are palmitoleic and

oleic acids, providing key substrates for the production of complex
lipids such as triglycerides, phospholipids, and cholesterol esters.
Intermittently hypoxic mouse hepatocytes upregulate SCD1
mRNA and protein by increasing SREBP-1 and serum mono-
unsaturated FAs.178 HIF-1/2α promotes the progression of clear
cell renal cell carcinoma by inducing SCD1 expression.179,180

Glutamine is the most abundant amino acid in blood and has
been identified as necessary to promote mitochondrial metabo-
lism in rapidly dividing cancer cells.181 HIF-1 activation leads to a
significant decrease in the activity of the mitochondrial enzyme
complex α-ketoglutarate dehydrogenase (αKGDH), which inhibits
the oxidation of α-ketoglutarate (α-KG) as a product of the
metabolic conversion of glutamine to succinate, its reductive
carboxylation to isocitrate by isocitrate dehydrogenase (IDH), and
then oxidation to citrate.182,183 HIF promotes glutamine-derived
citrate conversion to cytoplasmic acetyl-CoA, which increases FA
synthesis.184

Interestingly, the lipid catabolic metabolism also contributes to
cancer metastasis. Under hypoxic conditions, the main enzymes
associated with lipid catabolism in tumor cells are phospholipase
A2 (PLA2), phospholipase D (PLD), and carnitine palmitoyltransfer-
ase 1 (CPT1).165 PLA2 catalyzes the hydrolysis of glyceropho-
spholipid (GPL) to produce lysophospholipid (Lyso-PL).185

Lysophosphatidic acid stimulates PLA2 phosphorylation in a HIF-
1α-dependent manner, promoting ovarian cancer cell metastasis
in vivo.186 PLD hydrolyzes phosphatidylcholine (PC) to produce
phosphatidic acid (PA).187 Activation of the PLD1/AKT pathway
increases proliferation, migration, invasion, and epithelial-
mesenchymal transition (EMT) in HCC.188 HIF-1α up-regulates the
expression of PLD2 in colon cancer cells under hypoxic condi-
tions.135 In turn, PLD regulates HIF-1α at the translational level in a
vHL non-dependent manner in renal cancer cells.189,190 Prostate
cancer cells with CPT1A overexpression showed enhanced
proliferation, stemness, and tumor growth compared to controls
under hypoxic conditions, mildly affecting the angiogenic
response.191 Breast cancer cells expressing CPT1C showed
increased FAO, ATP production, and resistance to glucose
deprivation or hypoxia.192 However, experimental results have
shown that HIF-1α and HIF-2α inhibit CPT1A expression in clear
cell renal cell carcinoma, reduce FAs transport into mitochondria,
and result in FAs being stored in lipid droplets. Compared with
normal tissues, CPT1A expression and activity were reduced in
clear cell renal cell carcinoma patient samples.193 Similar results
were observed in gastric cancer tissue.194 Cancer cells optimize
their requirements for rapid growth and aggressive progression by
fine-tuning the lipid anabolic/catabolic switch. However, the
dominant role of this fine-tuning mechanism remains unclear.
Glucose and lipid metabolism in cancer cells under hypoxic
conditions is showed in Fig. 4.

HYPOXIA AND ANGIOGENESIS
In the early 1970s, Folkman et al. popularized the concept of
tumor angiogenesis, presenting that growing tumor cells must
replenish their own blood supply to maintain oxygen and
nutrients.195 The accumulated experimental results have shown
that hypoxia favors EC proliferation and migration. Deletion of p53
in cancer cells increases HIF-1α levels and enhances transcriptional
activation of HIF-1-dependent VEGF and erythropoietin (EPO) in
response to hypoxia, thus promoting EC proliferation, migration,
and angiogenesis.96,106,196–199 Hypoxia-induced E74-like ETS tran-
scription factor 3 (ELF3) mediates increased secretions of insulin
like growth factor (IGF1) and VEGF to promote EC proliferation,
migration, and angiogenesis.200 HIF-1α mediates β-adrenergic
receptor pro-angiogenesis.39,201–203 In addition, hypoxia stimu-
lates the production of hyaluronic acid (a major component of the
vascular basement membrane) and hyaluronidase activity, thus
possibly promoting angiogenesis as a compensatory mechanism
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for hypoxia.204 However, tumor angiogenesis is not necessarily
equivalent to tumor blood supply, as the discontinuous basement
membrane of immature neovascularization allows for plasma and
protein extravasation, further elevation of intra-tumor interstitial
pressure, persistent vascular collapse, and poor nutrient deliv-
ery.205 In addition, some tumors exhibit an inability to maintain
vascular survival, a condition that explains the well-formed,
invasive peripheral and centrally necrotic hypoxic regions found
in several highly angiogenic tumors.206 Therefore, in most cancers,
despite the high vascular density, the neointima that forms are
typically twisted and dysregulated, not functional for blood
transport, and less efficient in oxygen and nutrient transport as
well as drug delivery.31–34,203 Traditional anti-angiogenic strategies
have attempted to reduce the vascular supply to the tumor, but
their success has been limited by insufficient efficacy or the
development of drug resistance. Normalization of vascular
abnormalities may still be beneficial for tumor treatment with
the available therapies.31

HYPOXIA AND IMMUNE TOLERANCE
Cancer immunotherapy has emerged as a promising strategy for
the treatment of various cancers by stimulating the immune
system of the patient.207 Programmed death receptor 1 (PD-1) and
cytotoxic T lymphocyte antigen 4 (CTLA4) blocking antibodies,
which are drugs approved by the Food and Drug Administration
(FDA), have shown promising results in clinical trials for the
treatment of various cancers. For some cancers, including breast,
pancreatic, colorectal, and prostate cancers, a high proportion of
non-responders has been reported, one of the main causes of
which is hypoxic stress.208 Hypoxia-induced HIF-1α can promote
programmed death ligand-1 (PD-L1) expression in cancer cells and
suppress immune effects.209 Moreover, hypoxia plays a central

role in cancer progression and resistance to therapy by promoting
various changes in the biology of stromal cells in the TME,
including immune cells. The main mediators of transcriptional
hypoxic responses are HIF-1α and HIF-2α, which induce gene
transcription, leading to hypoxic responses, and are involved in
the regulation of carcinogenesis as well as stromal responses.210

HIF-1α has important functional roles in both innate and adaptive
immune cells, including macrophages,211 neutrophils,212 dendritic
cells (DCs),213 and lymphocytes.214 HIF-2α has been associated
with macrophage NO homeostasis.215 In addition, deletion of the
aryl hydrocarbon nuclear translocator (ARNT)/HIF-1β gene in CD8+

T cells impairs the expression of cytolytic effector molecules,
including perforins and granzymes.216

Hypoxia and T cells
A distinctive feature of T cells is the markedly increased glucose
uptake through glucose transporter 1 (GLUT1) as they respond to
immune challenges and differentiate into cytotoxic T lymphocytes
(CTLs).217,218 Activated lymphocytes generate energy largely
through upregulation of aerobic glycolysis.217 Glycolysis requires
T cells to activate and maintain the expression of glycolytic
enzymes, for example, pyruvate kinase (PK) and lactate dehy-
drogenase (LDH), and also requires T cells to maintain high levels
of glucose uptake by maintaining the expression of glucose
transporters. Relatively high levels of exogenous glucose are
required to maintain the CTL transcriptional program.219,220 HIF-1α
enhances the glycolytic activity of but not HIF-2α.221 Elevated
HIF-α expression of T cells in hypoxic environments is regulated by
multiple pathways, including the PI3K/mTOR-dependent path-
way,98 protein kinase C (PKC) and Ca2+/calcineurin,222 STAT3
dependence,223 NF-κB,100 MAPK pathways,103 and T cell antigen
receptors (TCRs) (Fig. 5).98 Deletion of VHL impairs HIF-1α and
HIF-2α degradation, which significantly elevates the expression of

