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Targeted therapy for head and neck cancer: signaling pathways
and clinical studies
Qingfang Li1, Yan Tie1, Aqu Alu 1, Xuelei Ma1✉ and Huashan Shi1✉

Head and neck cancer (HNC) is malignant, genetically complex and difficult to treat and is the sixth most frequent cancer, with
tobacco, alcohol and human papillomavirus being major risk factors. Based on epigenetic data, HNC is remarkably heterogeneous,
and treatment remains challenging. There is a lack of significant improvement in survival and quality of life in patients with HNC.
Over half of HNC patients experience locoregional recurrence or distal metastasis despite the current multiple traditional
therapeutic strategies and immunotherapy. In addition, resistance to chemotherapy, radiotherapy and some targeted therapies is
common. Therefore, it is urgent to explore more effective and tolerable targeted therapies to improve the clinical outcomes of HNC
patients. Recent targeted therapy studies have focused on identifying promising biomarkers and developing more effective
targeted therapies. A well understanding of the pathogenesis of HNC contributes to learning more about its inner association,
which provides novel insight into the development of small molecule inhibitors. In this review, we summarized the vital signaling
pathways and discussed the current potential therapeutic targets against critical molecules in HNC, as well as presenting preclinical
animal models and ongoing or completed clinical studies about targeted therapy, which may contribute to a more favorable
prognosis of HNC. Targeted therapy in combination with other therapies and its limitations were also discussed.
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INTRODUCTION
Head and neck cancer (HNC) is the sixth most frequent cancer
type worldwide, with over 870,000 new cases and 440,000 deaths
in 2020.1 Head and neck squamous cell carcinoma (HNSCC) is the
most common type of HNC, accounting for approximately 90% of
HNC cases, and primarily originates from the mucosal epithelium
of the oral cavity, pharynx and larynx.2 The incidence of HNSCC is
increasing and is predicted to rise to 1.08 million new cases per
year by 2030.3 Exposure to tobacco-derived carcinogens and
chronic heavy alcohol consumption are high-risk factors for HNC
globally. Recently, increasing tumors in the oropharynx have been
associated with previous infection with human papillomavirus
(HPV, mainly HPV-16 and HPV-18), especially in Western coun-
tries.4 As the most common oncogenic HPVs, HPV-16 and HPV-18
infection can be prevented by commercialized HPV vaccines.
Therefore, it is feasible to prevent HPV-positive HNSCC by mass
vaccination worldwide, just as it is to prevent cervical cancer.
Cancers that arise in the oral cavity and larynx are mostly related
to smoking and are classified as HPV-negative HNSCC.5 Epstein‒
Barr virus infection is another risk factor that can contribute to the
carcinogenesis of nasopharyngeal carcinoma (NPC).6

There are no effective screening strategies for HNC, and most
patients are often diagnosed at late stages. HNC is remarkably
heterogeneous, and its treatment remains a challenge. Treatment
of HNC patients requires aggressive multimodality approaches,
including surgery followed by radiotherapy alone or with
chemotherapy (known as chemoradiotherapy or chemoradiation)
for oral cavity cancers and primary chemoradiotherapy for
pharynx and larynx cancers. HPV-positive HNSCC usually displays

a more favorable clinical outcome than HPV-negative HNSCC,
resulting in the adaptation in the eighth edition of the
tumor–node–metastasis (TNM) staging to include p16INK4A
immunostaining to indicate HPV status.2 Recently, two immune
checkpoint inhibitors, pembrolizumab and nivolumab, have been
approved by the Food and Drug Administration (FDA) for the
treatment of recurrent or metastatic HNSCC (R/M-HNSCC), and
pembrolizumab is a first-line therapy for unresectable tumors.7–9

However, the prognosis remains poor. There is a lack of significant
improvement in survival, and over half of HNSCC patients
experience locoregional recurrence or distal metastasis.5,10 In
addition, patients receiving chemoradiotherapy may exhibit
serious side effects and a poor quality of life.11–14 Therefore,
there is an urgent need to explore more effective and tolerable
strategies to improve the clinical outcomes of HNC patients.
In recent decades, great success has been achieved in targeted

therapy of HNC, which can accurately identify and kill cancer cells
with low toxicity and side effects (Fig. 1). In 1984, Hendler et al.
discovered a 2.5- to 5-fold increase in the expression of epidermal
growth factor receptor (EGFR, HER1 or ErbB1) in human squamous
cell lung cancers and epidermoid head and neck cancers.15 EGFR
belongs to the HER/ErbB family (consisting of HER/EGFR/ErbB 1 to
4) of receptor tyrosine kinases (RTKs), the activation of which leads
to proliferation and metastasis of malignant cells and increased
angiogenesis.16–19 Early in 2001, the efficacy of cetuximab was
investigated in squamous cell carcinomas in vivo, which also
enhanced the efficacy of radiotherapy.20–22 Shortly thereafter,
cetuximab showed dose-dependent pharmacokinetics, tolerabil-
ity, and biologic activity when combined with cisplatin in patients
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with advanced tumors overexpressing EGFR.23 Further studies
indicated that cetuximab is an effective radiation sensitizer,24,25

resulting in the FDA approval of cetuximab plus radiotherapy for
the treatment of locally advanced HNSCC (LA-HNSCC) patients in
2006. The addition of cetuximab to platinum-based chemotherapy
increased the median overall survival (OS) to 10.1 months, which
makes the EXTREME protocol (cetuximab, cisplatin, or carboplatin,
5-fluorouracil) the standard first-line treatment for R/M-HNSCC
patients.26 Although cetuximab increased the clinical efficacy and
safety of conventional chemotherapy/radiotherapy, there is still
much room for improvement in clinical outcomes and quality of
life.27 Current efforts are focusing on developing more potent and
safe agents targeting EGFR and other signaling pathways,
including vascular endothelial growth factor receptor (VEGFR),
signaling, phosphatidylinositol 3-kinase (PI3K) signaling, and
hepatocyte growth factor receptor (c-MET) signaling pathways.
In this review, we summarized the vital signaling pathways and

discussed the current potential therapeutic targets in HNSCC as
well as presenting preclinical animal models and ongoing or
completed clinical studies about targeted therapy, which may
contribute to a more favorable prognosis of HNSCC.

THE GENETIC LANDSCAPE IN HEAD AND NECK CANCER
EGFR pathway
EGFR is a transmembrane glycoprotein and a cell surface receptor
and is the primary member of the HER/ErbB family responding to
RTKs. In HNC, EGFR mutation and amplification are rare. However,
EGFR is overexpressed in ~80% of HNSCC cases and is closely
related to poor prognosis.28 EGFR binds with HER family ligands

involving epidermal growth factor (EGF), heparin binding-EGF,
amphiregulin, transforming growth factor-alpha (TGF-α), epiregu-
lin, and betacellulin, leading to a signal transduction cascade
thereby promoting tumor proliferation, invasion, angiogenesis
and metastasis and determining the outcomes of diseases.29

Approaches to activate EGFR are multitudinous in head and neck
cancer. The autocrine or paracrine effects of EGFR ligands,
increasing the production of amphiregulin and TGF-α in response
to tobacco smoke, activating G-protein-coupled receptors (GPCRs)
and increasing the GPCR ligand PGE2 are involved in EGFR
activation.30,31 The EGFR pathway is complicated and multi-
dimensional. The binding between EGFR and its ligand leads to
homodimerization or heterodimerization with HER2, HER3, or
other RTKs, such as insulin-like growth factor (IGF)-1R or MET.32

The downstream signal transduction cascades, including the JAK/
STAT, PI3K/AKT, MAPK, PLCγ/PKC, and Src pathways, and the
crosstalk among these signals are potential and attractive targets
for HNC.30

In addition to the membrane-bound form, EGFR is supposed to
translocate to the cell nucleus and play multiple roles. EGFR can
return to the cell membrane surface and undergo signal
transduction and function. Nuclear EGFR is also associated with
lysosome degradation, leading to downstream signal activation.33

Moreover, nuclear EGFR can serve as a transcription factor,
binding to several gene promotors (cyclo-oxygenase 2 (COX2),
inducible nitric oxide synthase (iNOS) and cyclin D1) and DNA-
binding transcription cofactors (signal transducer and activator of
transcription (STAT3/5) and E2F1), along with PCNA and DNA-PK
phosphorylation.34 EGFR heterointeraction with Axl has been
demonstrated to enhance oncogenic and invasive potential.35 The

Fig. 1 Timeline of treatment regimens and targeted therapy development in head and neck cancer and further investigation. Early on,
surgery was first used to treat head and neck cancer. With further investigation, more therapies have been used to treat head and neck cancer.
In the 1980s, an advanced understanding of HNSCC was made, and some major discoveries were made between the 1980s and 2020s. The
prognosis of head and neck cancers was slightly improved but unsatisfactory. Some discoveries might first be made in cancers other than
head and neck cancers, and the same discoveries were identified in head and neck cancers after years. More agents were found and approved
in head and neck cancers, which may dramatically improve the prognosis of head and neck cancer patients. DNA deoxyribonucleic acid, EGFR
epidermal growth factor receptor, HPV human papillomavirus, HNSCC head and neck squamous cell carcinoma, FDA Food and Drug
Administration, IMRT intensity modulated radiation therapy
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nuclear translocation of EGFR can be triggered by EB virus (EBV),
radiation, EGFR ligands, Src family kinase, and cetuximab and is
related to poor prognosis and therapeutic resistance.30,36 EGFR
signaling transduction and crosstalk with other signaling path-
ways in HNC are shown in Fig. 2.

PI3K/AKT/mTOR pathway
The PI3K/AKT/mTOR pathway is the most deregulated cancer-
driving signaling pathway in HNC and is active in more than 90%
of HNSCC cases.37,38 The PI3KCA gene is mutated in 16–25% of
HNC cases, as previously reported.39,40 The mutation frequency of
the PI3KCA gene in HPV-positive and HPV-negative HNSCC differs
significantly. The chance of HPV-positive HNSCC harboring
mutations in the PI3KCA gene is much higher than that of HPV-
negative cancer, which makes the PI3K/AKT/mTOR pathway a
potential target for HPV-positive disease.41–43 PI3Ks are enzyme
clusters that are essential for tumor cell growth and differentiation
and are activated by RTKs, including EGFR.44,45 PI3K is supposed to
phosphorylate phosphatidylinositol 4,5-bisphosphate (PIP2) and
convert it into phosphatidylinositol 3,4,5-trisphosphate (PIP3).46

PIP3 can be dephosphorylated by phosphatase and tensin
homolog (PTEN), which in turn blocks the PI3K/AKT/mTOR
pathway47,48 (Fig. 2).
Mammalian target of rapamycin (mTOR) is a serine/threonine

kinase that is essential for tumor growth and proliferation in
response to PI3K/AKT signaling in HNC.49,50 The mTOR complexes
are composed of mTORC1 and mTORC2. The latter is vital for AKT
phosphorylation and the downstream signal SGK1 activation.51,52

In addition to EGFR activation, the PI3K/AKT/mTOR pathway can

be activated through several mechanisms. The PIK3CA gene
encodes PI3K, the mutations and amplifications of which are
supposed to activate the PI3K/AKT pathway.53,54 PTEN mutation is
rare in HNC, while PTEN deficiency and PTEN gene copy number
loss are prevalent and supposed to activate the PI3K/AKT/mTOR
pathway.55–57

Activation of the PI3K/AKT/mTOR signaling cascade is asso-
ciated with therapeutic resistance via enhanced DNA repair
mechanisms.58,59 Moreover, activation is also associated with
EBV-encoded latent membrane proteins 1, 2A, and 2B (LMP1,
LMP2A, and LMP2B) in NPC.60,61 LMP1 restrains tumor necrosis
factor-related apoptosis-inducing ligand (TRAIL)-mediated apop-
tosis by PI3K/AKT/mTOR activation, which is vital in the induction
and maintenance of cancer stem cell properties and tumor cell
proliferation and invasion in NPC.62–64 LMP1 has been demon-
strated to upregulate DNA methyltransferase 1 (DNMT-1) expres-
sion and activity, promote mitochondrial translocation,
epigenetically silence PTEN, and activate AKT signaling in NPC.65

Moreover, the activation of the PI3K/AKT/mTOR pathway
mediated by LMP2A is closely related to vasculogenic mimicry
formation in EBV-associated epithelial cancers.66

