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Signaling pathways in rheumatoid arthritis: implications for
targeted therapy
Qian Ding1,2,3, Wei Hu1, Ran Wang1, Qinyan Yang1, Menglin Zhu1, Meng Li1, Jianghong Cai1, Peter Rose4, Jianchun Mao5✉ and
Yi Zhun Zhu 1,6✉

Rheumatoid arthritis (RA) is an incurable systemic autoimmune disease. Disease progression leads to joint deformity and associated
loss of function, which significantly impacts the quality of life for sufferers and adds to losses in the labor force. In the past few
decades, RA has attracted increased attention from researchers, the abnormal signaling pathways in RA are a very important
research field in the diagnosis and treatment of RA, which provides important evidence for understanding this complex disease and
developing novel RA-linked intervention targets. The current review intends to provide a comprehensive overview of RA, including
a general introduction to the disease, historical events, epidemiology, risk factors, and pathological process, highlight the primary
research progress of the disease and various signaling pathways and molecular mechanisms, including genetic factors, epigenetic
factors, summarize the most recent developments in identifying novel signaling pathways in RA and new inhibitors for treating RA.
therapeutic interventions including approved drugs, clinical drugs, pre-clinical drugs, and cutting-edge therapeutic technologies.
These developments will hopefully drive progress in new strategically targeted therapies and hope to provide novel ideas for RA
treatment options in the future.

Signal Transduction and Targeted Therapy            (2023) 8:68 ; https://doi.org/10.1038/s41392-023-01331-9

INTRODUCTION
Rheumatoid arthritis (RA) is a well-known systemic autoimmune
disease. The general features of RA are demonstrated in Fig. 1. The
original terminology for ‘rheumatoid arthritis’ is derived from the
Greek word for inflamed and watery joints.1,2 The first person to
describe and classify this debilitating disease was the French
doctor Augustin Jacob Landré-Beauvais in 1880. Landré-Beauvais
recorded the important manifestations of the disease with
“asthenic gout,” indicating that the condition occurred well in
women.3 Later, the British rheumatologist Dr. Alfred Baring Garrod
coined the term “rheumatoid arthritis” in 1859.4 Critically, it is now
known that global, the incidence of RA is ~1%,5–10 with prevalence
increasing with age; the disease commonly comes up between
the ages of 40 and 50 in individuals with the condition three to
five times more in women than in men.6,11–13 Repeated and
symmetrical multiple micro arthritis is the primary clinical
manifestation of the disease, occurring in the hand, wrist, foot,
knee, and other joints. In the early stages of the disease, redness,
swelling, heat, pain, and joint dysfunction are common.14 The
European League Against Rheumatism (EULAR) and the American
College of Rheumatology (ACR) developed new classification
criteria for RA: according to joint symptoms, serology indicators
(RF or ACPA), duration of symptoms, acute phase reactants, each
of these categories has scoring criteria.15 Methotrexate therapy
was initiated by identifying disease characteristics, a consensus
decision was made, and a scoring system was created to predict
which patients would develop erosive and/or persistent

disease.15–17 In the late stages of the condition, different degrees
of rigidity and deformity of joints are seen and, finally, drive
several degrees of bone corrosion and skeletal muscle atrophy,
synovitis invasion of articular cartilage, sub-cartilage bone erosion,
and damage to ligaments and tendons.18 The disease seriously
affects the quality of daily life and suffers have high disability
rates, and this can impact the loss of labor in the general
population. RA also occurs in other tissues and organs, viz. extra-
articular tissues and organs, including the eyes, nerves, skin,
kidney, lungs, liver, heart, and bones.19–22

The cause of RA remains unknown, but it is generally
considered related to environmental and genetic factors. The
mechanism(s) of action include the joints attacking by body’s
immune system by mistake, which causes joint capsule inflamma-
tion and thickening, and promotes damage to bones and cartilage
at these sites. In the clinical, RA diagnosis is based on the patient’s
physical manifestations and symptoms.23–27 X-rays and laboratory
tests can assist in the diagnosis or exclusion of some similar
disorders, viz. lupus erythematosus, psoriatic arthritis, and
fibromyalgia.28–33 Since RA is incurable, it burdens individuals
and society.34–38 The personal burden arises from musculoskeletal
defects, accompanied by a decline in physical function and quality
of life.39,40 In addition to direct medical costs, the socioeconomic
burden results from RA patients having dysfunction and
decreased working ability, and reduced social participation.41 A
recent survey in China showed that the average annual direct cost
per RA patient was $1917.21 ± $2559.06.42 The Burden of RA
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across Europe: a Socioeconomic Survey (BRASS) by using Work
Productivity and Activity Impairment questionnaire (WPAI) scores
indicated that RA people with severe (60%) or moderate pain
(48%) experienced additional work obstacles compared with those
with mild (34%) or no pain (19%), a statistically remarkable
correlation was found between severity, pain, disability, and early
retirement.43 Similar survey results in Latin America, China, and
other Countries have also been reported.44–46

The pathogenesis of RA is tightly related to many characterized
signaling pathways. Therefore, in recent years, research attention
has focused on developing molecules that function as inhibitors of
RA-linked signaling systems. This review will generally introduce
the risk factor and pathogenesis of RA, mainly describing the
signal transduction pathways that impact RA, drugs in clinical use,
potential drugs in clinical/pre-clinical studies, and technologies for
targeted therapy.

RISK FACTORS AND SYMPTOMS
Over the past few decades, RA etiology has been numerously
explored, and the available evidence indicating environmental
and genetic factors are important in inducing RA. Indeed, the
susceptibility genes HLA-DRB1, TNFRSF14, and PTPN22 are closely
related to the occurrence of RA.47–50 HLA-DRB1 is the most widely
explored gene and forms part of the HLA complex, the major
histocompatibility complex (MHC) human version.51–53 The
susceptibility and outcome of RA may be related to specific
HLA-DR alleles; however, these alleles vary by ethnicity and
geographic region.54–56 The HLA-DRB1 allele constitutes the
strongest genetic association linked to RA, and the allele
associated with the disease is a “shared epitope” with a conserved
sequence of five amino acids.47 The shared epitope hypothesis
indicates that some alleles with this conserved sequence are in
connection with the pathogenesis of RA because they allow
antigen-presenting cells to incorrectly present their antigens to
T cells, which results in T-cell-mediated autoimmune responses
that directly contribute to the RA pathogenesis.57,58 Environmental
factors are also key points in causing RA, such as smoking,
personal dietary pattern, and hygiene, which directly affects the
post-transcriptional modification of certain genes or indirectly

affects susceptibility genes via epigenetic mechanisms.59–62 The
interaction of environmental factors, epigenetics, and suscept-
ibility genes will drive changes in the relative levels and
expression of coded proteins, which could promote autoimmune
tolerance disorders.
While RA mainly affects the joints, it may also influence other

organ systems,63,64 including the eyes, skin, lungs, liver, heart, and
bones (Fig. 2). RA usually presents signs of inflammation, swelling,
fever, pain, and stiffness in the affected joints. In general, these
processes occur in the small joints of the feet and hands but may
also occur in larger joints such as the shoulder and knees.65–70

These symptoms are more pronounced after long periods of
inactivity, and a conspicuous feature of the disease is increased
stiffness in the morning.71–75 Pain related to RA is caused at the
inflammation site and is classified as nociceptive rather than
neuropathic.76,77 As the pathological condition progresses, con-
tinued inflammation results in tendon binding and erosion and
destruction of the articular surface; this can impair the range of
motion and lead to deformity,65,78–80 and local osteoporosis often
occurs around the inflamed joints of RA patients.81,82 Sustained
production of inflammatory mediators creates a pro-inflammatory
cycle, a situation common to many chronic diseases and this likely
explains why RA patients are at greater risk of cardiovascular
diseases.83–86 In addition, untreated chronic inflammation may
lead to renal amyloidosis,87,88 rheumatoid nodules in the skin,89–91

and interstitial lung disease (ILD).92–95 Moreover, in the eye,
episcleritis is common,96–98 liver problems like autoimmune
hepatitis can also trigger problems,99–101 and peripheral neuro-
pathy caused by wrist swelling and median nerve compression is a
common problem in carpal tunnel syndrome. Rheumatic diseases
of the spine can also contribute to myelopathy, atlantoaxial
subluxation may occur due to erosion of the transverse ligament,
and can progress to paralysis and even death.102

THE PATHOGENESIS OF RA
RA is initially a state of continuous cellular activation that results in
autoimmunity in joints or other organs.103,104 The clinical
manifestations of the disease occur predominantly following
synovial inflammation and joint injury. Fibroblast-like synoviocytes
(FLS) play a crucial role in these pathological courses.105–107 Three
stages of RA progression are reported and include a non-specific
inflammatory stage, amplified by T-cell activation in the synovium,
the chronic inflammatory stage, and a tissue damage stage
mediated by cytokines like IL-1, IL-6, and TNF-α,
respectively.108–111