Fig. 4 Glucose and lipid metabolism in cancer cells under hypoxic conditions. Glucose is taken up by cancer cells via GLUT1 and glycolysed to
pyruvate via PKM, PGK1 and PGAM1. Hypoxic cancer cells promote pyruvate glycolysis to lactate by upregulating LDHA, LDHC and LDH-5, and
the lactate produced is excreted outside the cell via MCT1/4. In addition, HIF-1α inactivates PDH by activating PDK1, which in turn fails to
convert pyruvate to acetyl-CoA, preventing the entry of pyruvate into the TCA cycle. Cytoplasmic citrate is catalyzed by ALCY to acetyl-CoA,
and acetyl-CoA catalyzed by ACC to malonyl-CoA. Acetyl-CoA and malonyl-CoA are catalyzed to FA via FASN upregulated by SREBP-1. SCD1
upregulated by SREBP-1 catalyzes the formation of MUFA from saturated FA. PHD3 loss reduces ACC2 hydroxylation and promotes FAO to
provide energy. α-KG as a product of glutamine is reduced and carboxylated to isocitrate by IDH, and then oxidation to citrate. PLD hydrolyzes
PC to produce PA. PLA2 catalyzes the hydrolysis of GPL to produce Lyso-PL
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various members of the CTL secretory granzyme family, including
perforin and tumor necrosis factor α (TNF-α), thereby sustaining
CTL effector functions.224 In natural killer (NK) cells, APOBEC3G
triggered site-specific editing of C-to-U RNA under hypoxia. These
effects have been shown to occur independently of HIF-1α,
suggesting the existence of other potential regulatory mechan-
isms.225 HIF-α activities in CD8+ tumor-infiltrating lymphocytes
(TILs) promote their accumulation and anticancer activities,226 as
well as the production of interferon-gamma (IFN-γ) by CD4+

T cells.227 HIF-1α deficiency attenuates the ability of some CD8+

T cells to cross the endothelial barrier and reduces the abundance
of infiltrating CD8+ T cells in the TME. This is because VEGF-A
facilitates the recruitment of immune cells.228 VEGF-A derived
from T cells promotes VE-cadherin endocytosis in ECs, causing EC
adhesion junction disruption and vascular homeostasis imbal-
ances, resulting in higher expression of the adhesion molecule
(VCAM-1), which mediates immune cell adhesion to the vascular
endothelium. This finding suggests that T cell-derived VEGF-A
affects T cell homing through the endothelial barrier. VEGF-A
levels in cancers are inversely correlated with CD8+ T cell levels.221

Loss of HIF-1α decreases the ratio of CD8+ to FOXP3+ cells in
TILs.229 After antigenic restimulation, the generation of effector
cytokines from HIF-1α mutant T cells was suppressed.221 Ectopic
HIF-2α (but not HIF-1α) mediates the extensive changes in gene
expression by altering the CD8+ T cell transcription factor
network, regardless of VHL inhibition, including increased perforin,
granzyme B, IL-2, integrins, and CXCR4. In addition, the increase in
co-inhibitors such as lymphocyte activation gene-3 (LAG-3) and
CTLA-4 and the decrease in IFN-γ expression is also mediated.
Overall, these molecular expression changes enhance cytotoxic
differentiation and lytic functions against cancer targets.230

However, the antitumor effects of CTLs under hypoxic condi-
tions remain unclear. It has been reported that hypoxia impairs T
cell function by reducing the levels of IFN-γ, IL-2, and NK group 2
member D (NKG2D).231,232 This is more in line with the actual
tumor, where CD8+ and CD4+ T cells are significantly reduced in
hypoxic areas of the tumor. T cell proliferations were strongly
correlated with oxygen concentrations and were significantly
suppressed under hypoxia (pO2= 1%), likely due to hypoxia-

associated changes in Ca2+ homeostasis in T cells.233 HIF-1α
inhibits IFN-γ, TNF-α, and granzyme B expressions in CD8+, CD4+

T, and NK cells, which induces resistance to PD-1/PD-L1 blockade
and suppresses T cell toxicity.234 Hyperoxia treatment suppressed
the expressions of adenosine, an immunosuppressive factor,235

and reactive nitrogen production,236 and increased IFN-γ levels
and perforin granules.237 Sustained hypoxic stimulation induces
mitochondrial stress, resulting in the loss of mitochondrial
functions, elevated ROS levels in T cells, T cell failure,238 and
impeded anti-PD-1 efficacy.239 Because of the Warburg effect in
cancer cells, which “ferments” glucose into lactic acid, lactic acid is
transported outside the cell to prevent excess lactic acid
accumulation. This stabilizes the intracellular pH of cancer cells
while acidifying the extracellular environment.30,133 HIF-1α
induces high expression of tumor-associated carbonic anhydrase
(CA), such as CA9 and CA12, which catalyze the reversible
hydration of CO2 to carbonic acid.240 In hypoxic environments, the
pH of the extracellular environment of cancer cells can be as low
as 5.8–6.5,208 which inhibits CTL activation, proliferation, and
cytokine production, and also triggers T cell apoptosis.241

Hypoxia induces cancer cells to express chemokines such as CC
chemokine ligand 28 (CCL28) to recruit regulatory T cells
(Tregs).229 HIF-1α promotes Treg polarization and significantly
contributes to colorectal cancer development and progression.
This mechanism had no significant effect on the inhibition of
Foxp3 expressions. Inhibiting Treg HIF-1α expression suppressed
cancer growth.242 However, the HIF-1α-dependent transcriptional
program contributes to helper T cell (Th) 17 development by
mediating glycolytic activities. Moreover, HIF-1α can activate
RORvt and form a tertiary complex with retinoic acid-related
orphan receptor γt (ROR-γt), as well as p300, and recruit it to the
IL17 promoter. In addition, HIF-1α attenuates Treg development
and differentiation by binding to Foxp3 and targeting it for
proteasomal degradation.223,243,244 Tregs express immunosup-
pressive factors,245 immunosuppressive adenosine,246 and cyto-
kines such as IL-10,247 IL-17,248 and IL-35247 to inhibit effector T
cell toxicity; therefore, they are closely associated with poor cancer
prognosis.249 In addition, Tregs inhibit the expressions of nutrient
transporters on CD8+ T cells, limiting nutrient uptake by T cells

Fig. 5 Hypoxia remodels CTL immune effect. HIF-1α in CTL is upgraded by TCR-PKC and Ca2+/calcineurin, PI3K/mTOR, NF-κB, NF-κB, JAK-
STAT3, MAPK pathway. Deletion of pVHL impaired HIF-1α degradation. HIF-1α and HIF-1β dimerization stimulates downstream factor
expression, such as perforin, IFN-γ, TNF-α, which can enhance the antitumor efficacy of CTL. However, some experiments elaborate the
opposite results. Hypoxia inhibits the expression of IFN-γ, TNF-α, granzyme B, IL-2, perforin and NKG2D, while promoting PD-L1,PD-1 and
CTLA-4 expression. CTL increases glucose uptake via GLUT1, which is metabolized to lactate by glycolytic enzymes PK and LDH. Lactate
acidifies the TME, which inhibits CTL activation
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during activation, thereby suppressing T cell proliferation.250

Respiratory hyperoxia therapy may reduce the immunosuppres-
sive effects of Tregs in the TME.251 Amphiregulin (Areg) is an
epidermal growth factor receptor (EGFR) ligand, and Areg-EGFR
promotes HIF-1α levels, leading to cancer progression.252 The lack
of HIF-1α decreases the ratio of IFN-γ+ to FOXP3+ cells in CD4+

TILs, as HIF-1α deficiency reduces FOXP3 proteasomal degradation
and cannot efficiently bind the IFN-γ promoter to drive Th1
responses.227