MAPK pathway
The mitogen-activated protein kinase (MAPK) signaling pathway is
vital in tumor cell proliferation, differentiation, angiogenesis,
metastasis and therapeutic resistance.67–69 The MAPK pathway
consists of RAS (H/K/NRAS), RAF (A-/B-/C-RAF), mitogen-activated
protein kinase–kinase (MEK, MEK1/2), extracellular signal-
regulated kinases (ERK, ERK1/2), adaptor molecules (GRB2, SHC1/

Fig. 2 The EGFR signaling pathway, PI3K/AKT/mTOR pathway, MAPK pathway, STAT pathway, and MET pathway in head and neck cancer. EGFR
epidermal growth factor receptor, TGF-α transforming growth factor-alpha, EGF epidermal growth factor, RTKs receptor tyrosine kinases,
HER2/3 human epidermal growth factor receptor 2/3, c-MET c‑mesenchymal–epithelial transition factor, IGF-1R insulin-like growth factor 1
receptor, PGE2 prostaglandin E2, GPCR G-protein-coupled receptor, PLCγ phospholipase c-γ, PKC protein kinase C, JAK Jenus-activated kinase;
STAT3/5, signal transducer and activator of transcription 3/5, PTEN phosphatase and tensin homolog, PI3K phosphoinositide 3-kinase, PIP2
phosphatidylinositol 4,5-bisphosphate, PIP3 phosphatidylinositol 3,4,5-trisphosphate, AKT serine/threonine-specific protein kinase, mTOR
mammalian target of rapamycin, DNMT-1 DNA methyltransferase 1, SOS son of sevenless, GRB2 growth factor receptor-bound protein 2, SHC
SRC homology domain c-terminal adaptor homolog, ERK: extracellular signal-regulated kinase, MAP2K6 mitogen-activated protein
kinase–kinase 6, PAK1 p21-activated kinase 1, DUSP dual-specificity phosphatases, PCNA proliferation cell nuclear antigen, DNA-PK DNA-
dependent protein kinase
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2/3/4), and dual-specificity phosphatases (DUSP3/5/6/7/9), which
are specific negative regulators of ERK.70,71 Activation of several
kinases, including BRAF, KRAS, HRAS, and ERK1/2, has been
demonstrated to induce tumorigenesis and invasion.72 The
crosstalk between the MAPK pathway and other signals (such as
ErbB3, PI3K/AKT/mTOR, JAK/STAT) is thought to drive human
oncogenesis and promote tumor progression73–76 (Fig. 2).
In HNC, MAPK pathway mutations occur in ~18% of patient

tumors.73 These mutations predominantly occur in BRAF, HRAS,
KRAS, and ERK.77 The activators and regulators of the MAPK
pathway (NF1, fibroblast growth factor receptor 2 (FGFR2), FGFR3,
and ErbB3) have also been found.78 Moreover, almost half of the
MAPK pathway mutations in head and neck cancer are activating
or drivers of tumorigenesis.70 When growth factors bind to RAS, a
signal cascade is activated. ERK1/2 separates from the RAS/RAF/
MEK/ERK1/2 complex and phosphorylates multiple kinases and
transcription factors, such as transformation specific-1 (ETS-1),
activator protein 1 (AP-1), nuclear factor kappa-B (NF-κB), and
c-Myc.79,80 In the p38/MAPK pathway, mitogen-activated protein
kinase–kinase 6 (MAP2K6) overexpression is associated with
radiotherapy resistance and unfavorable prognosis in NPC
patients.81 The protein kinase (PAK1) is supposed to phosphor-
ylate RAF1 at serine 338 and MEK1 at serine 298, leading to MAPK
activation.82

JAK/STAT pathway
Upregulation of the Jenus-activated kinase (JAK)/STAT pathway,
especially STAT3 and STAT5, is associated with cell proliferation,
angiogenesis, tumor immune evasion, therapy resistance and poor
prognosis in HNC.83–86 STAT3 signaling is an immunosuppressive
molecule that assists tumor cell immune escape by increasing the
production of cytokines, such as TGF-β1, IL-6, IL-10, and VEGF.87

Mutations in the JAK/STAT pathway are rare in head and neck
cancer, as reported previously88 (Fig. 2).
Several mechanisms are supposed to activate SATA3 signaling,

including RTK (EFGR, VEGFR, Src family kinases (SFK), and JAK),
TGF-alpha, alpha7 nicotinic receptor, erythropoietin receptor, G-
protein-coupled receptors (GPCRs), Toll-like receptors (TLRs), and
the IL-6 cytokine receptor family.89–92 Thereafter, phospho-STAT3
in the cell nucleus promotes the expression of downstream target
genes, including cyclin D1, survivin and Bcl-xL, which are involved
in tumor cell proliferation, angiogenesis and immune eva-
sion.85,93,94 Moreover, STAT3 is related to increased expression of
immune checkpoints, including PD-L1 and cytotoxic T
lymphocyte-associated antigen 4 (CTLA-4). Combined therapy
with checkpoint inhibitors is supposed to decrease the resistance
against them.95

HGF/MET pathway
The HGF receptor, the sole ligand of c-MET, is overexpressed in the
tumor microenvironment and plays an essential role in tumor-
igenesis and EGFR inhibitor therapy resistance in HNC.96 Mutations
in the c-MET gene are rare, while an increase in the MET gene
copy number and overexpression of HGF are common in HNC.97

The HGF/MET pathway is crucial for tumor cell proliferation,
angiogenesis, invasion and metastasis in HNC.98 HGF activates c-
MET, which promotes cellular morphogenesis, epithelial-
mesenchymal transition, and tumor metastasis.99 Major down-
stream adapter proteins and kinases in the HGF/MET pathway
consist of growth factor receptor-bound protein 2 (GRB2), GRB2-
associated adaptor protein 1 (GAB1), RAS, RAS-related C3
botulinum toxin substrate 1 (RAC1), PI3K, STAT, son of sevenless
(SOS), cellular Src kinase, Src homology domain c-terminal adaptor
homolog (SHC), SRC homology protein tyrosine phosphatase 2
(SHP2), p21-activated kinase (PAK), and phospholipase c-γ
(PLC).100–102 Moreover, the activation of HGF/MET signaling has
been demonstrated to influence the cancer stem cell traits of
HNC103 (Fig. 2).

The HGF/MET pathway is supposed to crosstalk with other
signaling pathways, including the PI3K/AKT pathway, MEK/ERK
pathway, STAT pathway and Wnt pathway, to promote tumor
progression.104,105 The crosstalk between the HGF/MET pathway
and the EGFR pathway and VEGFR pathway contributes to
therapeutic resistance.104

p53/retinoblastoma (RB) pathway
TP53, a tumor suppressor gene, is one of the most prominently
mutated genes in HNC and is associated with tumor progression,
recurrence, and therapeutic resistance.106–108 HPV-positive tumors
are associated with p53 degradation, retinoblastoma inactivation,
and p16 upregulation, while tobacco-related tumors are more
associated with TP53 mutation and downregulation of the p16-
encoded gene.109 TP53 mutations mostly occur in early tumor-
igenesis and are related to HPV-negative HNCs because the p53
protein is degraded by the HPV E6 oncoprotein.110 TP53 encodes a
transcription factor that maintains genomic stability, DNA repair,
cell cycle, senescence and apoptosis.111–113 P53 is essential for
oncogene activation and DNA damage and repair.114,115 Murine
double minute 2 (MDM2), an E3 ubiquitin-protein ligase,
negatively regulates the level of p53.116 P53 can be activated by
cell cycle checkpoint kinases (such as CHK1 and CHK2), which
induce cell apoptosis and cell cycle arrest.113,117 The p53 signaling
pathway is shown in Fig. 3.
TP63, a p53 family member, is overexpressed in approximately

80% of HNSCC cases.118,119 TP63 has two isoforms, TAp63 and
ΔNp63. ΔNp63 is the predominant p63 isoform, which is vital for
tumorigenesis and progression and senescence suppression and is
associated with poor OS in HNC.120–122 P63 is considered a stem
cell marker.123 Moreover, ΔNp63 affects the growth factor
signaling pathway and tumor metabolic microenvironment
through hyaluronic acid signaling and a transcriptional
program.124

TP73, another p53 family member, also consists of TAp73 and
ΔNp73 isoforms. P73 is related to the tumorigenesis, angiogenesis,
and progression of multiple cancers, including HNC.125–127 Unlike
TP53, the TP73 gene is rarely mutated.128,129 The TAp73 isoform
affects tumor cell apoptosis and growth arrest instead of the
ΔNp73 isoform.130,131 The tumor suppressor activity of TAp73 is
restrained. The overexpression of TAp73 suppresses the EGFR
promoter, downregulates EGFR protein, and induces cell death in
HNC cell lines.130 More research is needed to illuminate the
specific contributions of p73 in cancers.132

The RB gene is one of the most important tumor suppressor
genes (TP53, RB, PTEN), which regulates the cell division
cycle.133,134 RB protein binds to EBV protein E7, which leads to
protein degradation with E2F release and infinite cell prolifera-
tion.135 When p53 protein is activated by virus infection or DNA
damage, the downstream signal p21 is upregulated, which results
in RB-E2F complex (RB, E2F, and dimerization partners) formation
and cell cycle gene downregulation. Hence, the p53-p21-RB
pathway plays an important role in cell cycle arrest.133

NF-κB pathway
The NF-κB family is a cluster of multipotent dimer transcription
factors that are closely related to innate and adaptive immune
responses, tumorigenesis, and development.136–138 The NF-kB
family consists of up to 15 hetero and homodimeric protein
complexes drawn from a pool of five monomers.139,140 In
mammals, the NF-κB family consists of RelA (p65), RelB, RelC,
NF-κB1 (p105), NF-κB2 (p100), p50, and p52. Major carcinogens,
such as tobacco, alcohol, unhealthy diet, irradiation, and
oncogenic viruses, are supposed to activate NF-κB.141,142 The
activation of NF-κB is associated with EBV infection, the
immunosuppressive tumor microenvironment, the maintenance
of cancer stem cell characteristics and metabolic reprogramming
in nasopharyngeal cancer.143,144
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The canonical NF-κB pathway depends on cytokine receptors,
including interleukin 1 receptor (IL-1R), tumor necrosis factor
receptor (TNFR), and Toll-like receptors (TLR4).145 The upstream
signals of the NF-κB pathway are the receptor-interacting proteins
(RIP), TNFR-associated factors (TRAF), the kinase TAK1, the adaptor
TRADD and FADD. The NF-κB dimers are combined with inhibitory
IκB proteins in the resting state but are activated by IκB kinase
(IKK) complex phosphorylation when the stimulus appears. The
IKK complex is composed of the active kinases IKKα and IKKβ and
the regulatory subunit IKKγ (NEMO). Phosphorylated IκB proteins
bind to NF-κB dimers and translocate to the cell nucleus.146,147 The
noncanonical NF-κB pathway is activated by CD40 ligand and
lymphotoxin-β (LT-β) and defined as IKKα-mediated p100
phosphorylation with RelB, resulting in p100 processing and
p52-RelB complex generation. The NF-κB downstream target
genes can promote cell proliferation, survival, apoptosis, migra-
tion, cell cycle control, and angiogenesis148,149 (Fig. 3).
The NFKB1 gene rs28362491 polymorphism is significantly

associated with HNC, especially NPC, while the NFKBIA gene
rs2233406 polymorphism is not.150 Moreover, NF-κB is supposed
to crosstalk with other signaling pathways, such as the STAT
pathway, PI3K/AKT pathway, and p53/RB pathway, to promote
tumor prognosis and therapy resistance in multiple cancers,
including HNC.145,151–153

Wnt/β-catenin and Notch pathway
The Wnt/β-catenin signal cascade is associated with myriad
pathologies in humans, especially in HNC.154–156 The Wnt/
β-catenin pathway promotes tumor cell proliferation, maintains
the stem-like cell phenotype and increases tumor invasiveness in
HNC.157,158 The Wnt/β-catenin pathway includes extracellular Wnt
ligands (Wnt1, 2, 3, 3a), transmembrane receptors, intracellular
compounds, β-catenin and transcription factors.159,160 The intra-
cellular compounds consist of disheveled (Dvl), degradation
complex including glycogen synthase kinase 3 β (GSK-3β), Axin,

conductin, casein kinase 1α (CK1α), and adenomatous polyposis
coli (APC).161,162 Posttranscriptional acylation is vital for extra-
cellular transduction and receptor recognition.163 The transmem-
brane receptors include frizzled receptors (Fzds) and receptor-
related protein coreceptors (Lrps).164 The Fzds family is composed
of more than ten G-protein-coupled receptors, while Lrps
comprise Lrp5 and 6, interacting with Fzds for intracellular signal
transduction.165–167