Autoimmune response and inflammation
The production of autoantibodies has been linked to severe
symptoms like joint injury and increased mortality.112–116 This is
likely because of the generation of immune complexes by
autoantibodies against citrullinated peptides (ACPAs) with
citrulline-containing antigens. These complexes subsequently
bind to rheumatoid factors (RF), leading to complement activa-
tion.117–122 In recent times, the capacity to detect autoimmune
responses to citrullinated self-proteins has been a major
advance.123 In RA patients, the degree of association between
ACPA-positive and ACPA-negative and shared epitopes are
different. The non-HLA genes correlated to RA susceptibility
between the two genomes are only partially the same. Therefore,
some researchers believe ACPA-positive and ACPA-negative RA
may be two genetically distinct disease types of RA.124 Some
studies have shown that when certain factors in the environment
change, arginine is converted into citrulline under the catalysis of
peptidylarginine deiminases (PADs), and citrullinated proteins can,
through antigens presenting cells (APCs) present to T cells by
certain MHC, produce ACPAs and simultaneously elicit auto-
immune responses to citrullinated self-antigens in RA

Fig. 1 General features of rheumatoid arthritis. Rheumatoid arthritis
is an incurable autoimmune disease that occurs most frequently in
women, usually in the small joints, with systemic complications that
ultimately lead to disability
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patients.125,126 Peptidyl arginine deiminase type4 (PADI4) is also
identified as the non-MHC genetic risk factor of RA. Meanwhile,
the PADI4 risk allele was associated with bone damage regardless
of ACPA positivity in Asian RA patients.127 ACPA binds citrullinated
residues on many of the body’s own proteins, including histones,
vimentin, fibronectin, fibrinogen, type II collagen, and alpha-
enolase, the activated immune responses tissue is uncertain.128

Circulated ACPAs could be detected up to 10 years before
diagnosis known as pre-RA.129–133 As time progresses, the epitope
diversity and concentration of ACPAs increase, and so do the
concentrations of serum cytokine. With effective treatment, ACPA
and RF concentrations decrease; however, patients rarely turn into
ACPA negative. In contrast, RF drops are more profound and more
frequent, and the patients may seroconvert to RF negativity.134

Anti-carbamylated protein (CarP) and acetylated protein auto-
antibodies also have been identified in RA patients135,136; more-
over, other-directed against additional post-translational protein
modifications autoantibodies may emerge.
Joint swelling in RA is the result of synovial inflammation

caused by immune activation. The swelling is characterized by the
entry of leukocytes into the synovial compartment. The cellular
composition of RA synovitis is manifested by the accumulation of
innate immune cells (e.g., dendritic cells, monocytes, mast cells,
and innate lymphoid cells) and adaptive immune cells (e.g.,
T-helper-1 and T-helper-17 cells, B cells, plasmablasts, and plasma
cells). Innate immunity can be initiated by provoking dendritic
cells (DCS) in certain environmental or genetic factors. DCs then
recruit and activate T cells, which stimulate B cells, macrophages,
synoviocytes, chondrocytes, and osteoclasts, and secrete pro-
inflammatory and bone-destroying cytokines i.e., IL-1β, IL-6,
TNF -α, and matrix metalloproteinases (MMPs).137–139 Therefore,

in the adjacent bone marrow and synovium, the integration of
innate and adaptive immune pathways promotes tissue injury and
remodeling.140 This cascade drives chronic inflammation in RA
and promotes circulating leukocytes to migrate into the inflamed
joint; this process needs angiogenesis to supply nutrients and
oxygen to the hypertrophic joint. Proangiogenic factors trigger
angiogenesis.141–143 Fibroblast-like synoviocytes (FLS) in the
synovium intima form a unique invasive phenotype that promotes
extracellular matrix invasion and further exacerbates joint
injury.144–146 (Fig. 3).

FLS and immune cells in RA
Currently, studies on RA have analyzed the character of immune
cells in the occurrence and course of the disease. More recently,
attention has also focused on the local interstitial cells and the role
these cell types play in the pathogenesis of RA. Stromal cells
constitute the structural framework of organs and tissues.147

Stromal cells are thought to have immune functions, can
recognize pathogens, and trigger immune responses. Fibroblasts
of the intestine, skin, gums, and synovium are typical stromal cells.
They have been proven to express innate immune receptors,
especially Toll-like receptors (TLR).148–152 These stromal cells
present and express antigens through histocompatibility complex
(MHC) II receptors and secrete cytokines and chemokines.
Therefore, these stromal cells are components of the innate
immune system.
In non-pathological synovial tissue, the normal physiological

function of FLS is to build the lining layer of the synovium, secrete
synovial fluid, lubricate proteins in the joint, and provide plasma
protein for the adjacent cartilage and joint cavity.153 In addition,
FLS participates in the continuous remodeling of the synovium by

Fig. 2 Risk factors and systemic complications of RA. Genetic and environmental factors are important in inducing RA. While RA mainly affects
the joints, it can also influence other organ systems, including the eyes, nerves, skin, kidneys, lungs, liver, heart, and bones
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producing matrix components, like collagen, thereby maintaining
synovium homeostasis. Under the conditions of RA inflammation,
FLS undergoes a profound change from harmless mesenchymal
cells to destructive and aggressive tumor-like cells. These
transformed RA FLS play a leading role in the production and
progression of RA and show a special phenotype characterized by
reduced sensitivity to apoptosis, overexpression of adhesion
molecules, and abnormal production of cytokines, chemokines,
and matrix metalloproteinases (MMPs).149,154,155

A complex network of cytokine and chemokine regulates the
synovial compartment inflammatory environment; several clinical
interventions (Fig. 4) suggest that among these components,
granulocyte-monocyte colony-stimulating factor, interleukin-6 (IL-
6), and tumor necrosis factor (TNF) are essential to the
process.156,157 Cytokines and chemokines promote inflammation
by activating endothelial cells, attracting immune cells accumula-
tion in the synovial compartment, activating fibroblasts, and
accumulating activated T cells and B cells. Activated B cells with
the assistance of antigen-presenting cells and Th cells, then
differentiate into plasma cells to synthesize and secrete various
immunoglobulins, helper T cells (Th) differentiate into, Th1, Th2,
Th17, and Treg cells on the basis of the cytokine microenviron-
ment. Th1 cytokine secretion was observed to contribute to the
increase of Th17 infiltration and IL-17 production in synovial
tissues during RA.158 Follicular helper T (Tfh) cells, a subset of
CD4+ T cells, promote germinal center (GC) responses by
providing the signals needed for high-affinity antibody generation
and production of long-life antigen-secreting plasma cells.159 In
various systemic autoimmune diseases, uncontrolled expansion of
Tfh cells has been observed, and in particular, the frequency of
circulating Tfh-like cells, their subtypes, and synovially infiltrating T
helper cells correlates with the disease process in patients with
RA160; Osteoclast generation is triggered by monocytes and
macrophages via receptor activator of nuclear factor κB ligand
(RANKL), and fibroblasts following direct interaction with the
RANK receptor on dendritic cells, macrophages, and pre-
osteoclasts.161–163 Bony erosions occur at the so-called bare area

of the junction between cartilage, periosteal synovial membrane,
and bone.164 Cytokines bind to homologous receptors to trigger
plenty of intracellular signal transduction events, causing the
activation of genes coding for systems that can aggravate
inflammation and cellular and tissue damage.165

SIGNALING PATHWAYS IN THE PATHOGENESIS OF RA
Multiple signal transduction pathways are involved in the disease
progression of rheumatoid arthritis, the major signaling pathways
are shown in Fig. 5, and the abnormal signals are often targets for
drug discovery.

The JAK-STAT signaling pathway
The JAK (Janus-activated Kinase)- STAT (Signal Transduction and
Activator of Transcription) is one of the most crucial signaling
pathways for cytokine signaling, with well-known regarding how
TNF-α rapidly induces the target genes expression, for example,
the interferon family, gp130 family, common-γ chain family,
receptor tyrosine kinases, and some G protein-coupled receptors
can induce transduction through the JAK-STAT pathway.166 This
signaling pathway is believed to play a crucial character in cell
differentiation, proliferation, apoptosis, and immune function and
is especially important in regulating inflammation and immune
function. Numerous recent studies found that the JAK-STAT
signaling pathway is abnormally activated during RA.167–169 JAK
family has four members: JAK1, JAK2, JAK3, and TyK2 (tyrosine
Kinase 2). The four members have different molecular weights and
are highly conserved in the evolutionary process. Although JAK3 is
only expressed in blood, vascular smooth muscle, and endothelial
cells, JAK1, JAK2, and TyK2 are all widely expressed in multi-tissue
and multi-system.170,171 Studies have shown that JAK plays an
important role in RA.172–174 STAT is a family of cytoplasmic
proteins with both transcriptional activation and signal transduc-
tion functions. The STAT family including STAT1-4, STAT5A,
STAT5B, and STAT6. STAT contains six highly conserved functional
domains, the N-terminal conserved domain, the helix domain, the