Hypoxia and B cells
The differentiation process of mammalian B cells includes pro-B,
pre-B, immature B, and mature B cells. HIF-1α activity, which is
regulated by miR-582, is high in human and murine bone marrow
pro-B and pre-B cells, promoting cell proliferation, differentiation,
apoptosis, and gene rearrangement.253 However, reduced imma-
ture B cell stages and sustained high activities of HIF-1α reduced
the abundance of surface B cell receptors (BCR), CD19, and B cell
activator receptors and increased the expression of the pro-
apoptotic factor (BIM), preventing normal B cell development.254

Although hypoxia impairs B cell proliferation, it simultaneously
alters B cell metabolism and promotes antigen-mediated differ-
entiation.255 HIF transcription factors suppress the activities of
prolyl hydroxydioxygenase, which stabilizes HIF by hydroxylating
HIF-1α and HIF-2α in conjunction with pVHL to disrupt HIF.
Therefore, reducing antigen-specific B cells in germinal centers
(GCs; produce long-lived plasma cells and memory B cells)
disrupts high-affinity IgG production and shifts to IgG2c, early
memory B cells, and recall antibody responses. In contrast,
sustained hypoxia or HIF induction induced by VHL deficiency
inhibits mTOR complex 1 (mTORC1) activity in B lymphoblastoid
cells, which impairs B cell clonal expansion, activation-induced
cytosine deaminase (AID) expression, and the ability to produce
IgG2c and high-affinity antibodies.256 HIF-1α is closely correlated
with B-cell lymphoma (BCL-6). Upregulated BCL-6 promotes the
immortalization of mouse embryonic fibroblasts and primary B
cells by elevating cyclin D1 levels.257 HIF-1α binds CXC chemokine
receptor type 4 (CXCR4) to promote B-cell viability.258 The immune
effects of B cells on cancers have not been conclusively
established. Large numbers of CD20+ B cell follicles and Foxp3+
low-infiltrating cells are associated with cancer survival and better
recurrence-free survival outcomes in cancer patients, including
gastric and pancreatic cancers.259,260 Activation of HIF in B cells
modulates immune responses by inducing VEGF to increase
lymphatic and endothelial vessel formation and enhance DC
maturation and antigen presentation.261 Cancer-promoting effects
of B cells have been reported.262 Hypoxia activates HIF-1α and
induces autocrine transforming growth factor-beta (TGF-β)
signaling, promoting myofibroblast activation, CXCL13 induction,
B lymphocyte recruitment,263 and factor MYC secretion, which
favors B cell proliferation and survival,264 and drives cancer
recurrence.265 HIF-1α-dependent glycolysis facilitates CD1dhiCD5+

B cell expansion and promotes IL-10 expressions.266 B cell-derived
IL-35 is associated with attenuated macrophage as well as
inflammatory T cell viabilities and inhibited functions of B cells
as antigen presenting cells (APCs).267 IL-10 and IL-35 promoted
cancer cell metastasis,268 and inhibited anticancer immune
responses in mice.269–271 In addition, one of the mechanisms of
origin of extracellular immunosuppressive adenosine relies on
CD73+ and CD19+ extracellular vesicles (EVs) from B, which is
regulated by HIF-1α.272,273 Regulatory B cells (Bregs) are a
functional B cell subpopulation with the key function of secreting
IL-10, thereby preventing the production of cytokines.274 HIF-1α is
a tumor suppressor in some cancers.275 For instance, pancreatic-
specific HIF-1α deficiency significantly accelerated Kras (G12D)-
driven pancreatic adenoma formation with a significant increase
in intrapancreatic B lymphocytes.276 Depletion of B cells increases
exocrine tissue regeneration owing to a significant decrease in

overall immune infiltrations and fibrosis.277 Pancreatitis-induced
tissue hypoxia and HIF-1α accumulation-induced B-cell depletion
enhances pancreatic regeneration. B cell depletion in mice with
pancreatitis significantly enhanced tissue regeneration and
chemotherapeutic drug resistance.278

Hypoxia and macrophages
Hypoxia, HIF-1α, and tumor secretion of multiple chemokines
facilitate cancer-associated macrophage (TAM) recruitment to the
TME.279–281 TAMs constitute a plastic and heterogeneous cell
population and can account for up to 50% of certain solid
tumors.282 TAMs promote cancer progression by creating an
immunosuppressive microenvironment,283 and enhancing the
progression and metastasis of various cancers.284–286 Hypoxia-
induced HIF-1α promotes the adaptation of TAMs to the hypoxic
environment and is associated with cancer prognosis.287 Lipopo-
lysaccharides (LPS) promote HIF-1α expression by stimulating the
expression of Toll-like receptors in macrophages.288 Hypoxia (1.5%
oxygen) leads to inadequate T-cell responses by increasing
macrophage pro-inflammatory responses, including TGF-β,
increased platelet-derived growth factor (PDGF), phagocytosis
maintenance, and reduced antigen presentation. Hypoxia
enhances fibrosis by promoting pro-fibrotic cytokine responses
and isolating fibroblasts in the vicinity of granulomas.289 The
hypoxic environment leads to elevated HIF-1α levels in macro-
phages and promotes the expression of inducible nitric oxide
synthase (iNOS), which rapidly blocks T cell proliferation through
NO and subsequent peroxynitrite formation.290–292 IL-15Rα+
TAMs downregulate CX3CL1 expression in cancer cells through
the non-transcriptional activity of HIF-1α, reducing CD8+ T cells
and/or increasing CD4+ T cells to reduce the ratio of CD8+ T cells
to CD4+ T cells and thus weaken anti-cancer immunity.293 In
addition, macrophages express HIF-2α under hypoxic conditions
and inactivate drug-induced chemoresistance to 5-FU through
HIF-2α-mediated specific overexpression of dihydropyrimidine
dehydrogenase (DPD).294,295 Furthermore, acidic TME affect TAMs.
Lactate, converted from pyruvate in cancer cells, plays a key
signaling role by inducing HIF-1α-mediated expression of vascular
endothelial growth factor in other processes.296–299 In addition,
M2-like TAM promotes cancer progression by remodeling the
extracellular microenvironment.282

Hypoxia and NK cells
NK cells are bone marrow-derived and account for 10–18% of
peripheral blood mononuclear lymphocytes.300 NK cells can kill
various cancer targets, including cancer cells with low expres-
sions MHC-I.301 Some cancer cells secrete chemokines to recruit
NK cells. For instance, HCC cells are often in hypoxic
microenvironments, an environment that helps CD103+ DCs
to take up and clear cancer DNA, which is enhanced by blocking
cell surface protein (CD47). By secreting IL-12 and CXCL9,
activated CD103+ DCs induce NK cell recruitment; upregulate
the expression of granzyme B, NKG2D, IFN-γ and TNF-α; and
downregulate the expression of NKG2A, which in turn enhances
antitumor effects. However, under hypoxic conditions, most HCC
cells highly express the CD47 protein, which is associated with
poor prognostic outcomes.302,303 Expression of NKG2D recep-
tors, intracellular perforin, and granzyme B in NK cells is severely
impaired under hypoxic conditions, which suppresses NK cell
immunotoxicity.304 Hypoxia promotes cancer cell metalloprotei-
nase ADAM10 expression through HIF-1α, leading to shedding
of NK cell activation ligand (MICA) from cancer cell surfaces,
thereby attenuating NK cell-mediated lysis.291 In an inflamma-
tory model, elevated NK cell HIF-1α levels stimulated the release
of IFN-γ and granulocyte-macrophage colony-stimulating factor
(GM-CSF), enhancing antimicrobial defenses while promoting
M1 macrophage polarization, leading to slow angiogenesis and
wound healing.305 NK cell counts and cytotoxic effects were
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similarly suppressed in a chronic hypoxia mouse model,
accompanied by inhibited IFN-γ secretion by NK cells. NK cells
also secrete large amounts of MMP-9, which affects blood vessel
remodeling.306 Although the absence of NK cell HIF-1α inhibits
tumor growth, it is associated with various challenges. For
example, deletion of HIF-1α in NK cells suppressed the
expression of the angiostatic soluble form of VEGF receptor 1
(sVEGFR1) in cancer, increasing VEGF bioavailability in the TME
and leading to non-productive angiogenesis. The immature
vascular phenotype promotes cancer cell intravasation and
distant pulmonary metastases from melanoma in vivo.202 More-
over, cancer cells influence the cytotoxic effects of NK cells.
Upregulated HIF in the TME increases PD-L1 expression,
decreases autophagic MHC-I expression, and inhibits NK cell
recognition.103,221 HIF-2α promotes IL-10 release by activating
the STAT3 signaling pathway in HCC cells, thereby inhibiting the
killing activities of NK cells, which in turn promotes HCC
recurrence and metastasis.307 HIF-2α stimulates ITPR1 expres-
sion in hypoxic cancer cells, activates autophagy in NK cells,
inhibits granzyme B activity, and impairs the killing sensitivity of
NK cells.308 Activated autophagy in hypoxic cancer cells
selectively degrades the pro-apoptotic NK-derived serine
protease GZMB/granzyme B, leading to the suppression of NK-
mediated target cell apoptosis.309