Wnt combines with cell membrane receptors and controls
downstream β-catenin signaling. Activated intracellular β-catenin
is transported into the cell nucleus and regulates gene expression
as a transcription factor.168 Moreover, β-catenin combines with
T-cell factor/lymphoid enhancing factor (TCF/LEF) through its
armadillo repeats region to form the transcriptional complex,
thereby manipulating gene transcription.169,170 Epigenetic inacti-
vation of Wnt inhibitory factor 1 (WIF1) and SOX1 is related to
aberrant activation of the Wnt/β-catenin pathway and the
pathogenesis of HNC.171,172

The Wnt/β-catenin signaling pathway and Notch pathway
exhibit close crosstalk with each other to promote tumorigenesis
and progression in HNC.2,173,174 The Notch pathway has four
Notch receptors (Notch1, 2, 3, 4) and five ligands, including the
Jagged family (Jagged 1, 2) and the Delta-like family (Dll1, 3,
4).175,176 β-catenin reciprocally activates Notch by inducing the
expression of Notch signaling ligands (Jagged 1 and Dll1), reduces
Notch ubiquitination, increases hairy and enhancer of split 1
(Hes1) expression and affects the downstream signal transduction
of the Notch pathway.159,177 Wnt/β-catenin signaling transduction
and crosstalk with the Notch pathway are shown in Fig. 4.
Notch1 plays a vital role in maintaining cancer stem cell

characteristics and increasing tumor recurrence and metasta-
sis.178,179 Loss of Notch can promote tumorigenesis by upregulat-
ing delta Np63 in HNC. However, delta Np63 expressed in
keratinocytes can impair Notch signaling.180,181 Notch receptors
are overexpressed in HNC samples and activate downstream

Fig. 3 The p53 signaling pathway and NF-κB pathway in head and neck cancer. CHK1/2 cell cycle checkpoint kinase 1/2, MDM2 murine
double minute 2, CDK cyclin-dependent kinase, RB retinoblastoma, TNF tumor necrosis factor, TNFR tumor necrosis factor receptor, TLR4 Toll-
like receptor 4, TRAF TNFR-associated factor, RIP receptor-interacting protein, IKK IκB kinase
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signal transduction via hairy/enhancer-of-split related with YRPW
motif 1 (Hey1).108,182 Inactivating mutations in the Notch gene are
observed in 17–26% of HNC cases.108 Notch1 mutations are
predominant, including missense mutations of functional regions,
nonsense mutations of truncated proteins, deletions and frame-
shift insertions.183

Other signaling pathways in HNC
Vascular endothelial growth factor (VEGF), an angiogenesis factor,
is highly expressed in HNC and is vital for neovascularization and
related to poor prognosis.184–186 VEGF (VEGF-A) is a member of
the platelet-derived growth factor (PDGF) superfamily. The ligands
of VEGF signals include VEGFR1, VEGFR-2, VEGFR-3, and the
coreceptor neuropilins (NRP-1, NRP-2).187,188 Activated angiogen-
esis is related to tumor cell proliferation, migration, metastases,
and increased sensitivity to radiotherapy and chemotherapy.189,190

The gene rearranged during transfection (RET) encodes RET
kinase, which is one of the receptor tyrosine protein kinases and is
related to the tumorigenesis and progression of thyroid cancer.191

RET has three isoforms, including RET9, RET43, and RET51. The
ligands of the RET receptor belong to the glial cell line-derived
neurotrophic factor (GDNF) family, which includes GDNF, neur-
turin, artemin, and persephin.192 RET receptor binding to its
ligands is dependent on a cofactor, which belongs to the growth
factor receptor-alpha (GFRα) family, including GFRα1, GFRα2,
GFRα3, and GFRα4. GFRα1–4 bind to the RET ligands GDNF,
neurturin, artemin, and persephin, respectively, with high affinity
and specificity, thereby forming a binary complex and stimulating
RET kinase.193 The phosphorylation of RET kinase activates
multiple downstream pathways, including the MAPK pathway,
JAK/STAT pathway, PI3K/AKT/mTOR pathway, and PKC, which are
associated with tumor cell proliferation, invasion, migration and
survival.194,195 Mutations and rearrangements of the RET gene are
commonly discovered in thyroid cancer. Mutations of the RET

gene are usually observed in papillary and medullary carcinomas,
which are key factors in tumorigenesis and progression.196,197

Somatic gene rearrangements and fusions of RET occur in
~2.5–73% of papillary thyroid carcinomas, which are the most
common subtype of differentiated thyroid cancer. The most
common fusions of the RET gene are NCOA4-RET and CDCC6-RET
in papillary thyroid carcinoma.198,199

Nuclear factor erythroid 2-related factor 2 (NRF2) pathway
activation is related to promoting cellular resistance to oxidative
stress, proliferation, xenobiotic efflux, metabolic reprogramming,
resistance to chemotherapy and radiotherapy.200,201 Carcinogens
trigger c-MYC-mediated NRF2 activation. Under conditions such as
oxidative stress, NRF2 eliminates the Kelch-like ECH-associated
protein 1/cullin-3 (KEAP1/CUL3) complex and is translocated into
the cell nucleus. In the cell nucleus, NRF2 binds to MAF proteins
and antioxidant-responsive elements (AREs) and transactivates
downstream targeted genes to promote tumor progression in
HNC.202–204 Hence, NRF2 upregulation is positively related to the
malignant characteristics of HNC.205 Moreover, NRF2 has been
demonstrated to activate the p53/p21 signaling pathway and
influence the cell cycle, whereas p62 can inhibit the NRF2/KEAP1/
CUL3 complex.206,207 Mutations in the NRF2 pathway are
commonly observed in HPV-negative HNC patients, while they
are rare in patients with HPV infection208 (Fig. 4).
The alterations of the Hippo pathway result in persistent yes-

associated protein (YAP) and transcriptional coactivator with PDZ-
binding motif (TAZ) activation in HNC, which contribute to tumor
progression. The most common alterations are mutations of the
FAT1 gene and amplification of the TAZ and YAP1 genes.209,210

Multiple cellular signals activate the paralogous kinases MST1/2,
which are phosphorylated and promote their heterodimerization
with SAV1. MST1/2 kinase can phosphorylate LATS1/2 and the
LATS1/2 scaffold protein MOB. Then, LATS1/2 phosphorylates YAP/
TAZ, leading to YAP/TAZ cytoplasmic retention or proteolytic

Fig. 4 Wnt/β-catenin signaling pathway, Notch pathway, NRF2 pathway, Hippo pathway, and Sonic Hedgehog pathway in head and neck
cancer. Fzd frizzled receptor, Lrp receptor-related protein coreceptor, Dvl disheveled, CK1 casein kinase 1, GSK-3β glycogen synthase kinase 3β,
APC adenomatous polyposis coli, TCF/LEF T-cell factor/lymphoid enhancing factor, Dll 1/3/4 Delta-like family, HES1 hairy and enhancer of split
1, NRF2, nuclear factor erythroid 2-related factor 2, KEAP1 Kelch-like ECH-associated protein 1, CUL3 cullin-3, ARE antioxidant-responsive
elements, YAP yes-associated protein, TAZ transcriptional coactivator with PDZ-binding motif
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decay. Activation of YAP is supposed to promote cell proliferation
and maintain cancer stem cell functions, epithelial-to-
mesenchymal transition, and chemotherapy resistance.211,212 The
nuclear translocation of YAP/TAZ can inactivate the Hippo
pathway, which stimulates cell proliferation213 (Fig. 4).
The overexpression of Sonic Hedgehog pathway proteins, SMO

and GLI, has been demonstrated to be a prognostic marker and is
related to chemotherapeutic resistance and anti-EGFR therapeutic
resistance in HNC.214–217 Moreover, radiotherapy is supposed to
induce GLI1 expression mediated by the mTOR/S6K1 pathway,
which in turn causes radioresistance218 (Fig. 4).
In addition, Toll-like receptors (TLRs), especially TLR2/3/5, are

highly expressed in HNC and are closely related to poor
prognosis.219–221 Engagement of TLR3 is supposed to activate
TRIF and trigger downstream signaling to activate the NF-κB
pathway.222 TLR2/5 activation is mediated by the c-jun N-terminal
kinase-related pathway, PI3K/AKT pathway, and NF-κB pathway.223

Overall, multiple signaling pathways are involved in regulating
the tumorigenesis and progression of HNC. Among them, the
EGFR pathway plays a critical role in HNC and can be activated by
EGF, and downstream pathways include the PI3K/AKT, MAPK, JAK/
STAT, and other signaling pathways. Moreover, the EGFR pathway
can interact with other RTKs, including HER, MET, IGF-1R, VEGFR,
and RET, to synergistically regulate the occurrence and develop-
ment of HNC. TP53 is an important tumor suppressor gene. The
p53 family is involved in HNC tumorigenesis and development,
regulating the cell cycle, genomic stability, DNA repair, and
apoptosis. NRF2 can activate the p53 pathway. In addition, the NF-
κB pathway is also important in HNC and is supposed to crosstalk
with the STAT, PI3K, and p53 pathways to promote tumor
prognosis in HNC. The Notch signaling pathway is involved in HNC
radiation resistance and can be activated by PI3K signaling, which
can be suppressed by PTEN. Hence, the crosstalk among these
signaling pathways is complex in tumorigenesis, progression, and
therapy resistance in HNC.

TARGETED THERAPY IN A PRECLINICAL MODEL IN VIVO
Vivo models can be separated into spontaneous, induced,
transplantation, and transgenic models. Transplantation models
include subcutaneous tumor models, orthotopic tumor models,
and patient-derived tumor xenografts (PDXs). In addition to the
traditional animal model, novel animal models have been used in
developing antitumor drugs in HNC.224,225 PDXs are established by
patient-derived tumor tissue directly implanted in immunodefi-
cient mice without prior management or planting in wells, which
is a new method for evaluating novel therapies.226 The construc-
tion of a PDX model also provided a novel approach for
identifying suitable alterations in tumor tissue to find promising
treatment methods.
HPV is the most important oncogenic factor in HNSCC.

According to the common evidence of the subtypes of HNSCC,
one is HPV-related, and the other is alcohol, tobacco or oral
trauma-related: HPV-positive and HPV-negative.227 The clinical and
biological characteristics are opposite.228

As mentioned previously, the PDX model provides a novel
approach for identifying suitable alterations in tumor tissue to find
promising treatment methods.229–232 Recently, this model has
been considered an ideal preclinical model for investigating
targeted drugs. These PDX models maintained the genetic
background in immunodeficient mice. According to the pathol-
ogy, genes, and cells of tumors, the response in mice can simulate
that in humans.233–235 The response of tumors with HPV or not
brother the response of treatment regimens.236–239 The PDX
model can reflect the status of HPV. HPV-negative tumors have
been shown to be associated with favorable survival.240–243

Previous results in PDX models were identified in clinical trials,
which showed that they have similar antitumor properties.

PDX models can maintain the structure of tumors and
histological characteristics, although it is still debatable how long
the microvessel structure from human tissue is maintained.244,245

Some studies claimed that prostate tumors derived from humans
maintained their microvasculature after transplantation into mice
and that the vessel density of the tumor was enhanced after
weeks of transplantation.246,247 In contrast, a study reported that
the vessel density of renal cell carcinoma decreased after
transplantation.246,247 The difference after tumor implantation in
nude mice may explain why some VEGFR inhibitors obtained
resistance in the mouse model. Microvasculature variation may
also serve as an explanation for the resistance to antiangiogenic
drugs. In addition, precise research including one hundred fifty
PDX mouse models assessed angiogenic phenotypes to develop a
system to select suitable patients to receive targeted therapy,
which may help overcome tumor heterogeneity and predict
prognosis.248

A comprehensive understanding and inhibitor direction for
targeting signaling pathways in preclinical HNC treatment are
shown in Fig. 5.