Fig. 3 Normal and rheumatoid arthritis joints. Joint swelling in RA reflects synovial inflammation due to immune activation. The cellular
composition of RA synovitis is characterized by the accumulation of innate and adaptive immune cells (e.g., T cells, dendritic cells, B cells,
macrophages, and osteoclasts). Pro-inflammatory and bone-destructive factors of the immune response led to the loss of bone or cartilage
with synovial thickening, angiogenesis, and muscle wasting
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DNA-binding domain, the ligation domain, the SH2 domain, and
the C-terminal transcriptional activation domain.175,176 Among
these regions, the most conserved and functionally important
domain is the SH2 domain. The SH2 domain allows for the specific
recognition and docking of phosphorylated tyrosines on the
cytokine receptors, JAK, and other STAT molecules.177 The
N-terminal is important in controlling STAT interaction with other
transcription factors while the DNA-binding region determines
where STAT interacts with DNA.178

In recent years, the occurrence and progression of RA have
been considered highly correlated to the abnormal activation of
the JAK-STAT pathway. This pathway is involved in many
pathological conditions and seems important in abnormal
hyperplasia of RA FLS, synovial inflammation, and bone destruc-
tion.179–181 Among these components, synovitis is the pathologi-
cal basis of RA. Persistent synovitis leads to abnormal hyperplasia
of synovitis, which leads to the destruction of bone and cartilage.
Many inflammatory reactions have been observed in RA
synoviums, such as the activation of adhesion molecule genes
and cytokines, which are closely correlated to transcription factors
in specific signaling pathways.182,183

JAK1 is involved in signal transduction associated with various
cytokines, like IFN-γ and IL-6, that bind and form receptor
complexes that activate JAK1 kinase and take part in the
pathogenesis of RA, vitiligo, and psoriasis.184,185 JAK3 is partici-
pated in the signaling pathways linked to IL-2, IL-4, IL-7, IL-9, IL-15,
and IL-21, and plays an important role in the differentiation,
proliferation, and growth of T cells.168 Tyk2 could be activated by
IFNs, IL-6, IL-10, IL-12, IL-23, and selective inhibition of Tyk2 plays a
role in the RA treatment.186 JAK2 induces downstream activation
of STAT3 and STAT5. It is responsible for signaling through
multiple receptors, including receptors that play a function in
inflammatory and autoimmune responses, such as IL-6R, IL-12Rβ,
and IFN-γ R2. JAK2 is known to be related to a variety of diseases,
including blood diseases, diabetes, cancer, and autoimmune

diseases. Compared with normal healthy people, the expression
of JAK2 in synovial tissue of RA patients is significantly
increased.187 Similar expression patterns are also reported in
collagen-induced arthritis rats, adjuvant arthritis rats, and other
animal models. Indeed, Kristine S et al. used CEP-33779 (highly
selective JAK2 inhibitor) to intervene in collagen antibody-induced
and collagen-induced mouse arthritis models. The levels of
cytokines (IFN-γ, IL-12, and TNF-α) and serum IL-2, IL-12, and
p-Stat 3 in the synovial fluid of the model mice were significantly
decreased following treatment. Indeed, CEP-33779 significantly
reduced several histological parameters that demonstrated
improvement in arthritis, including matrix erosion, subchondral
osteolysis, osteogenesis, synovial hyperplasia, vasculitis, and
synovial inflammation.188 These results indicated that JAK2 took
part in the pathogenesis of RA, and inhibition of JAK2 could treat
RA by inhibiting the generation of cytokines and the T and
B-lymphocytes activation. Additionally, receptors phosphorylated
by JAKs can also recruit PI3K, thereby activating the PI3K-AKT
pathway.182,189

STAT1 is mainly activated by cytokines such as IL-6, IL-10, and
IFN-γ and participates in body activities through IFN-γ-mediated
signaling pathways. Currently, STAT1 has been proven to play
both protective and pathogenic roles in RA synovitis. Still, its
expression generally rises in inflammatory arthritis, indicating that
the anti-inflammatory and pro-apoptotic effects of STAT1 are
insufficient to counteract its pro-inflammatory effects. IFN-λ and
IFN-α/β only activate STAT2. It has been shown that STAT2 is
involved in RA-associated inflammation through the combination
of STAT1 and interferon regulatory factor 9 (IRF-9) to form a
heterodimer transcription complex of interferon-stimulated gene
factor (ISGF3).190 STAT4 regulates the balance of IL-12 and IL-23
and participates in RA inflammation through the differentiation of
CD4+ T cells into Th17 and Th1 cells. Multiple meta-analyses
results191,192 have shown that a single nucleotide polymorphism
at rs7574865 of the STAT4 gene potentially correlated with RA

Fig. 4 Cytokine signaling and anti-rheumatic drugs in RA. In the presence of certain environmental or genetic factors, a stepwise progression
from activation of innate immunity can be achieved by stimulating DCs, then recruiting and activating T cells, which in turn stimulate B cells,
macrophages, synoviocytes, chondrocytes, and osteoclasts to secrete pro-inflammatory and bone-destroying cytokines (i.e., IL-1β, IL-6, TNF-α,
and matrix metalloproteinases (MMPs), resulting in bone and cartilage damage accompanied by synovial membranes thickening and
angiogenesis, in the synovium and adjacent bone marrow, and the integration of adaptive and innate immune pathways to promote tissue
remodeling and damage drives the chronic phase of RA. Clinically, drugs that target inflammatory cytokine signaling are commonly applied
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susceptibility however, more research is needed to confirm this
observation. Other components like STAT5, a Treg cells transcrip-
tion factor, which, together with Foxp3, is responsible for the
differentiation of Treg cells. Various studies have found that the
effect of STAT5 may be opposite to that of STAT3 since the
inhibition of STAT3 can increase the activity of STAT5 and Foxp3.
Thus, it can promote the differentiation of Treg cells and control
RA arthritis.193

Similarly, STAT6 is activated by IL-4 while IL-13 is activated by
IFN-α in B-lymphocytes. In a proteoglycan-induced mouse arthritis
model, IL-4 and STAT6 deficiency can significantly increase the
severity of arthritis.194 STAT3 is the primary downstream regulator
of the gp130 receptor and can be activated by IL-6, IL-10, IFN-α/β,
and other cytokines. It can promote chronic arthritis, regulate the
abnormal growth and survival characteristics of RA synovial cells,
and further aggravate the clinical symptoms of RA. Wang et al.195

and colleagues were the first to observe that STAT3 showed DNA-
binding activity in synovial mononuclear cells from patients with
inflammatory arthritis. Moreover, Lee et al.196 found that STAT3
can inhibit FLS apoptosis, increase the activity of T cells and
promote the production of antibodies, indicating that STAT3 is
involved in multiple links of RA pathogenesis. Oike et al.197 found
that in collagen-induced arthritis model mice, p-STAT3 was highly
expressed in synovium and cartilage. In addition, the inflammatory
cytokines IL-17 and IL-6 in serum were significantly reduced after
STAT3 inhibitor treatment. Ji Hyeonet al.193 found that STAT3 was

strongly expressed in both RA CD4+ T and synovial cells. The
activation of STAT3 made synovial cells have tumor-like char-
acteristics and made synovial cells proliferate fast, survive long,
and infiltrate surrounding joint tissues. Notably, STAT3 plays an
important role in determining RA helper cell differentiation.
Indeed, transfection of STAT3 siRNA inhibited CD4+ T-cell
differentiation into Th17 cells and increased the proportion of
Treg cells.198 All these results show that STAT3 is closely related to
articular inflammation and lymphocyte differentiation, and STAT3
might be a new target for the treatment of RA.197

The MAPK signaling pathway and RA
The MAPK (Mitogen-Activated Protein Kinase) signaling pathway
contributes to the regulation of various cellular activities, including
gene expression, metabolism, migration, survival, cell cycle
progression, apoptosis, and differentiation, which plays a key role
in the pathological process of RA.199 Its overactivation is closely
correlated to the articular cartilage destruction and inflammatory
hyperplasia of the synovial tissues. MAPK regulates the expression
of multiple genes and has been considered a potential target for
treating RA or other immune-mediated chronic inflammatory
diseases.200 It can transduce extracellular signals such as growth
factors, neurotransmitters, hormones, stress conditions, viruses,
and inflammatory factors into the cells201,202 and play a key role in
the transduction of extracellular stimulation to drive intracellular
responses.203 P38 MAPK, extracellular signal-regulated kinase

Fig. 5 Main signaling pathways and their inhibitors related to RA. The JAK signaling pathway, Notch signaling pathway, MAPK signaling
pathway, Wnt signaling pathway, PI3K signaling pathway, and SYK signaling pathway are the main signaling pathways involved in the process
of RA. Related signalings are often the potential targets for drug discovery
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(ERK), and c-Jun N-terminal kinase (JNK) are the three main
subfamilies of the MAPK pathway.204