Hypoxia and neutrophils
Neutrophils are the major players in the innate immune system.
Neutrophil infiltration is uncommon in normal tissues.310

Neutrophils are glycolytic cells that derive little ATP from
oxidative phosphorylation and require gluconeogenesis to
generate intracellular glycogen stores to kill bacteria.311 In a
hypoxic environment, neutrophils reduce glycogen recycling,
leading to impaired functions,311 and consume extracellular
proteins to promote their own central carbon metabolism to
maintain their functions.312 Infiltrating neutrophils in the TME,
known as tumor-associated neutrophils (TANs), promote cancer
growth and is strongly associated with poor prognosis.313 For
instance, neutrophil-derived ROS damages hepatocyte DNA to
drive HCC development.314 Neutrophils can eliminate bacteria
from the body, forming an immune barrier that allows cancers
to start growing back;315,316 therefore, they are closely
correlated with prognostic outcomes of cancer patients.310,317

Elimination of neutrophil infiltration leads to cancer regression
and prolonged survival outcomes.318 Sequencing of pancreatic
single-cell transcriptome revealed that BHLHE40 is a key
regulator of neutrophil polarization toward the TAN-1 pheno-
type, which has pro-cancer and immunosuppressive functions.
However, the associated mechanism should be investigated.319

Neutrophils have an extensive mitochondrial network that uses
the glycolytic product (glycerol-3-phosphate) to maintain
polarized mitochondria and produce ROS to regulate HIF-1α
stability.320 Neutrophil extracellular traps (NETs) promote cancer
cell colonization by enhancing migration, invasion and cancer
cell stemness, leading to poor cancer prognosis. Interestingly,
NET formation is strongly associated with elevated HIF-1α levels
in neutrophils. Downregulation of neutrophil HIF-1α can
effectively inhibit NET-mediated circulating tumor cell (CTC)
metastasis and prolong the median survival of mice with breast
cancer lung metastasis.321 However, some experiments have
shown the anticancer effects of NK cells. Hypoxia favors
neutrophil viability and function.322 Hypoxia recruits polymor-
phonuclear neutrophils (PMNs), which are the main effector cells
against endometrial adenocarcinoma growth, and induces
cancer cell detachment from the basement membrane.323 Upon
relief of tumor hypoxia, recruitment of PMNs to the TME is
significantly reduced; however, the recruited cells can efficiently
kill cancer cells by releasing NADPH oxidase-associated MMP-9
and ROS.324

Hypoxia and MDSCs
Myeloid-derived suppressor cells (MDSCs) can suppress immune cell
activity. Hypoxia and HIF-1α drive MDSCs recruitment to the
TME.280,281 This is because cancer cells in hypoxic areas express
various cytokines, such as chemokine (C-C motif) ligand 26, G-CSF,
and IL-6, to recruit MDSCs.297,325,326 Functionally, MDSCs enhance the
evasion of cancer cells from immune surveillance and promote cancer
drug resistance.327 Inhibiting the infiltration of MDSCs improves anti-
tumor effects.328 In an HCC model, Chiu et al. found that hypoxia-
induced HIF-1α promotes the expression of ENTPD2/CD39L1, an
indicator of poor HCC prognosis, which is thought to convert
extracellular ATP to 5’-AMP, preventing the differentiation of MDSCs,
but maintaining their survival.329 In addition, under hypoxic condi-
tions, MDSCs express multiple immunosuppressive factors. For
instance, PD-L1 is secreted by hypoxia-induced HIF-1α, but not HIF-
2α in MDSCs,330 arginase and NO are promoted by HIF-1α-induced
miR-210 expression,331,332 surface ectonucleotidases CD39 and
CD73,333 TGF-β1, and exosomes, such as S100A9, RAR-related orphan
receptor alpha (RORA), and PTEN,281,334,335 promote cancer cell
stemness and growth and inhibit CTL function. Hypoxia through HIF-
1α dramatically alters the function of MDSCs in the TME and redirects
their differentiation toward TAMs, although the macrophage subtype
has not been clearly established.331 These effects may be attributed to
the ability of MDSCs to express SIRT1,336 a factor that regulates the
glycolytic activities of MDSCs and affects the functional differentiation
of MDSCs,337 and some miR-29a-containing exosomes.338

Hypoxia and ILCs
Innate lymphocytes (ILCs) consist of NK cells ILC1, ILC2, and ILC3,
and are involved in the immune response to virus, bacteria,
parasites, and transformed cells.339,340 Their roles in cancer
immunity and immunotherapy have not been established.341,342

Specific changes in cancer cytokines alter ILC composition in
cancers by inducing plasticity and altering ILC functions.343,344 IL-
15 promoted ILC1 granzyme A expressions and cytotoxicity,
induced the apoptosis of murine leukemia stem cells (LSC),
maintained anticancer immunity, and was positively correlated
with survival outcomes.345–347 IL33-activated ILC2 selectively
expresses chemokine ligand 5 (CCL5), which recruits CD103+
DCs into the TME and activates CD8+ T cells to lyse cancer cells.342

IL-33 results in massive amplifications of ILC2 and produces CXCR2
ligands from these cells, which enhances cancer cell-specific
apoptosis through CXCR2.348 Administration of hypoxic ILC2
resulted in a higher cancer volume, suggesting that hypoxia-
exposed ILC2 enhanced the progression of pancreatic cancer cells.
These outcomes were attributed to the conversion of ILC2 to
ILCregs under hypoxic conditions, which inhibited T cell infiltration
and IFN-γ expression by secreting IL-10.349 IL-25 promotes intra-
tumoral ILC2 infiltration and enhancing the ability of cancer-
infiltrating MDSCs to suppress antitumor immunity and reduce
survival outcomes in colorectal cancer (CRC) patients.350 ILC3 have
antitumor effects. Their intrinsic disruption in CRC drives dysfunc-
tional adaptive immunity, cancer progression, and immunother-
apeutic resistance.351 The production of chemokines (CCL20) and
pro-inflammatory cytokines (IL-1β) at the tumor site leads to ILC3
recruitment and activation. ILC3 secrete the chemokine CXCL10,
which recruits CD4+ and CD8+ T cells and promotes antitumor
immune responses.352 IL-22, secreted by ILC3 cells, is required for
initiation of DNA damage responses (DDR) after DNA damage.
Stem cells that lose IL-22 signaling and are exposed to
carcinogens escape DDR-controlled apoptosis, develop more
mutations, and are more likely to cause colon cancer.353 The
interaction between immune cells and TME is showed in Fig. 6.