EGFR inhibitors
Cetuximab is the only FDA-approved EGFR-targeted therapy in
HNSCC.249–251 Many compounds targeting EGFR have been
developed in preclinical models, with promising response and
tolerability profiles. Referencing the current knowledge that
multimodality treatment provides new hope for aggressive
HNSCC, many studies have investigated the response of
combination treatment regimens, either with conventional
surgery, radiotherapy and cytotoxic chemotherapy, or in novel
precision medicine targeted or immunotherapy combinatorial
regimens. In xenograft tumor tissues, EGFR overexpression
promoted the radiation therapy response in HPV-positive HNSCC
by attenuating DNA damage repair and HPV E6 decrease.252

Early in 2001, the effect of cetuximab was investigated in
squamous cell carcinoma in vivo, which also enhanced the
efficacy of radiotherapy.253,254 Xenograft models revealed that
EGFR inhibitor monotherapy led to partial and transient tumor
regression. The levels of caveolin-1 and Sox-2 in PDX tumors acted
as predictive biomarkers of the cetuximab response in HSNCC
cells. The accuracy reached 88% according to the cetuximab
response.255 The combination of cetuximab with either gefitinib
(Iressa, and ZD1839, EGFR inhibitor) or erlotinib (Tarceva, and OSI-
774, EGFR inhibitor) was investigated in HNSCC. More profound
tumor regression and regrowth delay were observed in an in vivo
model administered the combination of cetuximab and gefitinib
or erlotinib.256 The combination of cetuximab with other
treatment regimens was further investigated in HNSCC models.
CP-358,774 is a novel potential and selective inhibitor of EGFR

and inhibits EGF-mediated mitogenesis in cancer cells. CP-358,774
in combination with cisplatin demonstrated a better response
than cisplatin monotherapy with no detectable decrease in body
weight or adverse effects.257 GW2016 is an effective inhibitor of
the ErbB-2 and EGFR tyrosine kinase domains that is undergoing
development. ZD6474 is a dual inhibitor of VEGFR-2 and EGFR
tyrosine kinase. The efficacy of ZD6474 in HNSCC xenografts was
detected. In vivo, ZD6474 inhibited tumor growth via apoptosis
and antiangiogenic activity.258 Vandetanib (Zactima) is another
kind of inhibitor of VEGFR-2, RET, and EGFR. Adenoid cystic
carcinoma accounts for 1% of all HNC cases and can be controlled
by surgery combined with radiotherapy. No efficient therapeutic
compounds have been developed. In the parotid glands of a
mouse model, vandetanib was well tolerated and inhibited the
mean tumor volumes.259

Gefitinib is a selected EGFR inhibitor that inhibits signal
transduction to attenuate malignant neoplasm cell growth and
proliferation. Gefitinib has demonstrated potential therapeutic
activity in HNSCC in vivo by blocking basal EGFR-mediated
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mitogenic signaling.260 Combination therapy with paclitaxel and
EGFR inhibitors improved prognosis in a mouse model of oral
cancer by promoting cell apoptosis. VEGF inhibitors combined
with EGFR inhibitors and radiotherapy resulted in a significant
response in the HNC orthotopic model.261

The response to combination therapy regimens with EGFR
inhibitors in HNSCC was remarkable, while the clinical efficacy of
treatment with EGFR inhibitors remained insufficient. In addition
to an insufficient response rate, nearly all patients with clinical
response finally developed resistance status after approximately
ten months of EGFR inhibitor treatment, which indicated that
during EGFR inhibitor treatment, some alterations led to the
occurrence of resistance. In HN4 and HN6 cell xenograft models,
the nerve growth factor (NGF)-TrkA axis induced epithelial-
mesenchymal transition (EMT) and mediated resistance to EGFR
inhibitors.262,263

Dacomitinib (EGFR, ErbB-2, and ErbB4, irreversible inhibitor) was
efficient in inhibiting the tumor volume of HNSCC and acted as a
radiosensitizing agent in HNSCC. Dacomitinib treatment enhanced
the effect of radiotherapy.264 AC480 is a novel pan-HER (EGFR and
HER2) inhibitor that alone cannot promote tumor cell apoptosis.
However, combination with radiotherapy could enhance its effect.
The tumor size of HNSCC xenografts in vivo was significantly
reduced after AC480 plus radiation.265

VEGF inhibitors
Bevacizumab, sorafenib, and sunitinib are the most common VEGF
inhibitors used in targeted therapy.266 Bevacizumab is a mono-
clonal antibody that inhibits angiogenesis in tumors.267 The
antitumor effect of bevacizumab has been investigated in
preclinical tumor models. Bevacizumab successfully inhibited
HNSCC growth and had a promising effect on inhibiting HNSCC.
Extracellular matrix metalloprotease inducer (EMMPRIN and

CD147) is a membrane-bound glycoprotein observed on the
membrane of cancer cells.268 CD147 overexpression was shown in
distinct types of tumors, including HNSCC, hepatocellular carci-
noma, gastric cancer, thyroid carcinoma, cervical adenocarcino-
mas, bladder cancer, and ovarian cancer.269,270 The overexpression
of CD147 in HNSCC xenografts promoted tumor growth and
facilitated the production of VEGF.271 CD147 also acted as a
predictive effector in predicting the response to bevacizumab in
an HNSCC xenograft model.272 Although bevacizumab could not
inhibit the proliferation of HNSCC cell lines, bevacizumab
demonstrated dramatic anticancer efficiency in an HNSCC
xenograft model. Bevacizumab plus paclitaxel led to a remarkable
effect in HNSCC tumors compared with the single compound
effect.273 The HNSCC xenograft model benefited from bevacizu-
mab in combination with cisplatin. However, cetuximab treatment
alleviated the synergistic effect of bevacizumab and cisplatin.274

Cetuximab treatment in combination with other regimens needs
further exploration. In addition to HNSCC, bevacizumab had a
potential effect in a mouse model of medullary thyroid carcinoma
(MTC) and anaplastic thyroid carcinoma. Bevacizumab and EGFR
inhibitor monotherapy or in combination blocked angiogenesis in
tumors and inhibited tumor growth. Both regimens were superior
to doxorubicin treatment.275 Pretreatment with bevacizumab
promoted radiotherapy in MTC with moderate adverse effects.276

Lenvatinib is a novel dual inhibitor targeting VEGFR-2 and
FGFR1 that demonstrates robust anticancer efficiency in PDXs and
humanized mice, which is equivalent to bevacizumab.277,278

AEE788 is a specific kinase inhibitor targeting VEGFR and has a
potential effect on EGFR. AEE788 alone and in combination with
paclitaxel significantly inhibited the proliferation of tumors in the
tongues of athymic nude mice.279,280

Apatinib is a novel selective VEGFR-2 inhibitor that inhibits the
proliferative ability of thyroid carcinoma and squamous cell

Fig. 5 Comprehensive understanding and inhibitor direction for targeting signaling pathways in preclinical HNC treatment. EGFR epidermal
growth factor receptor, EGF epidermal augmentum factor, MET mesenchymal–epithelial transition factor, JAK Janus-activated kinase, STAT
signal transducer and activator of transcription, AKT serine/threonine-specific protein kinase, mTOR mammalian target of rapamycin, CDK
cyclin-dependent kinase, VEGF vascular endothelial growth factor, mAb monoclonal antibody, RET rearranged during transfection, p
phosphorylation
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carcinoma in vivo and vitro and has been identified in multiple
studies.281,282 In a tumor xenograft model, mice benefited from
either apatinib alone or apatinib in combination with cytotoxic
drugs.283 Tumor angiogenesis was also suppressed after apatinib
treatment. The outcomes demonstrated that apatinib inhibited
cancer growth compared with the untreated model group.
Apatinib combined with radiation therapy demonstrated a
stronger effect in inhibiting tumors than either apatinib treatment
alone or radiation therapy alone. The tumor partial oxygen
pressure, VEGFR-2-positive cells, and CD31-positive cells in the
combination group were lower than those in the single regimen-
treated group, which demonstrated that angiogenesis in tumors
was blocked.283 SCH772984 is an ERK inhibitor and has no effect
on tumor growth. Apatinib combined with SCH772984 exhibited a
greater inhibitory effect on tumor growth of oral squamous cell
carcinoma in vivo, which revealed that inhibition of ERK promoted
the anticancer efficiency of apatinib in vivo.284 VEGF inhibitors,
including ONC201, cabozantinib (XL-184), linifanib (ABT-869),
sunitinib, motesanib, pazopanib, axitinib (AG-013736), and
PTK787/ZK 222584, all had promising effects in the HNC
model.285–289

FGFR inhibitors
BGJ398 is a pan-FGFR inhibitor administered orally that mainly
targets FGFR1-3. The effect of BGJ398 in HNSCC was closely
related to the expression of FGFR in vivo.290 Furthermore, the
selective FGFR inhibitor PD173074 alone also resulted in a
remarkable response in an HNSCC xenograft model.291 AZD4547
is another novel inhibitor with a potent ability to inhibit FGFR1,
FGFR2 and FGFR3, which could promote the effect of radiotherapy
in an HNSCC patient-derived xenograft model.292

PI3K/Akt/mTOR pathway inhibition
PI3K inhibitors. PI3K inhibitors alone do not exhibit a remarkable
efficacy like an EGFR tyrosine kinase inhibitor and only selected
tumor benefits from them. Human HNSCC xenografts with PIK3CA
mutations exhibited susceptibility to therapy with PI3K inhibitors.
BYL719 is a kind of PI3K inhibitor that demonstrated a

significant antitumor effect on HNSCC in xenografts. HNSCC
patients could benefit from BYL719 inhibitors, and depletion of
MYC, p53 mutation, or YAP especially potentiates patients.293

Combining BYL719 with KTN3379, a monoclonal antibody
targeting HER3, enhanced the suppression of HNSCC in vivo.294

However, some HNSCC cells with PI3K-independent activation
were resistant to PI3K-independent activation. The AXL-EGFR
interaction mediated the process and promoted the antitumor
effect of the PI3Kα inhibitor BYL719.295,296 Ribociclib is a specific
CDK4/6 inhibitor that showed a synergistic effect in combination
with BYL719 in nonkeratinizing NPC.297 IGF2 inhibitors enhanced
the efficacy of BYL719 and taselisib (GDC0032) for the treatment
of HPV-positive HNSCC. A PI3K inhibitor also showed promising
anticancer effects in cetuximab-resistant oral squamous cell
carcinoma.298

BKM120, a PI3K inhibitor, inhibited HNSCC cell proliferation
in vivo.299,300 Among the 353 tested cell lines in mouse xenografts,
BKM120 particularly inhibited cancer cells with somatic PI3Kα
alternations. BKM120 combined with cetuximab and irradiation
significantly inhibited orthotopic xenograft tumors of HNSCC,
which provided a rationale for clinical treatment.301 Both BKM120
and BYL719 promoted radiosensitive effects in an HNSCC
xenograft model. PX-866 also had anticancer efficacy with PIK3CA
alterations.302,303 Compared with radiation monotherapy, taselisib,
a PI3K inhibitor, monotherapy improved the inhibition of cancer
cell proliferation. Taselisib plus radiation therapy completely
inhibited cancer cell growth, while no significant difference
between gross tumor volume was observed at the beginning
and end of therapy after three months.58,304 LY294002 and
copanlisib (BAY 80-6946) were also developed in cancer cell

xenograft models.305–307 Moreover, patients who responded to
PI3K inhibitors acquired drug resistance over time. Few studies
have observed acquired resistance to PI3K inhibitors in HNSCC. In
HNSCC PDXs that develop resistance to PI3K inhibitors, MAPK
activation was detected in the tissue. Inhibiting MAPK activity
could resensitize drug-resistant cells to PI3K inhibitors.308

AKT inhibitors. AKT overexpression in malignant tumor cells
demonstrated a stronger response to perifosine than AKT-
downregulated cells.309,310 The response in tumor cells is related
to the phosphorylation of AKT. Perifosine, an AKT inhibitor,
promoted cell growth, and apoptosis and blocked the cell cycle,
which provided considerable insight into tumor treatment.311,312

In HNSCC xenografts, perifosine combined with radiotherapy
completely inhibited tumor proliferation and prolonged tumor
survival and regression via apoptosis. MK-2206, a novel AKT
inhibitor, plus cisplatin also showed a synergistic effect in HSNCC
cells.313 The ATP-competitive inhibitor ipatasertib (GDC0068)
demonstrated significant anti-proliferative effects in mouse
xenografts, and the effect in PTEN mutation tumors or with PI3K
alterations was enhanced. The AKT inhibitor capivasertib
(AZD5363) inhibited AKT activation and resensitized saracatinib-
resistant HNSCC cells to saracatinib.314 Capivasertib in combina-
tion with saracatinib inhibited tumor proliferation more efficiently
than either agent in xenografts.