The ERK1/2 activates stimuli in response to ischemia, oxidative
stress, and neurotransmitters. ERK1 and ERK2 are key to the
regulation of cell differentiation, proliferation, and survival.205 The
main effect of JNK MAPKs in RA is cartilage destruction mediated
by matrix metalloproteinase (MMP).206 Similarly, P38 is the most
important member of the MAPK family linked to the inflammatory
response in rheumatoid arthritis. After inflammatory stimulation,
p38 is activated and induced in endogenous immune cells such as
neutrophils and monocytes. P38 then undergoes nuclear translo-
cation, where it phosphorylates and activates many protein
kinases and transcription factors that play key roles in the
regulation of humoral and cellular autoimmune responses. In the
synovial tissue of RA, p38 is activated and highly expressed by
MKK3 and MKK6,207 and commonly used p38 MAPK inhibitors
reduce the generation of pro-inflammatory cytokines in neutro-
phils, macrophages/monocytes, and T lymphocytes.203 P38 MAPK
activates and moves into the nucleus, phosphorylating transcrip-
tion factors such as ATF2, MEF2C,208,209 and these initiate cascades
that induce a large increase in inflammatory chemokines like IL-8
and monocyte chemoattractant protein-1 (MCP-1), resulting in
synovial thickening. p38 MAPK can also inhibit cell apoptosis. Yu
et al.210 found that Integrin activation-induced phosphorylation of
p38 MAPK inhibited Fas protein-mediated-cell apoptosis, resulting
in a large number of T cells infiltration in synovial tissue,
aggravating RA patients’ disease process. Many T cells infiltrate
the synovial tissue, most of which are helper T (Th) cells. Studies
have shown that the imbalance between Th1/Th2 cells is a crucial
pathogenic factor in RA, and the imbalance of Th1/Th2 cells leads
to IL-2 and IL-4, and other cytokines being abnormally secreted.
Pujari et al. found that Th1/Th2 cytokine secretion is achieved
through the P38 MAPK pathway, and inhibition of p38 activity can
change the balance of natural CD4+ T cells preventing the
differentiation of Th1/Th2 cell types viz. to inhibit their differentia-
tion to Th1 cell variants. Th17 is a newly discovered helper T-cell
subset and is featured by the secretion and production of the
inflammatory factor IL-17. In the occurrence and development of
RA, the role of Th17/IL-17 is also controversial.211 Hot et al.212

found that IL-17 isoform IL-17A can induce three signaling
pathways of MAPK family ERK, p38, and JNK and downregulate
transcription factors p65 NF-κB and AP-1. These indicate that
MAPK and T-cell-mediated RA have a very complex relationship.213

Therefore, P38 is considered a candidate target for treating
rheumatoid arthritis.214

The PI3K-AKT signaling pathway in RA
The PI3K (phosphatidylinositol 3 kinase)-AKT (also known as PKB)
pathway is an intracellular pathway that regulates proliferation,
metabolism, angiogenesis, and cell survival in response to
extracellular signals. The key involved genes are PI3K and Protein
kinase B (PKB).215–217 PI3K can phosphorylate PIP2 to PIP3 by
adding a phosphate group, and phosphatases, such as PTEN, can
dephosphorylate PIP3 back to PIP2.218 This cycle thereby
terminates PI3K signaling. The downstream effects of PI3K are
mainly reflected in the regulation of PIP3. In the PI3K-AKT
pathway, the phosphate group at position 3 of PIP3 can
simultaneously recruit PDK1 and AKT proteins to the plasma
membrane, causing PDK1 to phosphorylate threonine at position
308 (T308) of AKT protein. This contributes to the activation of
AKT, which further activates the downstream regulatory
pathways.215,219

It has been proven that the PI3K/AKT signaling pathway is
correlated with the occurrence and development of RA. It can
participate in the unusual proliferation of FLS cells and synovial
inflammation by stimulating the expression of inflammatory
molecules like IL-1β, IL-6, IL-17, IL-21, IL-22, and TNF-α, which
constitute the most important pathogenesis of RA pathological

changes.220–224 IL-17, TNF-α, and other cytokines are involved in
the generation of osteoclasts, which destroy articular cartilage and
bone, resulting in joint stiffness and deformity.225 Abnormal PI3K/
AKT pathway activation will also stimulate the expression of VEGF
and HIF-1α to promote angiogenesis, which not only isolates
bones from getting nutrients through the synovium but also gets
involved in the release of diverse inflammatory mediators,
aggravating the condition of RA.226–228 There is evidence
indicating that the PI3K/AKT/mTOR pathway participates in the
process of RA, the mammalian target of rapamycin (mTOR) inhibits
autophagy in FLS, promotes continuous abnormal proliferation of
synovial cells, and is also critical for the survival and differentiation
of osteoclasts, aggravating RA and mTOR might be a target for RA
or other autoimmune diseases.227,229–231

SYK signaling pathway in RA
SYK (spleen tyrosine kinase) is a central molecule of B-cell receptor
signaling. The level of phosphorylated SYK in peripheral blood B
cells of RA patients is dramatically increased. Among these
patients, also show strong positive autoantibodies against
citrullinated peptides.232 B cells and autoantibodies are produced
in most patients of RA and play a crucial role in the
pathogenesis of RA.
BTK (Bruton’s tyrosine kinase) belongs to the Tec family of non-

receptor tyrosine kinases, which is expressed in all hematopoietic
cells, such as B cells and myeloid cells, except T cells and natural
killer cells. BTK is a key molecule linking B-cell receptor (BCR)
signaling, chemokine receptor signaling, and Toll-like receptor
(TLR) signaling, and is involved in regulating B cells.233

In antigen-dependent BCR signaling, BTK can be activated by
SYK or PI3K and participate in regulating B-cell survival and
proliferation.234 In antigen-independent TLR signaling, most TLRs
recruit MYD88 in response to the TLR ligand.235 In chemokine
receptor signaling, CXCL12, which is overexpressed in the
germinal centers and bone marrow, directly interacts with
CXCR4-linked heterotrimeric G protein subunits through BTK,
binds to CXCR4, and induces BTK activation.236 In addition, BTK
can directly interact with five distinct molecules to promote
antibody secretion, class switch recombination, cell proliferation,
and generation of pro-inflammatory cytokines, regulating B-cell
migration, adhesion, and tumor microenvironment forces.233 As
previously described, RA is a systemic autoimmune disease
involving dysregulation of T and B lymphocyte proliferation, and
dysregulation of B cells via BCR signaling drives the generation of
autoantibodies and inflammatory cytokines, thus promoting the
progression of RA.237 Elevated levels of phosphorylated BTK have
been found in peripheral B cells of RA patients. Meanwhile, in RA
patients with rheumatoid factor (RF) positive, the level of
phosphorylated BTK was correlated with RF titer.237,238 BTK
mediates bone resorption by RANK and regulates osteoclast
proliferation and differentiation, which is the main factor in the
pathophysiological level of BTK phosphorylation by peripheral B
cells in RA patients.237,239 Therefore, BTK is one of the most
attractive targets for treating autoimmune diseases including
RA.240–243

Wnt signaling pathway in RA
The Wnt (Wingless/Integrated) signaling pathway is a complicated
protein network that normally functions in cancer and embryonic
development.244 The Wnt/β-catenin signaling pathway is acti-
vated and takes part in a variety of pathological symptoms such as
maintenance, differentiation, proliferation, and self-renewal in
RA.245 Wnt also plays a key role in synovial inflammation and in
the regulation of bone metabolism in RA.246 Wnt family secreted
proteins, Frizzled family transmembrane receptor protein Dishev-
elled (Dsh), glycogen synthesis kinase 3 (GSK3), β-catenin, APC,
Axin, and TCF/LEF family transcriptional regulators constitute the
classical wnt pathway247; In the non-classical Wnt pathway such as
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Wnt-Frizzled/PCP signal conduction, Dsh signals through the Rac1
axis and Daam1-RhoA axis.248

NAV2 belongs to the neuro-guiding protein family, and the
proteins encoded by it contain multiple functional domains, such
as the CH domain, CC domain, CSID domain, and AAA domain.249

These functional domains involve a series of cellular processes,
including signal transduction, gene expression regulation, protein
degradation, membrane fusion, microtubule and filament
dynamics, and cell migration.250–253 If the above cellular processes
are abnormal, they may affect the normal cell function of
biological individuals and lead to diseases. Previous studies have
proven that NAV2 plays a key role in the development of the
mammalian nervous system, resulting in abnormal nerve fiber
density and in causing developmental defects of nerves in early
embryos following NAV2 deletion.254 NAV2 is also an indispen-
sable protein molecule in the outward growth of human
neuroblastoma cells induced by all-trans retinoic acid.255

Our group demonstrates for the first time that NAV2 promotes
the fibrocyte-like synoviocytes inflammatory response by activat-
ing Wnt/β-catenin signaling256 and the SSH1L/Cofilin-1 signaling
pathway in rheumatoid arthritis. We also hypothesized that NAV2
might affect inflammation during RA disease progression and the
cell-cell interaction in sensitizing joint-innervating neurons that
contribute to arthritis pain.257 Although our studies first indicate
that inhibition of NAV2 expression prevents RA progression and
reverses inflammation-related phenotypes, we proposed that
NAV2 is a novel promising intervention target for RA treatment.