HYPOXIA AND CHEMOTHERAPEUTIC RESISTANCE
In vivo experiments have shown that hypoxia increases the
tolerance of cancer cells to drug toxicity.354–356 Hypoxia induces
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high expression of drug resistance genes in cancer cells, increases
chemotherapeutic drug efflux, and reduces intracellular drug
concentrations. Once they are combined with anticancer drugs,
P-glycoprotein (PGP), known as multidrug resistance protein 1
(MDR1), and breast cancer resistance protein (BCRP) are ATP-
binding cassette (ABC) transporters and energy-dependent drug
excretion pumps that can pump drugs out of the cell by providing
energy through ATP.357 Therefore, the intracellular concentration
of drugs continues to decrease, which weakens their cytotoxic
effects until they are dissipated, and drug resistance occurs. ROS
generated under hypoxic conditions induce PGP and BCRP
expression through HIF-1α and increase cancer cell drug resis-
tance.358 HIF-1α induces multidrug resistance-associated protein 1
(MRP1) expressions and enhances drug resistance in colon cancer
cells.359 Moreover, HIF-1α enhances the inactivation of chemother-
apeutic drugs and reduces their cytotoxic effects. Cytidine
deaminase (CDD), an important metabolic enzyme involved in
drug resistance development in cancer cells, is derived from cancer
cells or bacteria within cancer cells. Elevated CDD levels promote
the metabolism of gemcitabine to its inactive form.360 Moreover,
solute carrier (SLC) transport proteins are primarily involved in the
uptake of small molecules into cells, and their absence affects the
uptake of chemotherapeutic agents into cancer cells, leading to
drug resistance.361 The role of hypoxia in relation to CDD and SLC
has not been fully established. Recently, alternative resistance
pathways have been identified in hypoxic cancer cells. For
instance, cancer and stromal cells in the TME, such as cancer-
associated fibroblasts, secrete various cytokines, including IL-6,
which induces HIF-1α expressions to regulate downstream
chemotherapeutic resistance genes, such as olfactomedin 4
(OLFM4), pyruvate kinase muscle 1 (PKM1) that enhances
mitochondrial oxidative phosphorylation (OXPHOS), and expres-
sions of non-coding genes, for example, miR-27a that increases
PGP expression, to promote chemoresistance acquisition in cancer
cells.362–367 HIF-1α and cancer-associated fibroblast-secreted TGF-β
signaling synergistically promote GLI family zinc finger 2 (GLI2)
expressions through SMAD3, inducing CRC cell stemness and
chemoresistance.368 Upregulated HIF-2α promotes sorafenib

resistance in hypoxic HCC cells by activating the TGF-α/EGFR and
COX-2 pathways.369,370 Under normoxic conditions, autophagy
activation did not counteract cisplatin-induced stress, leading to
cell death, whereas under hypoxic conditions, autophagy induction
was enhanced, resolving cisplatin-induced stress and inhibiting the
cisplatin-induced BCL2 interacting protein 3 (BNIP3) death path-
way, allowing cell survival.371 Downregulation of BNIP3 may
contribute to the resistance of pancreatic cancer to hypoxia-
induced cell death.372 However, in non-small lung cancer samples,
high expression of BNIP3 was significantly associated with HIF-1α
and poorer overall survival was associated.373 Due to fibrosis and
formation of non-functional vessels in the TME, drug diffusion and
delivery to cells away from functional vessels is decreased374, and
this may trigger drug resistance in cancer cells. In addition, an
altered pH gradient in the TME can attenuate drug action in cells
(for example, alkylating agents and antimetabolites) to enhance
drug resistance.374 The mechanisms of hypoxia-enhanced tumor
chemotherapy resistance is showed in Fig. 7.

HYPOXIA AND RADIATION RESISTANCE
Radiotherapy directly destroys macromolecule fixation and leads to
DNA damage through the generation of free radicals, such as
hydroxyl (OH•) and hydrogen (H•) radicals, by ionizing radiation (IR),
a process known as “oxygen fixation theory”. The damage caused
by radiotherapy is permanent and irreversible. Hypoxia reduces the
effectiveness of radiotherapy and free radicals become unstable,
leading to limited extent of their damage, and most of the damage
can be easily repaired.375,376 Classical in vitro and in vivo
experiments have shown that at O2 (pO2) partial pressures below
10mmHg, tumor cells can acquire radiobiologic hypoxia and thus
become relatively resistant to radiotherapy. For instance, at 1 mm
Hg, cancer cells are three times more resistant to radiation than
ordinary oxygen cells.16 Several preclinical and clinical trials have
demonstrated that the number of lethal DNA DSB formed under
hypoxic conditions is also reduced by 2 to 3-fold and hypoxia can
alter the expression and function of DNA DSB-associated genes.
Under hypoxic conditions, additional DNA repair pathways can be

Fig. 6 Changes in cytokine secretion by innate immune cells under hypoxic conditions. M1 microphage secretes iNOS, and M2 macrophages
secrete IL-10, EGF, VEGF, MMP, DPD, PDGF and TGF-β to suppress immune responses. Lactate induces M2-like polarization. HIF-1α inhibits NK
cell expression of perforin, NKG2D, GM-CSF, granzyme B and IFN-γ. Hypoxia induces neutrophils to produce ROS and NETs, which promote
tumorigenesis and metastasis. HIF-1α induces MDSCs to secrete cytokines NO, arginase, PD-L1, RORA, PTEN, CD39, CD73 and S100A9, which
inhibit immune response and promote the tumor cell stemness and growth. ILC1 secretes granzyme A and maintains antitumor efficacy. ILC2
enhances immune response through selective expression of CCL5, CXCR2. Hypoxia induces IL-10 expression in ILC2 and suppresses immunity.
ILC3 secretes CXCL10 and IL-22, improving antitumor immune response
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activated.16,376–379 HIF-1α stimulates DNA-dependent protein
kinase (DNA-PK) expression and repairs DNA DSB caused by
ionizing radiation.380 Radiation upregulates HIF-1 expression and
enhances its activity in cancer cells.381 Elevated HIF-1α levels confer
radioresistance via various pro-cancer mechanisms. HIF-1α pro-
motes ATP metabolism, and p53 activation and stimulates EC
survival, thereby mediating the ultimate cancer radiation
responses.382,383 The serine peptidase inhibitor Kazal type 1
(SPINK1) is secreted in a HIF-dependent paracrine manner to
reduce radiation-induced DNA damage and enhance radiation
resistance in adjacent cancer cells through EGFR and nuclear factor
erythroid 2-related factor 2 (NRF2).384 Radiation-induced EC death
leads to secondary tumor cell killing.385 The vascular system also
affects radiation therapy. Radiation-induced secretion of VEGF, FGF,
and PDGF by cancers protects the cancer vasculature from
radiation-mediated cytotoxicity and enhances the radioresistance
of ECs.386–388 Thus, VEGF, FGF, and PDGF inhibitors can significantly
improve the efficiency of radiotherapy.388,389 The radiosensitivity of
hypoxic cancer cells was showed to be significantly increased after
reoxygenation.390 Elevated H2O2 levels in cancer tissues exacerbate
hypoxia-induced resistance to radiotherapy. Reducing oncological
cellular H2O2 or using it to generate oxygen through chemical
reactions may improve radiotherapeutic outcomes.391 However,
these mechanisms require further evaluation (Fig. 8).