mTOR inhibitors. mTOR inhibitors have been proven to improve
the efficacy of chemotherapy and radiotherapy without increasing
adverse effects by preventing lactate production and inhibiting
HNSCC cell proliferation.315 In an orthotopic xenograft model of
HNSCC, temsirolimus, a potent mTOR inhibitor, exhibited effects
on tumor growth. Temsirolimus plus an anti-EGFR inhibitor had a
synergistic anticancer effect.316 Both temsirolimus and RAD001
treatment showed significant tumor shrinkage, and mTOR
activation was inhibited in HPV-positive oral and cervical
squamous cell carcinoma (SCC) xenografts. Phosphorylation of
its downstream effectors pS6 and pAKT (S473) was observed to be
inhibited.37 RAD001 also prevented tumor growth of cells with
HPV-negative TP53 mutation in vivo through autophagy activ-
ity.317 The novel mTOR inhibitors CZ415, AZD8055, OSI-027
(ASP4876), and CC-223 monotherapy inhibited HNSCC cell growth
in vivo.318–320 mTOR monotherapy and combination with other
treatment regimens all demonstrated promising effects on the
HNSCC xenograft model.
PF-04691502 is an ATP-competitive, dual inhibitor of PI3K and

mTOR administered orally. PF-04691502 has produced significant
radiosensitization in nonmetastatic HNSCC xenografts.321 The
study demonstrated that radiosensitization in all HNSCC cell lines
was identified regardless of p53, and treatment with PF-04691502
downregulated radiosensitization in normal fibroblasts compared
with tumor cells. When the PI3K/AKT/mTOR survival pathway was
activated by radiotherapy, PF-04691502 facilitated the efficacy of
radiotherapy by inhibiting phosphorylation of effectors in the
pathway in HNSCC xenografts, similar to other inhibitors in the
PI3K/AKT/mTOR pathway.322 Antitumor activity was also observed
in HNSCC xenografts with alterations in PIK3CA after treatment
with the dual PI3K-mTOR inhibitor PF-5212384, and the activity
was promoted by the MEK inhibitor PD-0325901.323

BGT226 significantly inhibited tumor growth in HNSCC xeno-
grafts.324,325 The PI3K/Akt/mTOR pathway has been widely
developed in HNSCC. Many inhibitors have been investigated in
preclinical studies.

c-MET inhibitors
BPI-9016 M is a c-MET inhibitor that inhibits tumor growth by
promoting tumor cell apoptosis and facilitating DNA damage.
Treatment with BPI-9016 M promoted the radiosensitization of
tumors in vivo. The volume of esophageal squamous cell
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carcinoma tumor xenografts was significantly reduced in the
combination group compared with each regimen alone.326 In a
xenograft model, the c-MET inhibitor tepotinib also enhanced the
effect of radiotherapy. In addition to radiotherapy, the c-MET
tyrosine kinase inhibitor PF-2341066 enhanced the effect of
cisplatin in HNSCC.327 Not all c-MET inhibitors in combination with
other regimens had a synergistic effect. Capmatinib (c-MET-
specific inhibitor) plus pitavastatin (HMGCR inhibitor) synergisti-
cally inhibited tumor growth and served as a novel treatment
regimen in oral and esophageal cancer. However, pitavastatin
combined with other c-MET inhibitors (crizotinib or MGCD-265)
had no synergistic action on tumors in vivo compared with
capmatinib plus pitavastatin.328 The results showed that pitavas-
tatin and capmatinib were some of the best combination
approaches for inhibiting tumors in vivo, which is worth exploring
in clinical trials. The multiple AXL/MET/VEGFR inhibitor glesatinib
combined with the MEK inhibitor trametinib also exhibited a
remarkable effect in inhibiting tumors. Trametinib as a single
compound decreased the tumor volume up to 72% compared
with 91% in the combination group. The outcomes demonstrated
that mice treated with glesatinib in combination with trametinib
showed a promising increased magnitude and durability of
response.329 The novel c-MET inhibitor TR1801‐ADC (cMet‐
targeted “third‐generation” ADC), PF-2341066 (selective c-MET
inhibitor), cabozantinib (XL-184), and PHA665752 showed promis-
ing effects in HNC in vivo.330–332

RAF inhibitors
RAF inhibitors have a vital role in treating thyroid cancer, and the
efficiency of RAF inhibitors is associated with BRAF status.
Vemurafenib, a BRAF kinase inhibitor, has remarkable effects in
thyroid cancer, but drug resistance results in vemurafenib
treatment failure. LY3009120 (pan-RAF inhibitor) helped overcome
vemurafenib resistance.333,334 PLX4720, a highly selective B-Raf
(V600E) inhibitor, significantly attenuated tumor aggression in vivo
in thyroid cancer with the B-Raf (V600E) mutation, which also
contributed to drug resistance.335,336 A tyrosine kinase inhibitor
(ponatinib) combined with PLX4720 showed amazing synergistic
action in xenograft models of B-Raf (V600E) thyroid cancer, which
also contributed to overcome PLX4720 resistance.337 The c-MET
kinase inhibitor PF-04217903 could enhance the effect of the
MEK/RAF inhibitor CH5126766 in murine anaplastic thyroid
cancers, which provides new help to patients.338 B-Raf (V600E)
inhibitor also acted as a radiosensitizer in B-Raf (V600E)-mutant
thyroid cancer cells.339 RAF inhibitors combined with PI3K
inhibitors or MEK1/2 inhibitors all exhibited promising effects in
thyroid cancer in a mouse model.340,341

MEK and ERK inhibitors
MEK inhibitors, such as U0126, trametinib, selumetinib, AZD6244,
and PD-0325901, demonstrated promising effects in thyroid
cancer and squamous carcinoma in HNC in a mouse model. The
MEK inhibitor trametinib also resensitized saracatinib-cisplatin
HNSCC cells to cisplatin in an orthotopic xenograft model. PD-
0325901 enhanced the radiosensitization of HNSCC in vivo.342,343

The results offer new insight into overcoming chemoresistance
in preclinical HNSCC models and contribute to the further use of
MEK inhibitors in clinical research.344 The MEK inhibitor selume-
tinib has been approved in advanced differentiated thyroid
carcinoma.345 However, some tumors develop MEKi resistance,
but the mechanism remains unknown. After MEK inhibitor
resistance animal models were established successfully, RTK and
SHP2 were observed to be active. SHP2 inhibitor combined with
AZD6244 significantly inhibited the tumor volumes and weight
compared with the control group, which was superior to single-
agent treatment. AZD6244 could also enhance the efficiency of
the selective RTK inhibitor tipifarnib in HRAS-driven dedifferen-
tiated thyroid cancers in vivo.346 In PDX models of thyroid cancer

with different KRAS, BRAF, and NRAS mutations, the MEK inhibitor
selumetinib combined with the MDM2 inhibitor KRT-232 showed a
remarkable effect. Combination treatment prolonged the survival
of mice via MAPK signaling pathway blockade.347 Although
patients could significantly benefit from lenvatinib (E7080, multi-
target inhibitor, mostly for VEGFR-2 (KDR)/VEGFR3 (Flt-4)), the
adverse effect of lenvatinib was not tolerated in patients with
radioiodine-refractory thyroid cancer.348 Lenvatinib plus the MEK
inhibitor selumetinib (AZD6244) promoted the anticancer effect in
mice with anaplastic thyroid cancer. Combining selumetinib with
an FGFR3 inhibitor (PD173074) significantly reduced the tumor
volumes and weight in HNSCC xenografts.349 DEL-22379, a
relatively specific ERK inhibitor, showed remarkable anticancer
efficiency in BRAF-mutant anaplastic thyroid cancer in vivo and
was a candidate target for cancer therapy.350

Notch inhibitors
AL101 (osugacestat) is a potent γ-secretase inhibitor that blocks
the activity of all four Notch receptors. In an adenoid cystic
carcinoma xenograft model with Notch1 mutations, the tumor
volumes and body weight were reduced by AL101, which
provided fairly broad therapeutic prospects in adenoid cystic
carcinoma.351

JAK/STAT inhibitors
AZD1480 is an inhibitor targeting JAK1/JAK2 that has been
investigated in several tumor models. In PDX models from two
independent HNSCC patients, treatment with AZD1480 significantly
decreased tumor volumes and weight by decreasing pSTAT3
Tyr705 phosphorylation.86,352 In accordance with the promising
effect of AZD1480 in HNSCC, another JAK2/STAT3 inhibitor, AG490,
was tested in a HNSCC transgenic mouse model, which not only
inhibited angiogenesis by suppressing the VEGF receptor but also
decreased myeloid-derived suppressor cells.353 AG490 further
suppressed metastasis and tumor cell proliferation in oral
squamous cell carcinoma in vivo.354 The JAK/STAT signaling
pathway was active after radiotherapy, which may contribute to
radiotherapy resistance to reduce the antitumor effect. NVP-
BSK805, an inhibitor of JAK2 kinase, promoted DNA double-
strand breaks to block the cell cycle and suppress DNA repair to
enhance the radiosensitizing effect in esophageal squamous cell
carcinoma in vivo. The results demonstrated an attractive prospect
of NVP-BSK805 in HNSCC.355

CDK4/6 inhibitors
The effect of CDK4/6 inhibitors is a hotpot in HNSCC.356–360

Abemaciclib is the first CDK4/6 inhibitor that has been widely
investigated. In vivo, abemaciclib inhibited cancer cell growth
compared with the model group without inducing tumor
recurrence. The combination of mTOR inhibitors with abemaciclib
enhances its anticancer effect.361 PD-0332991 is a specific inhibitor
of CDK4/6 that has demonstrated potent anticancer effects in
HNSCC. The metastasis of esophageal squamous carcinoma could
also be suppressed by PD-0332991. The mentioned results provide
promising insight into the use of PD-0332991 in clinical trials.362

SHR6390 is another new inhibitor specifically inhibiting CDK4/6.
SHR6390 suppressed tumor cell growth in vitro and suppressed
tumor growth in PDX models.363–365 This kind of inhibitor
suppressed RB phosphorylation and blocked the cell cycle at G1
in vivo. The combination of SHR6390 with paclitaxel or cisplatin
had synergistic action in inhibiting tumor growth in vivo.365 The
expression of cdK4/6 was related to the prognosis of tumors.
Ribociclib (LEE011) is a selective CDK4/6 inhibitor used in

aggressive thyroid cancer via oral administration in a PDX tumor
model.366 Ribociclib promoted the sensitivity of radiation-resistant
esophageal cancer cells by inhibiting YAP1 expression. The
combination of ribociclib with radiation overcame radiotherapy
resistance in HNSCC in vivo.367 Ribociclib has a remarkable
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influence in HPV-negative HNSCC models. However, ribociclib had
no significant efficacy in HPV-positive HNSCC models. In patient-
derived tumor xenograft models, the response to ribociclib is
closely correlated with retinoblastoma protein production.368 The
combination of cetuximab and ribociclib showed no synergistic
effect in the HNSCC model, but the administration of ribociclib
promoted sensitivity to CDK4/6 inhibitors in cetuximab-resistant
HPV-negative PDX models.359

Palbociclib could block the cell cycle at G1 phase by targeting
CDK4/6. In Epstein‒Barr virus-positive HNSCC, palbociclib demon-
strated promising effects and decreased the Epstein‒Barr virus
titer.369 In oral squamous cell carcinoma patient-derived xeno-
grafts, palbociclib showed limited efficiency. The administration of
combination palbociclib with cetuximab was investigated in
preclinical studies, but the effect needs further exploration.370

CDKN2A/2B mutation in PDX models acted as a predictive
biomarker in predicting palbociclib response. PDX of esophageal
squamous cell carcinoma with CDKN2A/2B loss was more sensitive
to CDK4/6 inhibitors than those with wild-type CDKN2A/2B.371