Notch signaling pathway in RA
Notch genes encode a class of cell-surface receptors which is
highly conserved and regulate the development of cells in various
organisms, from sea urchins to humans. Notch signaling affects
numerous processes of normal cell morphogenesis, including cell
proliferation, the differentiation of pluripotent progenitors,
apoptosis, and the formation of cell boundaries.258 The Notch
signaling pathway comprises Notch receptors, Notch ligands (DSL
proteins), CSL (CBF-1, Suppressor of hairless, Lag), DNA-binding
proteins, other effectors, and Notch regulatory molecules.
Mammals have 4 Notch receptors (Notch-1-4) and 5 Notch ligands
(Delta-like 1, 3, 4, Jagged1, and Jagged2). The Notch signal is
generated by interacting with the Notch ligand of the adjacent
cell and the receptor. The Notch protein undergoes cleavages and
released the Notch intracellular domain (NICD) into the cytoplasm,
followed enters into the nucleus to combine with the transcription
factor CSL to form NICD/ CSL transcriptional activation complex
activates the target genes of the basic-helix-loop-helix (bHLH)
transcriptional repressor family such as HES, HEY, and HERP, and
plays a biological role.259 Notch signaling expression and
activation stimulate synoviocytes, macrophages, and fibroblast-
like synoviocytes to secrete pro-inflammatory cytokines that
exacerbate RA.260–263 Th17 cell differentiation is impaired when
blocked Notch signaling.264–266 Notch-1 directly binds to the IL-17
and ROR-γT promoters to regulate Th17 differentiation.267 Notch-3
plays a key role in the antigen-specific T-cell differentiation, and
Notch-3 blockade inhibits Th17 and Th1 cell activation in CIA
mice.268 Notch-3 was also found to be remarkably upregulated in
synovial fibroblasts, and in mice model, blocking Notch-3
signaling reduces inflammation and prevents joint injury.269

Targeting Notch was found to minimize associated tissue damage
while reducing inflammation.262,270

NF-κB and other transcription factors in RA
A variety of transcription factors, like NF-κB, Nrf2, HIF, and AP-1,
are closely related to the pathogenesis of RA.271 The expression of
NF-κB in the synovium of RA patients was significantly increased.
Activated NF-κB induces the generation of several pro-
inflammatory cytokines, such as IL-1β, IL-6, and TNF-α, thus
accelerating the development of RA. Upregulation of pro-

inflammatory cytokines could also modulate NF-κb activation
through positive feedback, thereby, a vicious loop is formed,
which intensifies RA development.272,273 At the same time,
excessive NF-κB activation also induces apoptosis of abnormal
FLS cells in RA.274 In the RA synovium inflammatory microenvir-
onment, aberrant apoptosis of FLS is the major factor associated
with RA synovium hyperplasia. In FLS, abnormal cell apoptosis
further accumulates in joint tissues and debris adheres to cartilage
and bone, exacerbating the articular cartilage and bone destruc-
tion.275 The expression of NF-κB-dependent genes further
activates NF-κB, translocations NF-κB to the nucleus, and induces
the target genes expression. HIF is critical for activating
inflammatory cells and angiogenesis in RA.276 Ap-1 regulates
MMP, cytokine production, and synovial hyperplasia, which is also
an essential process in RA.277,278 The transcription factor Fra-1
enhances macrophage-mediated arthritic inflammation by target-
ing arginase 1.279 Nrf2 is related to chondrogenesis, prostaglandin
secretion, osteoblast formation, and ROS production in RA.280

Thus, targeting transcription factor signaling represents a useful
treatment strategy for RA. It has been reported that inhibition of
NF-κB can inhibit inflammation, angiogenesis, pannus formation,
leukocyte maturation, and activation, and osteoclast differentia-
tion, targeting HIF-1α can induce dysregulation of MMP produc-
tion, inflammatory cell recruitment, and angiogenesis, inhibition of
AP-1 can inhibit the production of MMP-1, MMP-3, MMP-9, MMP-
13, and IL-1β.271,281 New agents that regulate transcription factor
pathways will be potential candidates for treating RA.
The transcription factor GATA4 is an important regulator of the

expression of genes specific to cardiac differentiation. Our
research group found increased levels of GATA4 in the synovium
of patients with RA. This study is the first time to demonstrate that
GATA4 plays a key role in regulating VEGF from RA FLS to induce
cell migration, promote cell proliferation, and the formation of
angiogenic tubes.282 In addition, this study provided evidence that
GATA4 has a previously unknown function as a modulator of RA
angiogenesis, and data validate GATA4 as the therapeutic target in
RA mice. E2F1, the first transcription factor discovered in the E2F
family, mainly exists in dimer binding with Dimerization proteins
(DP), which could bind to the promoter region of target genes and
regulate the transcription of target genes.283 We found that the
transcription factor E2F1 can bind to the Neuron Navigator 2
(NAV2) promoter region, activate NAV2 transcription and expres-
sion, and regulate RA through the Wnt/β-catenin signaling
pathway.256,284 At the same time, the STAT3-NAV2 axis was found
to be a novel therapeutic target for rheumatoid arthritis by
activating the SSH1L/ cofilin-1 signaling pathway,285 which may
provide therapeutic avenues for reducing pain in RA patients.

EPIGENETICS REGULATION IN RA SIGNALING PATHWAY
Epigenetics are heritable changes of gene expression without
altering the DNA sequence; epigenetics determines which genes
are turned on or off. The main mechanisms linked to this process
include histone modification, DNA methylation, and non-coding
RNA mechanisms.286 These modifications define specific gene
expression patterns (Fig. 6). Genetic and environmental factors
interact to determine gene expression, especially, cigarette
smoking,287,288 a lifestyle that is closely related to the pathogen-
esis of RA.289–291 Fortunately, these epigenetic modifications could
be reversed, and the corresponding enzymes which control
histone modification or DNA methylation have now been
proposed as drug targets for RA.292–294

Histone modifications and RA
Histones are proteins that help DNA package to form nucleo-
somes, and these structures further assemble into chromosomes
in the nucleus of cells. Histone modifications at the N-terminal tail
include ubiquitination, acetylation, methylation, phosphorylation,
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deamidation, and ADP ribosylation.295 The key modification sites
are lysine and arginine. Histone modifications could inhibit or
activate gene expression. Currently, many studies have applied
histone modification to multiple diseases, especially in the field of
cancer research, which offers new ideas for treating these
diseases. Several studies have compared the differences in histone
lysine methylation patterns between Osteoarthrosis synovial
fibroblasts (OASFs) and Rheumatoid arthritis synovial fibroblasts
(RASFs). These studies have detected dozens of histone lysine
methyltransferases (HKMTs) and histone lysine demethylases
(HKDMs). The results indicated that the expression of HKMTs
and HKDMs in OASF and RASF were different at the mRNA level,
suggesting that histone lysine methylation (HKM) could influence
RASF gene expression.296 NAD-dependent deacetylase sirtuin-1
(SIRT1) is the most frequently explored member of the Nuclear-
localized type III histone deacetylases (Sirtuin) family. SIRT1 is
participated in several stages of rheumatoid arthritis, in which
overexpression leads to-inflammatory cytokine generation and
apoptosis resistance in the synovium of rheumatoid arthritis.297

Histone deacetylases (HDAC) are another Star family that has been
widely studied. Studies have proven that HDAC1 participates in
producing pro-inflammatory factors, and the elimination of
HDAC1 in T cells has a protective function on mice with collagen
arthritis.298 HDAC inhibitors can inhibit the activation of FLS, and
the HDAC1 and HDAC2 expression in RA synovial fibroblasts (RA-
SF) is higher than that in OA synovial fibroblasts (OASF).299

Research from our group has demonstrated that HDAC6 protein
levels in the adjuvant-induced arthritic rats’ synovium tissues are
increased.300 Interestingly, in animal RA models, HDAC inhibitors

can improve joint swelling and synovial inflammation and reduce
RA symptoms. This evidence provides novel ideas for RA
treatment.301,302 Our team also found that in PDGF-induced FLS,
the expression of the Jumonji C histone demethylase family
(JMJD3) is increased through the Akt signaling pathway, mean-
while, the migration and proliferation ability of FLS is weakened
after inhibiting or silencing of JMJD3. Cumulatively, this reduced
the rates of CIA.303

Additionally, Non-histone modifications were also observed; for
example, Yin et al.304 found that expression of Jmjd1c (a member
of the JmjC domain histone demethylase) in B cells was found to
protect mice from rheumatoid arthritis. In human B cells with RA,
the expression levels of Jmjd1c are inversely correlated with
plasma cell levels and disease severity, and Jmjd1c demethylates
STAT3 but not histones to inhibit plasma cell differentiation.
Meanwhile, our group found histone methyltransferase Smyd2-
mediated TRAF2 methylation promotes inflammatory diseases
(including RA) through the NF-κB signaling pathway.305 which
might also provide some insight for treatment strategies.