HYPOXIA-MEDIATED THERAPY
Targeted therapy
Approximately 80–90% of deaths among cancer patients are
directly or indirectly attributed to drug resistance. Progress in the

development of new drugs is also hampered by drug resistance,
which has become a considerable challenge in cancer treat-
ment.392 Hypoxia drives cancer development and progression.
Therefore, it is essential to increase the oxygen concentration in
TME. Oxygen delivery in the TME is increased by enhancing cancer
vascular formation to elevate oxygen levels, however, the vessels
formed in cancers are usually abnormal and non-functional.39

Intravenous oxygen delivery to the cancer through blood is not
feasible for reasons such as the potential risk of systemic ROS
exposure and the low solubility of oxygen in blood.393 Increasing
oxygen delivery by increasing blood flow to the tumor through
pharmacological vasodilatation methods has been proposed, but
in practice it is difficult to improve or reduce blood flow to the
tumor tissue.394 To overcome this challenge, nano- and bio-based
technologies have been used to carry oxygen generators to
generate enough oxygen in the target cancer such as pancreatic
ductal adenocarcinoma, colorectal cancer, fibrosarcoma, mela-
noma, etc., which aids in drug delivery and significantly improves
the effectiveness of chemotherapy, radiotherapy as well as
immunotherapy.281,395–398 Moreover, the reoxygenation process
generates large amounts of ROS, which results in DNA damage,
contributing to cancer cell death.65,399 However, the damage this
brings to the surrounding normal cells is a matter of concern.
Second, inhibition of hypoxia-induced HIF and its downstream
target genes is an effective strategy.400 For instance, 32–134D, a
low-molecular-weight compound that inhibits HIF-1/2-mediated
gene expression in HCC cells, combined with anti-PD-1 increased
HCC eradication rates in mice (from 25 to 67%).401 HIF-1α
inhibitors, such as topotecan, bortezomib (PS-341) as well as
HIF-2α inhibitors, such as PT2399, PT2385 and PT2977, inhibit HIF-
1/2α activities and their downstream target gene expres-
sions.402,403 These inhibitors reduce VEGF levels in circulating
tumor cells (such as neuroblastoma, multiple myeloma, HCC and
renal cell carcinoma) to inhibit tumor angiogenesis,404–408 and
enhances the effects of chemotherapeutic drugs, such as
oxaliplatin, to inhibit colorectal cancer cell proliferation.409

Hypoxia in the TME provides a special environment for the effects
of some drugs, called hypoxia-activated prodrugs (HAPs).395 For
instance, evofosfamide (TH-302) and tarloxotinib-effector inhibited
cancer growth by suppressing signaling and cell proliferation in
patient-derived cancer cells in vitro and in mouse xenograft
models.410,411 However, there is controversy in the clinical
treatment of advanced soft tissue sarcoma.412,413 Mechanistically,
DNA dioxygenase ten-eleven translocation (TET)2 is recruited by

Fig. 8 Hypoxia enhances the ability of the tumor to resist
radiotherapy. Radiotherapy induces cancer cell death by directly
damaging DNA through the production of free radicals such as OH•
and H•. SPINK1, secreted by hypoxic cancer cells, upregulates EGFR
and NRF2 antioxidant response in adjacent cancer cells to reduce
radiation-induced DNA damage, thereby inducing cancer radio-
resistance. VEGF, FGF and PDGF secreted by hypoxic cancer cells
enhanced the radiation resistance of ECs. HIF-1α stimulates DNA-PK
expression and repairs DNA DSBFig. 7 Hypoxia enhances tumor chemotherapy resistance. IL-6

stimulates HIF-1α expression, which increases PGP expression
through upregulation of miR-27a. Chemotherapeutic agents are
transported by HIF-1α-induced intracellular MRP1 and excreted from
cells via PGP and BCRP. HIF-1α induces OLFM4 to enhance cancer
cell chemoresistance. HIF-1α enhances chemotherapeutic resistance
in cancer cells by promoting PKM1, enhancing mitochondrial
OXPHOS. Under hypoxic conditions, cancer cells induce enhanced
autophagy and inhibit the chemotherapeutic drug-induced BNIP3
death pathway to resist drug toxicity. HIF-1α synergizes with TGF-β
to promote GLI2 expression through SMAD3, inducing cancer cell
stemness and chemoresistance. HIF-2α upregulation promotes the
ability of hypoxic cancer cells to resist drug toxicity by activating the
TGF-α/EGFR pathway and COX-2. In addition, CDD and SLC play
important roles in the drug resistance of cancer cells, the effect of
hypoxic conditions on CDD and SLC is unclear
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the transcription factor (HNF4α) to activate FBP1 expressions,
thereby antagonizing the functions of HIF-1/2α) in metabolic
reprogramming to suppress clear cell renal cell carcinoma
growth.414 Clinical trials regarding hypoxia-targeted therapy are
summarized in Table 2.
These clinical trials were designed using hypoxia tracers,

hypoxia-activated prodrugs, and drugs targeting HIF and down-
stream targets. Hypoxia tracers can visualize and quantify tumor
hypoxia, assisting clinicians in the non-invasive detection and
assessment of tumor hypoxia levels, and with the aid of PET
imaging can be used to monitor the dynamic response of patients
to treatment, potentially allowing for individualized patient
treatment.415,416 Hypoxia-activated prodrugs can selectively target
hypoxic tumor cells, have hypoxia-selective cytotoxicity, and
exhibit broad antitumor activity.412,417,418 HIF and downstream
gene-targeted drugs effectively inhibited tumor even, significantly
improved patient survival, and phenocopied better tolerabil-
ity.419–421 However, these drugs have certain toxic side effects, and
common adverse events include headache, fatigue, nausea,
vomiting, diarrhea and dehydration, and serious adverse events
include Gastrointestinal bleeding, blood clots/deep vein throm-
bosis, lymphocytopenia, febrile neutropenia, anemia and trigger-
ing secondary infections. Some clinical trials do not have sufficient
data to analyze the safety and efficacy of drugs.

Hypoxia and immunotherapy
Hypoxia inhibits anti-cancer immune sensitivity.422 Reduction of
the hypoxic environment in the TME increases the efficacy of
immune checkpoint blockade (ICB) against cancers in vivo. The
rational use of the pulsatile system of the TME can ameliorate
hypoxia. Increasing the oxygen partial pressure through intrave-
nous oxygenation can reverse hypoxia in the TME.423 However,
some of the vessels in cancer are abnormal and non-functional.
Therefore, vascular remodeling in the TME is necessary to
ameliorate hypoxia. Elevated levels of Delta-like 1 (DLL1) in breast
and lung cancer induce long-term cancer vascular normalization
to alleviate cancer hypoxia, promote the accumulation of IFN-γ-
expressing CD8+ T cells, and enhance macrophage polarization
toward the M1-phenotype.424 Hyperoxia upregulates MHC-I
expression in cancer cells, enhances T cell-mediated cytotoxi-
city,398 promotes the anti-cancer activities of NK cells,235 reduces
the immunosuppressive effects of Tregs in the TME, and inhibits
the production of MDSC-derived exosomes to reduce cancer cell
stemness.235,281 Pro-oxidants can also be used to increase oxygen
levels in the TME. Wu et al.396 developed nanoparticle-stabilized
oxygen microcapsules that could be precisely targeted to
pancreatic ductal adenocarcinoma (PDAC), improving hypoxia
and significantly increasing the efficacy of anti-PD-1 antibodies
against PDAC. Treatment with oxygen microcapsules combined
with anti-PD-1 antibodies alleviates TAM infiltration, polarizes
macrophages from the pro-cancer M2 phenotype to the anti-
cancer M1 phenotype, and increases the proportion of TME
Th1 cells and CTLs to enhance anti-cancer immune effects.396 The
oxygenating agent (TH-302) eliminates hypoxia in cancers and
promotes T-cell infiltration.425 The pro-oxidant adaptor (p66SHC)
reduces ATP production in B cells by limiting glycolysis and
compromising mitochondrial integrity, while activating AMPK to
promote B cell mitochondrial autophagy and limiting plasma cell
differentiation.426 Suppression of HIF pathway-mediated PD-L1 is
an important measure for enhancing cancer immune responses.
Inhibition of HIF-1α synthesis suppresses PD-L1 expression and
induces lysosomal degradation of PD-L1, enhancing the ability of
CTLs to kill cancer cells.427 The deletion of HIF-1α in NK cells
significantly inhibits cancer growth and improves patient survival
outcomes by activating the NF-κB pathway and stimulating the
expression of effector molecules, such as IL-18.428 Single inhibition
of HIF-1α in immune cells restores immune cytotoxicity; however,
it also induces PD-L1 expression in cancer cells, impairing

anticancer immunity.234 Therefore, multichannel combination
therapy is vital for cancer treatment. Hypoxia leads to the
increased expression of immune checkpoints and promotes
fibrosis, thereby suppressing the efficacy of cancer immunother-
apy. Increasing the oxygen concentration affects cancer immune
responses by altering the extracellular matrix. For instance,
hyperbaric oxygen (HBO) promotes PD-1 antibody delivery and
T cell infiltration into the cancer parenchyma by depleting major
components of the extracellular matrix, such as collagen and
fibronectin.429 Genetic engineering approaches can be used to
construct high-affinity NK (haNK) cells, which can express high-
affinity CD16 receptors and IL-2, improve tolerance against acute
hypoxia, and maintain the functions of NK cells to kill cancer
cells.430