Palbociclib has shown a promising effect in HNSCC, and the
adverse effect of palbociclib is well tolerated. Some drugs have
synergistic effects in treating HNSCC. To further explore the
synergistic effect of palbociclib plus other drugs, etuximab (EGFR
inhibitor), PF-04691502 (PI3K inhibitor), and carboplatin were
evaluated, but the efficiency of those regimens was not
satisfactory. Trametinib, a MEK inhibitor, has shown a remarkable
influence in suppressing HNSCC in vivo. The combination of
palbociclib and trametinib was developed in Detroit 562 cells in
immunodeficient mice. The tumor weight and volume were
reduced by the combination therapy compared with either
monotherapy. No significant profiles were observed after palbo-
ciclib and trametinib combination treatment.372 Palbociclib and
SAHA combination therapy also exhibited a synergistic effect in
suppressing NPC growth.373 LY2835219, a selective CDK4/6
inhibitor, inhibited tumor cell proliferation and blocked the cell
cycle by suppressing CDK4/6-dependent Ser780 phosphorylation,
which showed a potent effect in treating HNSCC. The combination
of LY2835219 with a mTOR inhibitor significantly suppressed
HNSCC tumor growth in vivo.361,374

RET inhibitors
RPI-1, a novel 2-indolinone RET tyrosine kinase inhibitor, has
shown promising results in sporadic papillary thyroid carcinomas
with frequent RET alterations in vivo.375 The therapeutic effect was
quite immediate, and tumor proliferation was efficiently con-
trolled, with the tumor weight reduced to 20% of the control
group. RPI-1 also has remarkable efficacy in MTC xenografts by
facilitating tumor cell apoptosis and inhibiting angiogenesis.376

The results demonstrated that RET oncogene activity is closely
related to the maintenance and survival of MEN2A-type MTC,
which contributed to the further administration of RPI-1 in treating
thyroid cancer with RET alternation.
NVP-AST487 is another novel RET tyrosine kinase inhibitor that

can also inhibit KDR, Flt-4, Flt-3, c-Kit, and c-Abl.377 The effect of
NVP-AST487 was identified in vivo in medullary thyroid cancer
with oncogenic RET. The efficiency of NVP-AST487 was observed
to be dose-dependent on RET expression. In the mice treated with
50mg/kg, the tumor volumes, weight and RET production all
exhibited a dramatic decrease. Some multiple target inhibitors,
vandetanib and XL-184, were reported to target RET in addition to
EGF-R2, VEGF-R3, and EGFR.285,378,379 As discussed above,
vandetanib showed remarkable effects in adenoid cystic carci-
noma, and XL-184 also presented promising results and a
moderate effect in HNC by targeting other receptors.380

Novel inhibitors
JNK inhibitors, such as SP600125 and AS601245, have been
evaluated in preclinical studies in vivo.381 The focal adhesion

kinase (FAK) inhibitor defactinib also exhibited an excellent effect
in HNSCC. In addition, dual inhibitors have been developed and
investigated in xenograft models. Bosutinib (SKI-606) is a second-
generation tyrosine kinase inhibitor that acts as a dual inhibitor of
Src and Abl. Bosutinib demonstrated a remarkable effect in
suppressing tumor growth in vivo.382 APG-1252-M1, a dual
inhibitor of BCL-2/BCL-XL, had a moderate effect in NPC in vivo.
The combination of gemcitabine with APG-1252-M1 led to a
promising antitumor effect.383

TARGETED THERAPY IN CLINICAL
EGFR inhibitors
EGFR inhibition in locally/regionally advanced head and neck cancer
(LA-HNC). Cetuximab is a chimeric mouse-human monoclonal
IgG1 antibody against the extracellular domain of EGFR that can
inhibit the functions of EGFR and induce cancer cell death via
antibody-dependent NK cell-mediated cytotoxicity (ADCC).384 In
2001, Robert et al. first reported that cetuximab is well tolerated in
combination with radiotherapy in LA-HNC patients.24 Later, a
multinational randomized phase 3 study demonstrated that the
addition of cetuximab to concomitant high-dose radiotherapy
significantly improved disease control and prolonged survival (OS:
49.0 vs. 29.3 months; progression-free survival (PFS): 17.1 months
vs. 12.4 months) in locally advanced (LA)-HNSCC patients (Table
1).25 Except for acneiform rash and infusion reactions, no
significant difference was observed in the incidence of other
severe adverse effects between groups, including mucositis,
nausea, and radiation dermatitis. These promising results allowed
the FDA approval of cetuximab in combination with radiotherapy
for the treatment of LA-HNSCC in 2006. The 5-year follow-up of
this study also supported the superiority of the combination
strategy over radiotherapy alone.385 Moreover, cetuximab-treated
patients who experienced serious rash exhibited better survival
than those with no or low-grade rash.385 However, this does not
necessarily mean that cetuximab plus radiotherapy can be an
effective and safe replacement for the standard chemoradiation
composed of cisplatin and radiotherapy. Head-to-head compar-
ison studies indicated that cetuximab+ radiotherapy is inferior to
the standard chemoradiotherapy (cisplatin+ radiotherapy) strat-
egy, with reduced treatment compliance, comparable efficacy
outcomes, and increased toxicities.386–388 In HPV-positive patients,
the addition of cetuximab to radiotherapy showed lower local
disease control and shorter survival outcomes than the addition of
cisplatin.389,390 Cetuximab also brings no additional benefits when
combined with cisplatin plus radiotherapy.391,392 Therefore,
cisplatin remained the first-choice radiosensitizer in all eligible
patients, especially for those with HPV infection.
Induction chemotherapy (ICT) with taxanes, cisplatin, and 5-FU

(TPF) before receiving chemoradiotherapy or radiotherapy
resulted in increased tumor responses and reduced failure in
local control and distant metastasis in LA-HNSCC.393,394 Whether
the addition of cetuximab to ICT regimens brings more benefits
than drawbacks remains controversial. In several phase 2 clinical
trials, adding cetuximab to the TPF regimen resulted in tolerable
and long-term control of LA-HNSCC, especially in HPV-negative
cases.395,396 However, the head-to-head DeLOS-II trial indicated
that the addition of cetuximab to the TPF ICT regimen (TPF-C)
showed no superiority in survival outcomes over TPF alone.397

Nevertheless, cetuximab can be considered an effective and
tolerable substitute for 5-FU in this regime, with a comparable
overall response rate (ORR) and OS and slightly fewer serious
adverse effects.398 Cetuximab, paclitaxel, and carboplatin (PCC) is
an alternative ICT regimen that is safe and could help induce a
strong local response and promising survival.399,400

Other monoclonal antibodies of EGFR are still under intensive
investigation, including panitumumab, nimotuzumab, zalutumu-
mab, etc. Similar to cetuximab, panitumumab cannot replace
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cisplatin when combined with radiotherapy for LA-HNSCC
according to the results from the CONCERT-2401 and HN.6402

trials. Panitumumab plus radiotherapy showed no advantage in
improving the local control rate, survival time, and quality of life in
treated patients compared with cisplatin plus radiotherapy.
Meanwhile, adding panitumumab to the standard chemora-
diotherapy strategy failed to provide any benefit,403 making
panitumumab an unsuitable choice for LA-HNSCC patients. The
addition of nimotuzumab to radiotherapy with or without cisplatin
provided long-term survival benefits for up to five years and
improved the complete response rate in LA-HNSCC patients.404,405

In a phase 3 clinical trial involving 536 LA-HNSCC patients,
nimotuzumab plus cisplatin and radiotherapy significantly
improved the locoregional control rate and PFS without negatively
impacting the quality of life.406,407 Except for a higher incidence of
mucositis, other adverse effects of grade 3 or more were similar
with or without nimotuzumab.406 The promising results strongly
supported the addition of nimotuzumab to LA-HNSCC patients
who are treated with cisplatin and radiotherapy. Another
monoclonal antibody, zalutumumab, extended the survival time
from 8.4 to 9.9 weeks in recurrent or metastatic (R/M) HNSCC
patients who had failed platinum-based chemotherapy.408 Mean-
while, moderate-to-severe skin rash during zalutumumab treat-
ment was related to superior OS, independent of HPV infection
and p16 status.409

Some small molecular inhibitors of EGFR are also under
investigation for the management of HNSCC, including selective
inhibitors (e.g., gefitinib, erlotinib) and dual-target inhibitors (e.g.,
afatinib, lapatinib, and dacomitinib). Gefitinib is an orally
administered selective inhibitor of EGFR. When administered
fluorouracil, hydroxyurea, and radiotherapy, gefitinib demon-
strated a strong complete response rate and favorable survival
outcomes (4-year OS: 74%; PFS: 72%) after a median follow-up of
3.5 years in LA-HNSCC patients.410 Lapatinib monotherapy also
showed evidence of clinical activity with an ORR of 17% in LA-
HNSCC patients compared with placebo.411 Lapatinib plus
chemoradiotherapy is safe and induces a high complete response
rate and long median PFS in p16-negative LA-HNSCC patients.412

However, the addition of lapatinib to chemoradiotherapy,
followed by lapatinib maintenance brought additional toxicity
with limited efficacy in patients with high-risk HNSCC after
surgery.413 Therefore, lapatinib is unsuitable for long-term
maintenance treatment.

EGFR inhibition in recurrent or metastatic head and neck cancer (R/
M-HNC). Cetuximab monotherapy was well tolerated and
induced a response rate of 13% in R/M-HNSCC patients.414

Combining cetuximab with cisplatin contributed to a significant
improvement in ORR (26% vs. 10%) but failed to prolong survival
for R/M-HNSCC patients when compared with cisplatin mono-
therapy.415–417 In the landmark EXTREME study, cetuximab
combined with platinum (cisplatin or carboplatin) and fluorouracil
(PCF) resulted in improved median PFS (5.6 months vs.
3.3 months), OS (10.1 months vs. 7.4 months), and response rates
(36% vs. 20%) compared with chemotherapy alone.26 This led to
the approval of cetuximab in combination with platinum-based
therapy with fluorouracil as the first-line treatment for R/M-HNSCC
patients. However, this standard of care regime has some
disadvantages in clinical use, including the requirement of
hospitalization to ensure proper hydration and continuous
infusion of fluorouracil and severe toxicities such as nausea and
anorexia. To improve the feasibility and reduce the adverse
effects, cetuximab is under investigation for combining different
chemotherapeutics in the treatment of R/M-HNSCC. For instance,
cetuximab combined with paclitaxel,418 docetaxel and cisplatin,419

or paclitaxel and platinum showed promising activity and
tolerability as first-line treatment in R/M-HNSCC patients.420,421

The cetuximab, carboplatin, and paclitaxel (PCC) regimen induced

an ORR of 40%, median OS of 14.7 months, and median PFS of
5.2 months, comparable to those reported with PCF treat-
ment.26,420 Further studies involving more patients are needed
to confirm the efficacy of PCC and compare it with PCF. In the
GORTEC 2014-01 TPExtreme phase 2 study, although a combina-
tion of cetuximab, docetaxel, and cisplatin (TPEx) showed no
significant improvement in survival outcomes in R/M-HNSCC
patients when compared with the PCF regimen, it showed a
significantly better safety profile, with fewer people experiencing
grade 3 or worse adverse effects (81% vs. 93%).422 Therefore, the
TPEx regime can be a reliable alternative to the PCF regime in the
first-line treatment of R/M-HNSCC patients. In addition to
chemotherapy, cetuximab combined with the CDK4/6 inhibitor
palbociclib,423 VEGF monoclonal antibody bevacizumab,424 or
immunotherapy (pembrolizumab425 and nivolumab426) also
showed promising clinical activity and safety profiles in R/M-
HNSCC patients, including platinum-resistant and cetuximab-
resistant patients.
In the phase 3 SPECTRUM clinical study, the addition of

panitumumab to cisplatin and fluorouracil resulted in longer
median PFS (5.8 months vs. 4.6 months) than chemotherapy alone
in R/M-HNSCC patients, especially in patients with p16-negative
tumors.427 Meanwhile, panitumumab and paclitaxel combination
as first-line treatment contributed to almost 50% of confirmed
ORR and median PFS of 7.5 months in R/M-HNSCC patients,
comparable to the previously reported efficacy of
cetuximab–paclitaxel or PCF regimes.26,418,428 Panitumumab,
docetaxel, and cisplatin may have the potential to improve PFS
by 1.4 months in R/M-HNSCC patients. However, there is a
tendency for a decrease in OS in the panitumumab-containing
regimen compared to chemotherapy alone.429 Therefore, further
studies are necessary to evaluate the advantages and disadvan-
tages of this triplet combination. A combination of nimotuzumab,
cisplatin, and fluorouracil also demonstrated promising efficacy,
including both overall response, survival outcomes, and toler-
ability in recurrent metastatic NPC (R/M-NPC) patients.430 These
results are consistent with a retrospective study evaluating the
antitumor activity and toxicity of nimotuzumab in combination
with chemotherapy as first-treatment in 203 R/M-NPC patients.431