DNA methylation and RA
DNA methylation is under DNA methyltransferase (DNMT) catalytic
action and transfers the methyl group from S-adenosine
methionine (SAM) to the DNA sequence. DNA methylation occurs
at the Cytosine of CpG (Cytosine-phosphoric acid guanine) islands
to produce 5MC, most of which are located in the promoter
region.306 Abnormal hypermethylation of the CpG islands will
prevent transcription factors from binding to the promoter and
lead to gene silencing.307,308 DNA methylation is considered a

Fig. 6 Epigenetic modifications and rheumatoid arthritis. DNA methylation, histone modifications, and-coding RNA mechanisms are often
involved in the development of RA
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potential therapeutic target due to its reversibility. Indeed, DNA
methylation levels in synovial tissue of RA and OA patients are not
significantly different. However, DNA methylation levels are
reported to be lower in RA patients with peripheral blood
mononuclear cells (PBMC).309 Furthermore, in PBMC, abnormal
cytosine methylation occurs in the promoter regions of IL-6 and IL-
10, affecting transcription.310,311 Indeed, studies have shown that
DNA methylation levels in T cells and monocytes in RA patients
are lower than those in healthy subjects.312,313 Hypermethylation
of the promoter region act as a marker of heterochromatin, which
affects the binding of DNA to transcription factors and inhibits
gene transcription. The specific recombination of methyl groups in
the synovial fibroblasts of RA occurs during the development of
the disease. DNA methylation reduction is often found in highly
proliferative tissues and is related to the methyl group donor
molecule, SAM. In addition, the hypomethylation of DNA leads to
the increased expression of extracellular matrix proteins, growth
factors/receptors, matrix-degrading enzymes, and adhesion mole-
cules. Therefore, in proliferating tissues, these are usually used as
markers to identify whether cell proliferation is occurring. The
methylation level of cells seems to be affected by the
inflammatory environment in which they are located. Some
studies stimulated FLS with IL-1 and TNF-α, and the results show
that the methylation level of RA-FLS is significantly lower than that
of OA-FLS. Moreover, 5-methylcytosine levels were
increased.314,315 In RA-FLS, the T-box transcription factor 5
promoter region differs from OA-FLS in methylation status.
Furthermore, the promoter region of its downstream gene

Chemokine CxCL12 also shows high rates of hypomethylation in
RA-FLS.315 Cribbs et al. revealed that the compromised function of
Treg in RA patients is associated with the hypermethylation of a
specific region in the promoter of the cytotoxic T-lymphocyte-
associated protein 4 (CTLA-4;−658 CpG) as compared with healthy
controls.316 DNA hypermethylation prevents the binding of
NFATc2 to CTLA-4 and decreases CTLA-4 expression. Conse-
quently, Treg cells lose their function to promote the activation
and expression of tryptophan-degrading enzyme indoleamine 2,3-
dioxygenase (IDO). In turn, these cells fail to activate the
immunomodulatory pathway. These results indicate that small
changes in methylation can impact different cell types in RA.

MicroRNAs and RA
MicroRNAs occupy an important position in modifying non-coding
RNAs; MicroRNA (miRNA) is a kind of non-coding RNA mole-
cule.317,318 Initially, the miRNA gene is transcribed to form a
primary miRNA in the nucleus, cleaved by Drosha to form a
precursor -miRNA. By Exportin-5, miRNA is exported to the
cytoplasm and cleaved by Dicer to form mature miRNA duplexes,
which are then unfolded, and a miRNA strand is added to the
RNA-induced silencing complex.319,320 Combining miRNAs and
their target mRNAs result in transcriptional repression or mRNA
decay.321 MicroRNAs have been implicated in the occurrence and
progression of many diseases, especially cancer,322 but now
research points focus on their roles in immunological diseases.323

The expression of various miRNAs changed during the develop-
ment of RA, including miR-146a, miR-155, miR-222, miR-223, miR-
203,324–329 and miR-132, miR-155, and miR-146a might be
potential biomarkers of response to methotrexate treatment in
patients with RA.330 Some miRNAs can influence RA by regulating
the function of FLS. For instance, miR-203 is upregulated in RA-FLS
and induces RA by promoting the generation of MMP-1 and IL-
6.331 The expression of miR-19 was upregulated in TNF-α-
stimulated FLS, and the inflammatory response was mediated by
regulating TLR2, IL-6, and MMP-3.332,333 Many miRNAs are also
down-regulated in RA, for example, miR-10a by RAFLS, and can
regulate the production of inflammatory factors through the NF-
κB signaling pathway.334 The expression of miR-19 decreased in
lipopolysaccharide-stimulated RAFLS, and its anti-inflammatory

effect is induced by the regulation of IL-1β, IL-6, and other
inflammatory factors.335 In animal models, miR-124a can inhibit RA
symptoms in rat AIA models by reducing synovial cell proliferation
and alleviating cartilage or bone destruction.336 MicroRNAs levels
before and after anti-TNF-α combination therapy are potential
new biomarkers for monitoring and predicting intervention
outcomes. For example, miRNA-23-3p, miRNA-16-5p, miR-
NA125b-5p, miRNA-146A-5P, miRNA-126-3p, and miRNA-223-3p
were found to be significantly upregulated after anti-TNF-α
treatment. Interestingly, only responders showed an increase in
these miRNAs after treatment, consistent with a decrease in
C-reactive protein (CRP), rheumatoid factor (RF), TNF-α, interleukin
(IL)-6, and IL-17.337

TARGETED THERAPY FOR RA
Treatment for rheumatoid arthritis could help relieve pain, reduce
joint inflammation, prevent or slow joint injury, reduce disability
and keep patients as active as possible. Although rheumatoid
arthritis has no cure, an early drug intervention could reduce the
risk and pain of joint damage and slows the progression of the
disease. In general, non-steroidal anti-inflammatory drugs (NSAID),
glucocorticoids (GCs), and disease-modifying anti-rheumatic drugs
(DMARDs) are applied in clinical RA treatment, and some cutting-
edge technology therapies are emerging for targeted therapy.
DMARDs are subdivided into conventional synthetic DMARDs

(csDMARDs), biologic DMARDs (bDMARDs), and targeted synthetic
DMARDs (tsDMARDs).338 The principal approved drugs, the drugs
currently being assessed in clinical trials, and various pre-clinical
drugs for RA treatment are highlighted in Table 1.

Approved drugs
In clinical, NSAIDs like Naprelan (naproxen sodium), Mobic
(meloxicam), and Duexis (ibuprofen and famotidine) inhibit
cyclooxygenase (COX) activity, thereby inhibiting prostaglandins
(PGs) synthesis and producing antipyretic and analgesic effects
used for relief of the symptoms and pain of rheumatoid
arthritis.339–345 In the case of excessive use or overtime use of
NSAIDs, there will be leukopenia, thrombocytopenia, etc., and
digestive tract lesions, such as stomach pain, gastric ulcer, and
even ulcer bleeding (so famotidine in Duexis is used for inhibition
of gastric secretion), liver damage, kidney damage, etc.346 GCs and
Rayos (prednisone) delayed-release tablets also help relieve
symptoms and benefit RA patients.347–350 However, the treatment
of hormone drugs can easily lead to side effects like endocrine
disorders, osteoporosis, obesity, and decreased immunity.351

Methotrexate (MTX) is the most commonly used csDMARDs and
has been regarded as a first-line drug for years. The chemical
structure of MTX is similar to folic acid, an antifolate drug. This
molecule was originally used for tumor chemotherapy, and low
dosages are used for rheumatoid therapy. MTX appears to involve
multiple mechanisms, including inhibition of interleukin-1-β
binding to the cell-surface receptors,352,353 the inhibition of
purine metabolism enzymes, leading to adenosine accumulation
and inhibition of T-cell activation and the expression of adhesion
molecule. Other studies indicate increased sensitivity of activated
T cells to CD95, the selective downregulation of B cells, and the
inhibition of methyltransferase activity contributing to the
inactivation of enzymes related to immune system function.354,355

Leflunomide is a prodrug, which can be rapidly converted into
active metabolites in the body after taking it to inhibit the
dihydroorotate dehydrogenase activity and affect the synthesis of
pyrimidine in activated lymphocytes, thereby exerting an anti-
inflammatory effect.356,357 Azulfidine (sulfasalazine) has the dual
effects of anti-inflammatory and antibacterial and could also
inhibit the synthesis of immune complexes and rheumatoid
factors, thereby alleviating the immunopathological damage of
rheumatoid arthritis.358–361
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The bDMARDs, Actemra (tocilizumab) and Kevzara (sarilumab) are
interleukin-6 (IL-6) receptor antagonists,362–368 and the IL-1 receptor
antagonist Kineret (anakinra)369–372 were approved by the FDA for
moderate to severely active rheumatoid arthritis adult patients.
Enbrel (etanercept) relieves inflammation in RA patients by binding
tumor necrosis factor (TNF).373–375 Humira (adalimumab) is also
working as a tumor necrosis factor (TNF) blocker,376–378 and
Remicade (infliximab) blocks the activity of TNF-α.379–381 In addition,
Simponi (golimumab) binds to both the transmembrane and soluble
bioactive forms of human TNF-α, thus preventing TNF-α binding to
its receptors382–384 in the case of treating RA. Orencia (Abatacept) is a
selective costimulatory regulator that inhibits T-cell (T lymphocyte)
activation by binding to CD86 and CD80, thus blocking the
interaction with CD28.385–387 This interaction provides the necessary
costimulatory signals to fully activate T lymphocytes, which are
participated in the pathogenesis of RA.388 Rituxan (Rituximab) is a
monoclonal antibody targeting the surface CD20 antigen of pre-B
and mature B-lymphocytes. Upon binding to CD20, rituximab leads
to antibody-dependent cell-mediated cytotoxic (ADCC) and
complement-dependent cytotoxic (CDC) lysis of B cells.389–392 B cells
are proven to play a role in the pathogenesis of RA and related
chronic synovitis, including the production of RF or other
autoantibodies, antigen-presenting, T-cell activation, and related
pro-inflammatory cytokine generation.393