Hypoxia and radiotherapy
Radiotherapy is a non-invasive oncologic treatment approach for
drug-resistant cancers.431 It is based on the principle of targeting
cancer tissues with X-rays or gamma rays, which directly or
indirectly damage biomolecules to ionize the surrounding water
and generate ROS, inducing DNA damage and apoptosis.432,433

Oxygen in the TME can anchor broken ends of DNA and form
stable organic peroxide groups that inhibit further DNA repair.434

However, local hypoxia in the TME markedly reduces the
therapeutic efficacy of radiation therapy. In addition, radiotherapy
requires high doses of X-rays to treat cancers, which can cause
serious side effects.435 By utilizing the sustainable production of
O2 from endogenous H2O2 decomposition, cancer hypoxia can be
improved and the efficacy of radiotherapy is enhanced.436 Chai
et al. found that under continuous external irradiation with a
660 nm laser and X-ray beams, cyanobacteria continuously
photosynthesized and released oxygen, and the large amount of
ROS produced by the two-dimensional (2D) bismuth radio-
sensitizer greatly enhanced the efficacy of radiation therapy and
inhibited cancer growth in vivo.437 Improving hypoxia increases
the sensitivity of cancer cells to radiotherapy,437 which may be
related to HIF-1α inhibition in cancer cells by changing the optical
redox status.438 The mechanisms involved in hypoxia-induced
tolerance to radiotherapy in cancer cells should be investigated
further.

Nano application therapy
Nanoparticles are characterized by small sizes, large surface areas,
high bioavailability, and good biocompatibility, and have great
potential for safely and efficiently transporting external oxygen to
the hypoxic TME.439 The nanocomposite “oxygen bomb” PSPP-
Au980-D is used to precisely locate the hypoxic microenvironment
of pancreatic cancer, and through different nm laser irradiation, it
can improve hypoxia, generate singlet oxygen, and enhance the
efficacy of photodynamic therapy (PDT).440 The use of an acidic
microenvironment to generate oxygen is a feasible method. For
instance, an acidic environment triggers a reaction between MnO2

and H2O2, releasing large amounts of oxygen to alleviate intra-
tumoral hypoxia. Fragmented human-induced pluripotent stem
cells (iPSCs) release cancer-sharing antigens, which trigger strong
innate and adaptive immune responses against cancers, promote
dendritic cell maturation, and activate effector T and NK cells.
Meanwhile, they also decreased the amount of Treg cells. iPS-
MnO2@Ce6 significantly inhibited cancer growth, metastasis and
reduced mortality in cancer-bearing mice models.441 Nanoparti-
cles can also host various drugs, such as oxygenating agents,
chemotherapeutic agents and immune-boosting drugs, improving
the anti-cancer effects.442 Manganese dioxide based nanocarriers
can enhance the anticancer effects of piggyback paclitaxel by
alleviating the degree of hypoxia in the in situ glioma
microenvironment.442 Porous Au@Pt core-shell nanostructures
inhibit the expressions of HIF-1α and MDR1 gene by oxidizing
the TME, thereby reducing the extracellular secretion of
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Table 2. Clinical trials targeting hypoxia in tumors

Drug Target Cancer type Status Clinical trials Study
completion date

Intervention/
Treatment

FDA
approval

[F 18]HX4 Hypoxia
regions

Head and neck cancer;
Lung cancer;
Hepatocellular carcinoma;
Rectal cancer;
Cervical cancer

Phase 2 NCT01075399 February 2012 Intravenous
injection

Yes

F 18 ([^18 F] FMISO) Hypoxia
regions

Cervical adenocarcinoma;
Hepatocellular Carcinoma;
Glioblastoma;
Brain metastases from
breast cancer

Phase 2 NCT00559377
NCT02471313
NCT00902577
NCT01985971
NCT02695628

May 2014;
March 7, 2018;
January 31, 2018;
August 19, 2016;
October 31, 2018

Intravenous
injection

Yes

[18 F]EF5 Hypoxia
regions

Squamous cell carcinoma
of the head and neck

Phase 2 NCT01774760 September 2016 Intravenous
injection

Yes

Digoxin HIF-1α Breast cancer Phase 2 NCT01763931 April 1, 2016 oral Yes

Bevacizumab
Tarceva
Cisplatin

EGFR Head and neck cancer Phase 1 NCT00140556 April 2010 Intravenous
infusion

Yes

Topotecan
Cisplatin
Bevacizumab

VEGF Cervical cancer Phase 2 NCT00548418 December 2012 Intravenous
infusion

Yes

Erlotinib (Tarceva/
OSI-774)

EGFR Carcinoma, non-small-
cell Lung

Phase 2 NCT00983307 December 2012 Oral Yes

BKM120/
Buparlisib

PI3K Carcinoma, non-small-
cell lung

Phase 1 NCT02128724 October 17, 2017 Oral Yes

Avastin (Bevacizumab)
Docetaxel

HIF/VEGF/
VEGFR

Breast cancer Phase 2 NCT00559754 September 2010 Intravenous
infusion

Yes

Clostridium novyi-
NT spores

Anaerobic
bacteria

Solid tumor malignancies Phase 1 NCT01924689 October 31, 2017 Intratumoral
injection

-

TH-302 Hypoxia
regions

Pancreatic
adenocarcinoma;
Soft tissue sarcoma

Phase 3 NCT01746979
NCT01440088

February 2016;
May 2016

Intravenous
infusion

Yes

Bevacizumab
Irinotecan

HIF-2α/
VEGF

Glioblastoma;
Medulloblastoma;
Ependymoma

Phase 2 NCT00381797
NCT02076152

November 2017;
April 2019

Intravenous
infusion

Yes

Melatonin HIF-1α Oral squamous cell
carcinoma

Phase 3 NCT04137627 December 2018 Oral Yes

Everolimus (RAD001) mTOR Renal cell carcinoma Phase 4 NCT01206764 July 1, 2017 Oral Yes

Cetuximab EGFR Squamous cell carcinoma
of the head and neck

Phase 2 NCT01104922 July 26, 2018 Intravenous
infusion

Yes

Tivozanib HIF-1/2 Renal cell carcinoma Phase 2 NCT01297244 October 2012 Oral Yes

Pazopanib
Paclitaxel

HIF Melanoma Phase 2 NCT01107665 February 2018 Intravenous
infusion

Yes

PT2385 HIF-2α Glioblastoma Phase 2 NCT03216499 June 5, 2020 Oral Yes

Dinitrobenzamide
(CB1954)