In a phase 3 study performed on 486 patients, gefitinib
monotherapy failed to improve the ORR and survival outcomes
in R/M-HNSCC patients when compared to methotrexate.432 The
addition of gefitinib to docetaxel also failed to improve the clinical
outcomes of R/M-HNSCC patients with poor prognosis.433 Thus,
gefitinib may be used with caution in R/M-HNSCC patients.
Erlotinib monotherapy is well tolerated and yields prolonged
disease stabilization in heavily pretreated R/M-HNSCC patients.434

Erlotinib in combination with the chemotherapeutic cisplatin
with435 or without436 docetaxel exhibited favorable antitumor
activity and tolerability comparable to historical controls in R/M-
HNSCC, supporting further evaluation of these regimens. Dual-
target inhibitors, such as afatinib and dacomitinib, are also under
clinical evaluation against R/M-HNSCC. As an irreversible blocker
of the ErbB family, afatinib monotherapy induced significantly
prolonged PFS (2.6 vs. 1.7 months) versus methotrexate as
second-line treatment in R/M-HNSCC patients with manageable
safety profiles in the phase 3 LUX-Head & Neck 1 study.437,438 The
most common serious adverse effects were afatinib-related skin
rash/acne and diarrhea. Subgroup analysis indicated that median
PFS favored afatinib in patients with p16-negative, EGFR-
amplified, HER3-low, and PTEN-high tumors. However, in patients
with p16-positive disease, afatinib failed to display an advantage
in enhancing PFS.439 Therefore, it is necessary to examine the
p16 status of R/M-HNSCC before giving afatinib treatment to
guarantee patients’ benefits. Similar results were obtained from
the LUX-Head & Neck 3 study carried out in an Asian population,
demonstrating the superiority and feasibility of afatinib over
methotrexate as a second-line treatment for R/M-HNSCC
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patients.440 Afatinib may also improve the efficacy of pembroli-
zumab by promoting antigen presentation machinery in the
tumor microenvironment.441 Dacomitinib is another paninhibitor
of the ErbB family that demonstrated clinical activity and
acceptable toxicity in platinum-refractory HNSCC patients.442,443

Poziotinib, a dual inhibitor of EGFR and HER2, exhibited clinically
meaningful efficacy (ORR: 24%, median PFS: 4.0 months, median
OS: 7.6 months) in R/M-HNSCC patients,444 which was noninferior
to that induced by afatinib monotherapy.437,438

VEGF inhibitors
Sorafenib is an orally active inhibitor of multiple kinases, including
BRAF, VEGFR1, and VEGFR-2, which can inhibit cancer cell
proliferation and angiogenesis.445,446 In the phase 3 DECISION
study, sorafenib significantly improved the ORR (12.2% vs. 0.5%)
and PFS (10.8 vs. 5.8 months) versus placebo in patients with
locally advanced or metastatic, radioactive iodine-refractory,
differentiated thyroid cancer.447 Most AEs were grade 1 or 2,
and no unexpected AEs occurred. Based on the promising results,
sorafenib received FDA and EMA approval for the treatment of
radioactive iodine-refractory or metastatic differentiated thyroid
cancer (DTC). Further analysis of the DECISION study revealed that
elevated baseline levels of VEGFR and thyroglobulin and the
presence of RAS mutations were associated with poor PFS,
whereas BRAF mutations were related to better PFS.448 In R/M-
NPC patients, sorafenib showed only modest anticancer activity,
with an ORR of 3.7% and an OS of 4.2 months.449 To improve the
efficacy, sorafenib was combined with cisplatin and 5-fluorouracil.
This triplet combination strategy is tolerable and highly effective
in treating R/M-NPC patients, with the ORR reaching 77.8% and
favorable survival outcomes (PFS: 7.2 months, OS: 11.8 months).450

Lenvatinib is an oral inhibitor of VEGFR1/2/3, FGFR1, platelet-
derived growth factor receptor α (PDGFRα), RET, and c-kit. In the
phase 3 SELECT study, lenvatinib yielded a significantly extended
PFS (18.3 vs. 3.6 months) and improved response rate (64.8% vs.
1.5%) compared with placebo, including elevated complete
response (1.5% vs. 0%), in radioiodine-refractory thyroid cancer
patients of any age.451,452 This study promoted the approval of
lenvatinib in treating patients with progressive DTC that
progressed after radioactive iodine therapy. Despite the promising
results from DTC, lenvatinib seems to be disappointing in treating
anaplastic thyroid cancer.453,454

Sunitinib and apatinib are also multitarget inhibitors of VEGFR,
PDGFR, and c-kit, which have been approved for the management
of gastrointestinal stromal tumors, renal cell carcinoma, pancreatic
cancer, and lung cancer.455–459 Sunitinib monotherapy only
showed modest clinical activity in R/M-HNSCC patients and was
associated with a high incidence of hemorrhage.460,461 Although
sunitinib may be effective in managing thyroid cancer, serious
side effects have also been reported, including asthenia/fatigue
and mucosal and cutaneous toxicities.462,463 Further studies
should focus on different combination strategies to improve
sunitinib’s efficacy and safety. In the REALITY placebo-controlled
phase 3 clinical trial, apatinib monotherapy exhibited significant
promising benefits in both enhanced ORR (54.3% vs. 2.2%) and
prolonged survival (both PFS and OS) with favorable safety
profiles, strongly supporting the application of apatinib in LA- or
metastatic radioactive iodine-refractory DTC patients.464 Apatinib
may also show efficacy in patients with R/M-NPC465–467 and locally
advanced oral squamous cell carcinoma468 alone or in combina-
tion. Other multitarge inhibitors, including anlotinib469–471 and
donafenib,472 have shown antitumor activity with favorable safety
in thyroid cancer patients in early phase clinical trials. More studies
are warranted to confirm these results.
Bevacizumab is a humanized anti-VEGF monoclonal antibody

approved for the treatment of various cancer types, including
colon cancer, lung cancer, and breast cancer. Although bevacizu-
mab has not been licensed for use in HNC, preclinical and clinical

studies have confirmed its effectiveness and tolerability in
improving the outcomes of HNC patients. The addition of
bevacizumab to platinum-based chemotherapy473 or nonplatinum
pemetrexed474 significantly improved the response rate
(30–35.5%) and survival (OS: 11.3–12.6 months) compared to
chemotherapy alone in R/M-HNSCC patients. However, it should
be noted that bevacizumab treatment may result in a significantly
increased rate of serious bleeding. Whether bevacizumab can
increase the sensitivity of HNSCC patients to chemoradiotherapy
remains controversial. It has been reported that the addition of
bevacizumab to standard chemoradiotherapy (radiotherapy +
cisplatin + fluorouracil) is effective and highly tolerable in LA-NPC
patients with no hemorrhage of grade 3 to 5. The 2-year OS and
PFS reached 90.9% and 83.7, respectively, with a median follow-up
of 2.5 years.475 However, a phase 2 clinical trial evaluating the
effect of bevacizumab plus a different chemoradiotherapy regi-
men (5-fluorouracil, hydroxyurea, and radiotherapy) in
intermediate-stage and T4N0 HNC was terminated in advance
because of locoregional progression in the bevacizumab arm,476

suggesting the potential of bevacizumab to promote tumor
progression in this regime. Accumulating studies have also
indicated that there is crosstalk between the EGFR and VEGF
pathways and upregulation of VEGF-related angiogenesis-
mediated resistance to EGFR inhibition.477 Consistently, simulta-
neous inhibition of EGFR (cetuximab or erlotinib) and VEGF
pathways (bevacizumab) was reported to be well tolerated and
active in R/M-HNSCC patients, with an ORR of 15–16%, PFS of
2.8–4.1 months and OS of 7.1–7.5 months, indicating bevacizu-
mab’s role in improving patients’ sensitivity to EGFR-targeted
therapy.424,478 Although dual EGFR and VEGF inhibition combined
with concurrent chemoradiation is effective in LA-HNSCC
patients,479 a head-to-head phase 2 study indicated that the
addition of bevacizumab failed to bring additional efficacy to
cetuximab-containing chemoradiotherapy.480 In contrast, the
addition of bevacizumab increased the hemorrhagic rate.480

Therefore, more studies concerning the effect of bevacizumab
on chemoradiotherapy in HNSCC patients are warranted, either
alone or in combination with EGFR-targeted agents.
Therefore, the VEGFR pathway is a promising therapeutic target

in HNSCC, especially in thyroid cancer. Further studies should
focus on minimizing unwanted adverse effects, especially bleed-
ing events, by developing more tolerable agents with biomarker-
driven studies.

Inhibition of the PI3K/AKT/mTOR pathway
PI3K inhibitors. PI3K inhibitors can be divided into two different
types: ATP-competitive (e.g., alpelisib, buparlisib, copanlisib) and
noncompetitive (PX-866) inhibitors. Almost all the inhibitors are
panclass I inhibitors except for alpelisib, which is isoform-specific
and targets only the p110α of PI3K.37 Clinical evaluation of PI3K
inhibitors in HNC is mainly in early phase clinical trials. In R/M-
HNSCC, the addition of buparlisib to cetuximab is well tolerated
and significantly improved the disease control rate (49% vs. 91%)
and prolonged survival outcomes (PFS: 63 vs. 111 days; OS: 143 vs.
206 days) compared to buparlisib monotherapy.481,482 Similarly, a
combination of buparlisib and paclitaxel showed manageable
safety profiles and superiority in median PFS (3.5 vs. 4.6 months) in
R/M-HNSCC patients who received previous platinum treatment,
indicating the potential of this combination as a second-line
treatment strategy.483 Biomarker analysis of the molecular
alterations revealed that TP53 alterations, HPV-negative status,
low mutational load, or high infiltration of CD8 T cells are
indicators of survival benefit after treatment with buparlisib and
paclitaxel.484 Based on these promising results, a randomized
phase 3 clinical trial is recruiting 483 patients to assess the efficacy
and safety of buparlisib plus paclitaxel compared to paclitaxel
alone in R/M-HNSCC patients (NCT04338399). Two phase 1 studies
indicated that alpelisib is effective and has a manageable safety
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profile at dosages of 200 mg-250 mg when combined with
cisplatin-based chemoradiotherapy or cetuximab plus radiother-
apy in LA-HNSCC patients.485,486 Further clinical trials are needed
to evaluate its efficacy in HNC patients. However, according to the
currently available data, copanlisib and PX-866 demonstrated
unfavorable toxicity or no improvement in clinical outcomes when
combined with cetuximab in R/M-HNSCC patients, regardless of
HPV infection status.487,488

AKT inhibitors. Only three AKT inhibitors have been investigated
against HNC, including MK-2206, perifosine, and ipatasertib.
Serious adverse effects of AKT inhibitors include skin rash,
hyperglycemia, fatigue, and ulcerative keratitis.489–491 Clinical data
are still insufficient about the efficacy of AKT inhibitors in HNC. In a
phase 2 clinical trial, perifosine failed to show single-agent activity
in R/M-HNSCC patients, hindering further exploration of perifosine
as monotherapy in this disease.492 The results of two ongoing
phase 2 clinical trials will help us better understand how AKT
inhibitors act in HNC patients (NCT01306045 and NCT05172258).

mTOR inhibitors. Current research on mTOR inhibitors in HNC has
concentrated on two analogs of rapamycin, everolimus, and
temsirolimus. In HNSCC patients, whether everolimus treatment
brings more benefits than drawbacks remains controversial. Some
phase 2 clinical trials indicated that everolimus had limited activity
with a low response rate as a monotherapy or in combination with
erlotinib.493–495 Two studies investigating the efficacy and safety
of everolimus in combination with cisplatin and radiotherapy were
even terminated as a result of funding problems and toxicity
(NCT01057277, NCT01009346). However, other phase 2 studies
reported that everolimus treatment displayed significant anti-
tumor effects in aggressive radioiodine-refractory or advanced
follicular-derived thyroid cancer, with a high rate of disease
control, relatively low toxicity profile, and median PFS of
9 months.496,497 For temsirolimus, in the TEMHEAD phase 2 study,
temsirolimus yielded modest antitumor activity in R/M-HNSCC
patients with a PFS of 56 days and OS of 152 days,498 which is
similar to the history of single-agent cetuximab in platinum-failed
patients.414 Baseline caspase 3 activity is inversely correlated with
PFS in temsirolimus-treated HNSCC patients, making it a
potentially useful noninvasive biomarker of sensitivity to mTOR
inhibitors.499 Recently, studies have focused on exploring effective
combination strategies for temsirolimus. In a phase 2 study,
temsirolimus plus low-dose chemotherapy (carboplatin and
paclitaxel) induced a relatively high response rate (41.7%) and
long survival (OS: 12.8 months; PFS: 5.9 months) compared to
other treatments in R/M-HNSCC patients.500 However, there were
no patients receiving only chemotherapy in this study, making it
difficult to evaluate the additional benefits of temsirolimus. In
another randomized phase 2 study, a combination of temsirolimus
and cetuximab induced a significantly high response in
cetuximab-resistant R/M-HNSCC patients compared with temsir-
olimus alone, although no significant improvement in PFS was
observed, indicating that dual blockade of mTOR and EGFR
pathways may be a potential strategy to overcome EGFR
resistance.501