The tsDMARDs are the latest drugs for RA treatments; The US
Food and Drug Administration (FDA) approved some JAK
inhibitors in clinical use. These small molecules help prevent an
individual’s immune system from producing certain enzymes that
stimulate inflammation.394 Tofacitinib, a JAK pathway inhibitor
developed in 2012, is FDA-approved and marketed under the
brand name Xeljanz. Tofacitinib citrate is approved for medical use
“to treat adults with moderately to severely active rheumatoid
arthritis who have had an inadequate response to or are intolerant
of methotrexate”.395–399 Baricitinib, sold under Oluminant, acts as
a JAK1 and JAK2 inhibitor. In May 2018, the FDA-approved
baritinib for treating moderate-to-severe active rheumatoid
arthritis patients who have not responded adequately to
treatment with one or more TNF antagonists.400–403 Upadacitinib,
marketed under the brand name Rinvoq, is a JAK inhibitor drug
FDA-directed for the treatment of adults with psoriatic arthritis
and moderate to severely active rheumatoid arthritis who do not
or may not respond to methotrexate.404–406 JAK1 inhibitor
Filgotinib has been approved for the treatment of RA in the
European Union and Japan.407–410 Peficitinib is a JAK3 inhibitor for
treating RA recently approved in Japan.411,412 Peficitinib attenu-
ates RA symptoms and inhibits joint destruction in Japanese RA
patients who do not respond adequately to MTX.413,414 Igurati-
mod, which inhibits the activation of NF-κB, is a novel DMARDs
approved for the treatment of RA in Japan and China.415–419

NSAIDs are generally only used in the early stage to reduce
symptoms of the disease, or until the diagnosis of RA is
established, methotrexate is usually combined with GCS for a
period of time to control inflammation and gradually reduces the
use of GCs, under the initial treatment regimen, about 30–50% of
patients with rheumatoid arthritis are in remission, and other
csDMARDs are usually added if treatment purpose is not achieved
within 3–6 months with methotrexate monotherapy.26,420 If
treatment has not achieved the desired results, it is usually
combined with methotrexate and biological or targeted synthetic
DMARDs.421 This combination therapy could control an additional
30%- 40% of patients with rheumatoid arthritis.5

Common side effects of currently available DMARDs, in addition
to cytopenia, liver damage, and elevated cholesterol, both
targeted synthesis and biological DMARDs lead to increased
frequency of infection, which may be caused by inhibition of their
respective inflammatory mediators.338

Of note, targeted synthetic or biologics DMARDs are not
supposed to be regarded as first-line therapy because most

patients who respond to these drugs also respond to methotrex-
ate treatment alone. Meanwhile, methotrexate is associated with
lower cost, lower side effects, and infection frequency compared
with targeted synthetic or biological DMARDs.422 Individual
patient disease status and treatment outcomes are continually
reassessed throughout treatment; it is essential to make adjust-
ments in time.

Drugs in clinical trials
Cohen et al. are developing an experimental drug called
Fenebrutinib that blocks the action of Bruton’s tyrosine kinase
(BTK). When recently assessed in a phase 2 trial, Fenebrutinib
effectively treated patients with RA who had no response to other
therapies. Compared with the popular RA drug Humira (Adalimu-
mab), Finebrutinib showed similar efficacy.423 Although more
research is needed, scientists are excited about the potential of
BTK inhibitors to help RA patients. Similarly, JAK inhibitors are still
popular targets for developing RA drugs, and several other JAK
inhibitors have proceeded into clinical trials for RA treatment.
Ruxolitinib is a selective JAK1/JAK2 inhibitor424 and has been
demonstrated for treating psoriasis and myeloproliferative dis-
eases.425 Rusolitinib is generally safe in patients of RA and normal
volunteers and has now completed phase 2 clinical trials
(NCT00550043). A recent study has assessed the safety and
efficacy of a selective inhibitor of JAK1 SHR0302426 in rheumatoid
arthritis patients, and this molecule has now entered a Phase 3
clinical trial (NCT04333771). In addition, a phase 2/3 study is
underway to assess the safety and long-term efficacy of the JAK3
inhibitor VX-509427–429 in rheumatoid arthritis patients
(NCT01830985). These drugs are expected to be available soon.
In recent years, many P38 kinase inhibitors have entered clinical

trials, unfortunately, no effective inhibitors have been identified.
The P38 MAPK inhibitor, VX-702, has shown mediocrity clinical
efficacy and transiently inhibits inflammatory factors. However,
but appears not to promote sustained inhibition of the chronic
inflammation in RA.430 Other compounds like SCIO-469 show no
differences in efficacy when compared to the placebo treatment
in RA patients.431 Moreover, the therapeutics, Ph-797804,432 SB-
681323,433 and BMS-582949,434 inhibitors of P38, are now in RA
treatment clinical trials, but results from these interventions have
yet to be reported.

Drugs in pre-clinical studies
PI3K takes part in inflammatory processes and is a potential
therapeutic target for RA. GS9901 is a selective oral PI3Kδ inhibitor
that proved efficacious in a RA animal model.435 The inhibition of
PI3KC2γ expression in macrophages and synovial fibroblasts by
PBT-6 suggests that it can be used as a novel inhibitor of PI3KC2γ
in inflammatory diseases, including rheumatoid arthritis.436

Inhibition of PI3K by ZSTK474 may inhibit bone destruction and
synovial inflammation in RA patients, and the Inhibition efficiency
of ZSTK474 is much better than that of LY294002, a commonly
used PI3K inhibitor.437 The mTOR inhibitor rapamycin may apply in
the treatment of RA, aiming to reduce FLS-mediated joint injury
and erosive changes. The combination of mTOR inhibitor and
vitamin D3 prevents bone destruction in RA.438,439 Notch signaling
inhibitor LY411575 inhibits −1 and Notch-3 for treating collagen-
induced arthritis (CIA) in rats.440 Ahmad et al441 have reported that
STAT3 inhibitor STA-21 reduced the expression of TNF-α and IL-6
in the peripheral blood of collagen-induced arthritis rats and
increased the expression of IL-27 produced by CD14+ cells.
Many researchers have indicated that DNA methylation

inhibitors like Azacitidine (5’-AzaC) have the potential to inhibit
RA progression. In Table 1, we list several DNMT inhibitors that
have been investigated in RA drugs (trials or studies). Azacitidine
blocked the release of inflammatory cytokines (TNF-α and IL-6) in
RAFLS.442 Decitabine Exhibited a decreasing production of Th1
and Th17 pro-inflammatory cytokines and can reduce anti-type II
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collagen autoantibodies. In the CIA mouse model,443 Zebularine
produced a sustained reduction in the severity of arthritis and
promoted the generation of Treg.444 Epigallocatechin-3 gallate
(EGCG) inhibits MMP-2, IL-6, and IL-8 production and selectively
inhibits COX2 expression in human RAFLS.445 Importantly, these
drugs have been shown to inhibit the activation of DNMTs in RA-
related studies. 5’-AzaC, zebularine, and decitabine are the same
class of drugs that belong to nucleoside-derived inhibitors, which
were initially investigated and approved for the treatment of
cancer.446,447 With the development of nucleoside-derived inhibi-
tors, they were also studied for use in treating RA patients. It was
confirmed that treatment with 5’-AzaC decreased the expression
of inflammatory cytokines (i.e., TNF-α and IL-6) in RAFLS.442

Furthermore, 5’-AzaC elevated the anti-inflammatory cytokine IL-
10 expression in PBMCs isolated from RA patients. This finding was
related to the hypomethylation of the IL-10 promoter.311 In a
murine CIA model, decitabine showed inhibitory effects towards
the anti-type II collagen autoantibodies production and Th1 or
Th17 pro-inflammatory cytokines.443