Hypoxia
regions

Prostate cancer Phase 1 NCT04374240 August 2021 Intra-prostatic
injection

-

Mitomycin C Hypoxia
regions

Squamous cell carcinoma
of the head and neck

- NCT02352792 Recruiting Intravenous
infusion

Yes

Porfimycin Hypoxia
regions

Head and neck cancer Phase 3 NCT00002507 October 2002 Intravenous
injection

-

Apaziquone Hypoxia
regions

Bladder cancer Phase 3 NCT00461591 January 2012 Intravesical -

Tirapazamine Hypoxia
regions

Cervical cancer;
Head and neck squamous
cell carcinoma;
Small cell lung cancer

Phase 2
Phase 3
Phase 2

NCT00003369
NCT00174837
NCT00066742

July 2004;
January 2008;
August 2009

Intravenous
infusion

-

Nimorazole Hypoxia
regions

Head and neck squamous
cell carcinoma

Phase 3 NCT01950689 January 7, 2021 Oral -

Topotecan HIF-1α Small-cell lung cancer;
Non-small cell lung cancer;
Ovarian cancer

Phase 2
Phase 3
Phase 2

NCT00698516
NCT00390806
NCT00317772

May 2010;
September 2013;
November 4, 2020

Oral Yes

Belzutifan (MK-6482/
PT2977)

HIF-2α Clear cell renal cell
carcinoma

Phase 1 NCT04846920
NCT04994522

Recruiting Oral Yes
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adriamycin (DOX) and enhancing the efficacy of chemo-
photothermal therapy.443 When hybrid nanospheres containing
Fe3+, aggregation-induced emission (AIE) photosensitizer, and Bcl-
2 inhibitor of sabutoclax were consumed by cancer cells, they
increased intratumoral oxygen concentration through Fe3+-
mediated Fenton reactions, and intracellular PDT resistance of
the AIE photosensitizer was mitigated by sabutoclax.444 Remodel-
ing the tumor immune microenvironment by nanoparticle
technology can achieve efficient cancer therapy. Mesoporous
silica nanoparticles (MSNs) in combination with pro-oxidants and
mitochondrial respiration inhibitors can alleviate the hypoxic
environment and inhibit MDSCs infiltration.445 TK-M@Man-HMPB/
HCQ alleviated hypoxic microenvironment-induced TAM polariza-
tion, promoted CTL infiltration, and significantly inhibited cancer
growth.446 Novel poly (vinylpyrrolidone) (PVP)-modified BiFeO3/
Bi2 WO6 (BFO/BWO) with a p-n type heterojunction reshapes the
immunosuppressive TME. It triggers H2O2 catabolism to generate
O2 to alleviate cancer hypoxia, enhance PDT and radiotherapy
sensitivity, promote TAM polarization from the M2 to the M1
phenotype, and inhibit HIF-1α expression. This photo-activated
nanoconjugated radiotherapy can activate and recruit T cells and
stimulate TAMs toward the M1 phenotype, significantly reversing
the immunosuppressive TME to immunoreactive TME and further
enhancing the immune memory response.447 Advances in
nanotechnology to improve the hypoxic TME, or to combine
chemotherapy, radiotherapy, and immunotherapy, have achieved
satisfactory outcomes, compared to traditional treatments, and
may become a treatment measure with great potential in the
future.

Biotherapy
Accumulating evidence suggests that microbiota play an impor-
tant role in cancer by damaging cellular DNA, inducing
transformation, activating and altering stromal cell components
in the TME, and influencing cellular metabolism.448,449 The
microbiota characteristics under hypoxic conditions are currently
not fully understood. Recent research has demonstrated that a
combination of live bacteria and treatment modalities such as
surgery, chemotherapy, and radiotherapy can produce good
clinical outcomes. Certain bacteria have the potential to gravitate
to the hypoxic core of cancer cells and can spread and proliferate.
Spores of the anaerobic bacterium Clostridium novyi-NT were used
to treat the transplanted tumors in mice. In several mouse models
including colorectal cancer, biliary cancer, melanoma and
squamous cell carcinoma, this bacterium was found to signifi-
cantly improve the efficacy of radiotherapy.450 The use of the
attenuated pathogenic anaerobe Salmonella VNP20009 to target
the cancer hypoxic region, equipped with photosensitizers and
bromodomain and extra terminal domain (BET) protein inhibitors
with mitochondrial targeting properties improved the heat
elimination abilities of photothermal therapy (PTT) and signifi-
cantly inhibited the expressions of PD-L1 in cancer cells, thereby
enhancing and maintaining a durable immune response.451

Bioluminescent bacteria designed by transforming attenuated
Salmonella typhimurium strains effectively increased PDT and
promoted inflammation by converting macrophages M2 to M1,
activated NK cells, CD4+ Th cells and CD8+ T cells in the TME,
reduced intratumoral immunosuppressive Tregs, and upregulated
the expressions of various effector cytokines.452 Salmonella
preferentially localizes sites and proliferates in hypoxic cancers,
due to this advantage, Salmonella is also used as a cancer
targeting vector to deliver different therapeutic agents and to
achieve synergistic anticancer effects. However, colonized Salmo-
nella recruits a large number of neutrophils, thus favoring cancer
growth.315,316 The elimination of Salmonella-recruited neutrophils
facilitates complete cancer eradication and reduces side effects.453

Delivery of peroxidase is an effective strategy for reducing
resistance to radiotherapy. The peroxidase membrane vesicles

(EMs) of Escherichia coli have higher peroxidase activity than free
peroxidase, which decomposes H2O2 into oxygen to alleviate
cancer hypoxia. Combined with their immunostimulatory proper-
ties, EMs can effectively enhance the effects of radiation therapy
and induce anticancer immune memory.391 Maximizing the use of
live bacteria under hypoxic conditions has the potential to be a
therapeutic modality for the treatment of cancer.

CONCLUSIONS AND PERSPECTIVES
Over the last 60 years, extensive progress has been made in the
understanding of hypoxia-mediated signaling pathways. Hypoxia-
based research has provided new insights into how hypoxia works
and has laid the foundation for the development of targeted
therapies that can improve patient prognosis. Carcinogenic factors
and mature cancer characteristics promote hypoxia in the TME,
and cancer cells adapt to hypoxia by changing their own
metabolism through key genes such as HIFs. With advances in
analytical tools and genomic technologies, such as pan-genomic
analysis, are important for in-depth studies of HIFs.454,455 Hypoxia-
induced pathways can alter the malignant behavior of cancer
cells. Under hypoxic conditions, most downstream targets are HIF-
dependent. Whether there are other key genes independent of
HIFs requires further investigation. For instance, hypoxia-induced
RNA editing by endogenous RNA editing enzyme can be
mimicked by inhibiting mitochondrial respiration and occurs
independently of HIF-1α to facilitate adaptation to hypoxic
stress.225 Moreover, hypoxia reshapes the stromal cell properties
of the TME, especially with the rise of immunotherapy, and both
innate and adaptive immune cells in hypoxic environments have
received extensive attention. However, despite significant break-
throughs, some results remain controversial. The reasons for this
may be related to tissue specificity in addition to the experimental
tools used and design bias, and mature modeling is also critical.
The composition of the TME is diverse, and in addition to its own
components, other foreign components may be present, such as
microbiota, an emerging field that plays an important role in
various cancers. Microbiota in the TME is one of the factors that
form and maintain chronic hypoxia, activates HIF-1α in a non-
hypoxic manner, increases HIF-1α mRNA levels, stabilizes HIF-1α
protein, and induces the expression of HIF-1α regulatory
genes.288,456,457 Changes in the characteristics of the microbiota
in hypoxic environments and their effects on tumors are
interesting and deserve further exploration. Therapeutic measures
based on these characteristics, including targeted therapy,
immunotherapy, chemotherapy, radiotherapy, radiotherapy, and
biotherapy, offer good prospects. However, the complexity of the
tumor relationship makes it inefficient to treat cancer from a
single perspective. Multidisciplinary combination therapy, such as
biology, chemistry, materials, machinery, electronics, artificial
intelligence, and other multidisciplinary approaches for cancer
(especially refractory cancer), is an interesting trend. Extensive
study is still required before the development and implementa-
tion of efficacious and robust hypoxia-related precision treatment.
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