C-MET inhibitors
C-MET overexpression is common in HNSCC patients, and
overactivation of MET signaling contributes to resistance to anti-
EGFR therapy.108,502 Most c-MET inhibitors are multitarget
inhibitors that mainly inhibit the function of c-MET. For instance,
cabozantinib is an oral inhibitor of multiple kinases, including c-
MET, VEGFR-2, RET, KIT, AXL, and FLT3.503 In an international,
randomized, placebo-controlled phase 3 clinical trial, cabozantinib
monotherapy (140 mg/d) achieved a significant increase in
objective response rate and PFS with acceptable toxicity in 330
patients with metastatic MTC.504,505 Prolonged PFS can be

observed in all subgroups of patients with different ages, previous
treatments and RET mutation statuses.504,506 Based on these
results, in November 2012, cabozantinib received FDA approval for
the treatment of metastatic MTC. Cabozantinib as salvage therapy
for radioiodine-refractory DTC who progressed after treatment
with VEGFR targeted therapy also increased the objective
response rate by 15% and prolonged PFS, indicating the potential
of cabozantinib as a treatment option for thyroid cancer patients
with no available standard of care.507,508 Therefore, cabozantinib
was soon approved as a second-line treatment for adult and
pediatric patients with LA- or metastatic DTC who are ineligible or
refractory to radioactive iodine. In contrast, other c-MET inhibitors,
including tivantinib and foretinib, failed to show clinical benefits
over risk in patients with R/M-HNSCC alone or combined with
cetuximab.509,510

RET inhibitors
Selpercatinib (LOXO-292) is an ATP-competitive, highly selective
small molecule inhibitor of RET kinase. In the phase 1/2 LIBRETTO-
001 trial, selpercatinib exhibited durable efficacy with mostly low-
grade adverse effects in patients with RET-altered thyroid cancer,
including RET-mutant medullary thyroid cancer and RET fusion-
positive thyroid cancer.511 The response rate and PFS were
drastically high in all groups of patients, regardless of previous
vandetanib or cabozantinib treatment. Owing to the promising
results, selpercatinib received accelerated approval for the
treatment of patients with RET-mutant MTC or advanced or
metastatic RET fusion-positive thyroid cancer in 2020. Since its
initial approval, selpercatinib has altered the treatment paradigm
for cancer patients with RET mutations. In 2022, the approval of
selpercatinib has been expanded to all kinds of solid tumors with
a RET gene fusion. Full approval of selpercatinib may be
contingent on the confirmation of the clinical benefits from
several ongoing phase 3 clinical trials (NCT04819100,
NCT04211337, NCT04194944). Vandetanib is a once-daily oral
triple-inhibitor of the RET, VEGFR, and EGFR signaling pathways.
Vandetanib monotherapy successfully increased the objective
response and survival of patients with advanced or metastatic
thyroid cancer, with the estimated PFS reaching up to 30.5 months
compared to placebo (19.3 months).512 Soon, the favorable
efficacy of vandetanib promoted its FDA approval in treating
advanced MTC in 2011. Pralsetinib is another selective and strong
inhibitor of RET that also showed clinical activity and safety in RET-
altered thyroid cancers in a phase 1/2 study.513 Further studies are
needed to confirm its performance in the clinic.

Other targeted therapies
Some other signaling pathways can be targeted and evaluated in
clinical trials for HNC, such as activin receptor-like kinase 1 (ALK1),
CDK, STAT3, and indoleamine 2,3-dioxygenase 1 (IDO1). A
comprehensive understanding and inhibitor directions for target-
ing signaling pathways in clinical trials in HNC treatment are
shown in Fig. 6. Most of these therapeutic agents are still under
clinical trials with limited data released about their efficacy and
safety. Epacadostat is a strong and selective inhibitor of the IDO1
enzyme. It showed favorable safety and antitumor efficacy in
combination with pembrolizumab in multiple advanced solid
tumors, including HNSCC, in a multicenter, open-label phase 1/2
trial.514 A phase 3 study is ongoing to assess the efficacy and
safety of epacadostat plus pembrolizumab, pembrolizumab
monotherapy, and the EXTREME regimen in R/M-HNSCC patients
(NCT03358472), the results of which will help us gain a
comprehensive understanding of the clinical activity of epacado-
stat. Palbociclib, an inhibitor of CDK4/6, showed synergistic effects
with cetuximab in patients with platinum and cetuximab double-
resistant, HPV-unrelated HNSCC in a phase 2 study, suggesting its
role in overcoming resistance to EGFR-targeted therapy.423

Dalantercept is a blocker of ALK1 signaling and angiogenesis,
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which showed a favorable safety profile but only modest activity
in R/M-HNSCC patients as monotherapy.515

CONCLUSION
Although aggressive treatment regimens of inhibitors, chemother-
apy, radiotherapy, and surgical resection have been used in HNC,
the treatment response in HNC is poor without significant
improvement. The heterogeneity status of HNC led to the
development of novel and specific effectors for identifying
superior therapeutic regimens. Over the past decades, a
comprehensive understanding of the pathogenesis, drug resis-
tance mechanism, and alterations have been investigated in HNC.
Various novel small molecular inhibitor monotherapies or
combinations with other regimens have been developed in HNC
in preclinical models and clinical trials. These new drugs have
demonstrated remarkable responses and moderate adverse
effects by inhibiting targeted gene expression. Compared with
traditional regimens such as chemotherapy and radiotherapy,
small molecular inhibitors result in fewer adverse effects and
improve the tolerance of patients.
In this review, classic targets, such as the PI3K/AKT/mTOR

pathway, EGFR signaling, VEGF signaling, FGFR signaling, and
MEK/ERK signaling, are discussed. Some novel targets, including
MET signaling, CDK4/6 signaling, and Notch signaling, were also

involved in this research and need further investigation. EGFR
signaling in HNC is the central signaling pathway in targeted
treatment. EGFR is an essential effector in convergent signaling
pathways, which is also the basis of oncogenic signaling
inhibition. TP53 is one of the prominently mutated genes in
HNC and is closely related to tumor progression, recurrence and
therapeutic resistance. TP53 plays a critical role in regulating HNC.
Other gene alterations facilitating the process of HNC are also
discussed in this review.
Radiotherapy plays an important role in treating HNSCC.

Furthermore, radioresistance leads to the treatment failure of
advanced-stage HNSCC. Inhibitors promoting radiosensitivity are
worth thoroughly research. Inhibitors of the PI3K/AKT/mTOR
pathway, EGFR signaling, VEGF signaling, FGFR signaling, MEK/
ERK signaling, MET signaling, CDK4/6 signaling, and Notch
signaling have been investigated in promoting radiosensitivity.
Chemotherapy and chemoradiotherapy have been shown to

improve clinical outcomes and are considered standard-of-care
strategies for HNSCC. Cisplatin-based regimens were the most
commonly used combination as a conventional treatment
strategy or ICT. However, chemotherapy-induced toxicity is a
major concern in HNSCC treatment. Therefore, efforts are focusing
on developing multicombination therapy with improved efficacy
and safety. Great success has been achieved with the develop-
ment of cetuximab, which has been approved for the treatment of

Fig. 6 Comprehensive understanding and inhibitor direction for targeting signaling pathways in clinical trials in HNC treatment. EGFR
epidermal growth factor receptor, MET mesenchymal–epithelial transition factor, AKT serine/threonine-specific protein kinase, mTOR
mammalian target of rapamycin, CDK cyclin-dependent kinase, VEGF vascular endothelial growth factor, JAK jenus-activated kinase, STAT
signal transducer and activator of transcription, mAb monoclonal antibody, RET rearranged during transfection, p phosphorylation
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R/M-HNSCC patients in combination with platinum-based therapy
and fluorouracil as first-line therapy. Inspired by the triad,
scientists are exploring new combination strategies involving
other targeted therapeutics and chemotherapeutics. Some results
are promising, while others are obscure. For instance, a combina-
tion of panitumumab, cisplatin, and fluorouracil prolonged
survival in R/M-HNSCC patients when compared with chemor-
adiotherapy.427 In contrast, it has been reported that adding
cetuximab to the TPF ICT regimen showed no superiority in clinical
outcomes over ICT alone in the DeLOS-II trial.397 Therefore, more
studies are necessary to guide the application of targeted
therapies and chemotherapies.
CDK4/6 inhibition provides new hope for HPV-negative tumor

patients. The response to CDK4/6 inhibitors in HPV-negative
HNSCC patients was favorable.516 HPV-positive HNSCC patients
could not benefit from CDK4/6 inhibitors. However, it seems that
not all HPV-negative HNSCC patients could benefit from inhibitors.
Further investigation of CDK4/6 inhibitors in HPV-negative HNSCC
patients should be developed.517,518 The mechanism of CDK4/6
resistance was also explored, which provided considerate
predictive biomarkers in predicting the prognosis of the CDK4/6
response.
RET inhibitors have shown remarkable effects in clinical trials.

Owing to the promising results, selpercatinib received accelerated
approval for the treatment of patients with RET-mutant MTC or
advanced or metastatic RET fusion-positive thyroid cancer in 2020.
In 2022, the approval of selpercatinib has been expanded to all
kinds of solid tumors with a RET gene fusion. Further administra-
tion of RET inhibitors is expected.
Although targeted therapies have achieved satisfactory effects

in selected patients with specific alterations, the effect of some
targeted therapies is far from desirable. Many inhibitors have been
approved for treating patients with EGFR alterations. Gefitinib is
reported to be effective in NSCLC patients with EGFR exon 19
deletions or exon 21 (L858R) mutations, which might result in
undesirable effects in ~15% of HNSCC patients.519 In patients with
an unfavorable response rate to EGFR-targeted therapies, some
articles demonstrated that these patients may also develop drug
resistance.520,521 It was reported that multiple downstream
effectors served as substitutive signaling and were discovered to
be continuously activated, which led to EGFR inhibitor resis-
tance.522 Only 5% of HNC patients have EGFR alterations, which
may contribute to the limited effectiveness of tyrosine kinase
inhibitors.523 Genetic sequencing was used to identify specific
targets among various types of cancers. However, enormous
genetic heterogeneity and precise alterations in genomes result in
targeted therapy failure in specific selected humans. Therefore, it
is important to identify the heterogeneity of tumors to help
choose efficient small molecule inhibitors.
The response to targeted therapies relies on its specific target in

tumor tissue. However, off-target side effects may lead to
treatment failure and severe adverse effects.524 The bystander
effect may also result in treatment failure. Antibody-directed
enzyme prodrug therapy consists of a tumor-specific antibody and
a drug-activating enzyme, which may promote the antibody
action on targeted tissues.525–527 Some small molecule inhibitors
belonging to antibody-directed enzyme prodrug therapy exist
between antigen-positive and antigen-negative cancer cells,
leading to the bystander effect.525 The bystander effect could be
avoided by regulating the interval time between the enzyme
and drugs.
This information offered new insights into treating HNC and

different cancers at distinct sites with various pathological
subtypes that can be treated by various regimens. The rate of
survival and severe toxicities was improved after novel treatment
regimens. Multiple studies in progress could contribute to the
specific use of novel compounds in therapeutic strategies and
precisely identify patients with favorable outcomes via relatively

predictive effectors. Due to moderate adverse effects, small
molecular inhibitors are still in urgent demand, but the treatment
response needs further improvement. Collectively, thorough and
comprehensive studies offer more knowledge about the mechan-
isms of HNC, which has a potential role in preventing and treating
HNC. The clinical translation of new inhibitors is still crucial, and
combining new agents with traditional regimens also has great
potency in treating HNC.
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