Different HDAC inhibitors target a few members of the HDAC
enzyme family and were claimed to have beneficial effects in the
treatment of RA. The selective HDAC3 inhibitor MI192 was proven
to inhibit the expression of TNF-α and IL-1β induced by LPS in
PBMCs, which were derived from healthy donors and RA
patients.448 TSA, a Class I and Class II HDAC inhibitor, induced a
remarkable decrease in nuclear retention of NF-κB in RAFLS in the
presence of IL-1β stimulation, resulting in the temporal reduction
of IL-6 mRNA accumulation.449 In another report, nicotinamide, a
Class III HDAC inhibitor reduced LPS-stimulated IL6 and TNF-α
expression and TNF-α-induced expression of IL-6 in macrophages
isolated from RA patients.450 Furthermore, MS-275 and SAHA, then
on-specific HDAC inhibitors suppressed the NF-κB p65 nuclear
accumulation, induced by LPS in human RA synovial fibroblastic
E11 cells THP-1 monocytes, leading to a reduction in pro-
inflammatory cytokines.451 Largazole, a Class I HDAC inhibitor,
Enhanced TNF-α-induced expression of VCAM-1 and ICAM-1 in
RASF; inhibited TNF-α-induced MMP-2 activity; modulated Class II
HDAC expression levels.452 MPT0G009, a Class I HDAC and HDAC6
inhibitor, Reduced PGE2 and IL-6 secretion in RAFLS; reduced paw
swelling; reduced osteoclast formation and arthritis scores in AIA
rats.453 NK-HDAC1, HDAC1inhibitor, reduced proliferation rates of
RAFLS and suppressed TNF-α-induced MMP-3 and IL-6 secretion;
increased apoptosis of synoviocytes and delayed the progression
of disease in CIA mice.454 Recently, HDAC6-specific inhibitors CKD-
L and tubA inhibited the expression of IL-1β and TNF-α and
increased the IL-10 expression in PBMCs from RA patients.455

Meanwhile, these compounds inhibited TNF-α secretion in THP-1
cells and reduced the arthritis score in CIA mice. CKD-506, an
HDAC6 inhibitor, Reduced the production of IL-6 and TNF-α by
activated PBMCs from RA patients; inhibited the production of IL-
8, IL-6, MMP-1, and MMP-3 by activated FLS; inhibited the severity
of arthritis in a murine model of AIA.456 Interestingly, these studies
could not show an association between the use of these HDAC
inhibitors and the deacetylation of H3 and H4. Since p53 has been
reported as a non-histone protein that can be acetylated by
HAT,457 a drive in research to study other non-histone targets of
HDACs and HATs, such as c-MYC, NF-κB, STAT3, α-tubulin has
occurred.458 The non-histone proteins acetylation and deacetyla-
tion play roles in all sorts of human diseases, including RA, cancer,
and Parkinson’s disease (PD).459–461 Therefore, targeting non-
histone proteins might be a promising therapeutic strategy for the
treatment of RA.
Additionally, Our research has revealed that the hydrogen

sulfide (H2S) donor S-propargyl-cysteine (SPRC, named also as
ZYZ-802) could alleviate inflammatory response and inhibit
HDAC6 expression in vivo via the HDAC6/MyD88/NF-κB signaling
pathway,300 or Nrf2-ARE signaling pathway.462 At the same time,
we also found that CSE/H2S can reduce the expression of JMJD3

by inhibiting transcription factor SP-1 and alleviating arthritis.463

SPRC might serve as a potential drug for RA treatment. We have
developed two sustained-release donors of hydrogen sul-
fide,464,465 which has solved the problem of hydrogen sulfide
release too fast in conventional formulations. ZYZ-802 is filing for
clinical trials by CFDA and FDA now.

Cutting-edge technology therapy
Some cutting-edge technologies are emerging for RA treatment,
for example: Targeting protein degradation as a new therapeutic
approach by using Proteolysis-targeting chimeras (PROTAC)
technology to address diseases caused by abnormal expression
of pathogenic proteins. PROTAC molecule can bind both the E3-
ubiquitin ligase and the target protein, thereby causing the target
protein ubiquitination and degradation.466,467 However, PROTAC
delivery and bioavailability remain the biggest obstacles to
clinic.468 Addressing these issues will be the focus of many
laboratories in the coming years. PROTAC -mediated degradation
of JAK has been proposed as a novel and promising therapeutic
strategy for rheumatoid arthritis.469

Nanoparticles are new and promising drug delivery systems
(DDSs) that are designed to deliver a specific dose of the desired
medicine to a particular part of the body. They make it safe to
increase the bioavailability of drug compounds by allowing drug-
controlled release over time. Targeted drug delivery nanomaterials
for RA therapy focus on efficacy at the lesion site through local
delivery of active ingredients while sparing normal cells and
tissues from off-target toxicity. Polylactic-co-glycolic acid (PLGA) is
the most widely used nanoparticle because of its biocompatibility,
and the FDA has approved PLGA as a drug carrier,470 some pre-
clinical studies indicated a combination treatment of MTX-loaded
PLGA nanoparticles and near-infrared irradiated showed a durable
and superior therapeutic effect in suppressing arthritis compared
with MTX single administration.471 Yang et al. announce the first
example of RA treatment using bioactive nanoparticles without
any drug loading and highlight the role of folic acid-modified
silver nanoparticles (FA-AgNPs) through M1 macrophage apopto-
sis and M1-to-M2 Macrophage repolarization for targeted RA
therapy.472

A research team from St. Louis, USA, used CRISPR-Cas9 genome
editing technology to transform induced pluripotent stem cells
(iPSCs) and constructed cartilage stem cells called “SMART” (Stem
cells Modified for Autonomous Regenerative Therapy) in which
cells are implanted with a synthetic gene circuit that is regulated
by IL-1 to produce an IL-1 receptor antagonist (IL-1Ra). IL-1
promotes inflammation in arthritis by activating inflammatory
cells in the joints. When inflammation occurs, intracellular gene
circuits that sense changes in endogenous IL-1 cytokine levels are
activated to secrete therapeutic levels of IL-1Ra.473 If one
therapeutic drug works better than another in a particular patient,
it may be possible to develop individualized therapies by
reprogramming chondrocytes.
Although RA remains incurable, the development of DMARDs

and refined treatments make RA a generally manageable disease.
By using different combinations of DMARDs, many patients
experience remission of symptoms. However, there are still a
large number of patients still do not respond to available
therapies to date, indicating the necessity to develop new drugs
and treatment strategies. It is hoped that in the near future, some
pre-clinical drugs and strategies will successfully move toward
clinical studies, providing more options for RA patients.

CONCLUSIONS AND PROSPECTS
Rheumatoid arthritis is a systemic chronic autoimmune disease,474

characterized by symmetrical articular synovitis. The repeated
attacks of articular synovitis and the formation of synovial pannus
cause the erosion and destruction of the cartilage and

Signaling pathways in rheumatoid arthritis: implications for targeted. . .
Ding et al.

15

Signal Transduction and Targeted Therapy            (2023) 8:68 



subchondral bone in the affected joints, eventually leading to
various deformities of the affected joints and the dysfunction of
joint function.475–478 Generally, NSAIDs, GCs, and DMARDs are
used for clinical RA treatment. However, they can only delay the
disease progression or improve inflammatory symptoms. Further-
more, since the treatment of RA is a long-term process, the side
effects of these drugs are inevitable, including immunosuppres-
sion, gastrointestinal ulcers, osteoporosis, nausea, fatigue, cytope-
nia, rashes, liver damage, infections, and psoriasis.479–482

Therefore, it is an urgent need to develop novel therapeutic
strategies that enhance efficacy and reduce toxicity.
During the disease progression of RA, some pro-inflammatory

cytokines trigger signal transductions associated with RA, which lead
to the recruitment of innate and adaptive immune cells and the
activation of synovial cells. These systems release inflammatory
mediators, including IL-1, IL-6, and TNF-α, leading to synovial
inflammation and exacerbating disease progression.483 A deeper
understanding of the involvement of abnormal signal transduction in
RA will provide us with novel strategies to prevent and treat this
disease class. With the approval of JAK inhibitors for the treatment of
RA,484 kinase inhibitors have become a hot spot in drug research. In
this review, we summarized the signaling pathways involved in the
RA pathogenesis, new potential targets, and associated inhibitors,
such as MAPK, WNT, PI3K/AKT, SYK, and JAK/STAT pathways,
respectively. We also indicate new targets such as NAV2. Further-
more, it is raised that P38 inhibitors applied in the treatment of RA
are not ideal.430,431 These highlights future challenges in treating RA
and the need to identify new specific targets to drive developments
in the synthesis of newer selective inhibitors.
Several cutting-edge technologies are appearing for RA therapy,

for instance: Targeting protein degradation as a new therapeutic
approach by using Proteolysis-targeting chimeras (PROTAC)
technology; Nanoparticles were used for drug targeting and
sustained-release delivery; CRISPR-Cas9 genome editing technol-
ogy et.al. Advances in RA treatment have taught us that “one size
does not fit all” and that personalized therapy is now the
consensus goal.473,485,486

In closing, the current review highlights specific signal transduc-
tion pathways and molecular targets that may hold promise in the
treatment of RA, also raised the developments in new drugs for use
and prospect some cutting-edge technologies in treating RA, hope to
provide new ideas for RA’s therapy in the future.

METHODS
We reviewed the literature on rheumatoid arthritis up to 2022.
PubMed was searched using the terms “rheumatoid arthritis” plus
“signaling pathways”, “molecular mechanisms”, “genetic factors”,
“epigenetics”, and “therapeutic interventions”. A literature review
of the retrieved papers was presented herein.
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