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Single-cell transcriptomic profiling reveals the tumor
heterogeneity of small-cell lung cancer
Yanhua Tian 1, Qingqing Li 2,3, Zhenlin Yang 4, Shu Zhang2,3, Jiachen Xu1, Zhijie Wang1, Hua Bai1, Jianchun Duan1, Bo Zheng4,
Wen Li2,3,5, Yueli Cui2,3, Xin Wang4, Rui Wan1, Kailun Fei1, Jia Zhong1, Shugeng Gao 1, Jie He1, Carl M. Gay6, Jianjun Zhang 6,
Jie Wang1✉ and Fuchou Tang2,3,5,7✉

Small-cell lung cancer (SCLC) is the most aggressive and lethal subtype of lung cancer, for which, better understandings of its
biology are urgently needed. Single-cell sequencing technologies provide an opportunity to profile individual cells within the tumor
microenvironment (TME) and investigate their roles in tumorigenic processes. Here, we performed high-precision single-cell
transcriptomic analysis of ~5000 individual cells from primary tumors (PTs) and matched normal adjacent tissues (NATs) from 11
SCLC patients, including one patient with both PT and relapsed tumor (RT). The comparison revealed an immunosuppressive
landscape of human SCLC. Malignant cells in SCLC tumors exhibited diverse states mainly related to the cell cycle, immune, and
hypoxic properties. Our data also revealed the intratumor heterogeneity (ITH) of key transcription factors (TFs) in SCLC and related
gene expression patterns and functions. The non-neuroendocrine (non-NE) tumors were correlated with increased inflammatory
gene signatures and immune cell infiltrates in SCLC, which contributed to better responses to immune checkpoint inhibitors. These
findings indicate a significant heterogeneity of human SCLC, and intensive crosstalk between cancer cells and the TME at single-cell
resolution, and thus, set the stage for a better understanding of the biology of SCLC as well as for developing new therapeutics
for SCLC.
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INTRODUCTION
Small-cell lung cancer (SCLC) is an extremely aggressive
malignant tumor type characterized by rapid growth, the early
development of widespread metastases and acquired therapeu-
tic resistance to radiotherapy and chemotherapy.1 It has been
designated a recalcitrant malignancy due to its poor prognosis
and minimal improvement in treatment over the past several
decades.2 Recently, initial milestones have been achieved in
SCLC treatment by incorporating immune checkpoint inhibitors
into chemotherapy.3–5 However, the clinical benefits are limited,
with a mild improvement in overall survival, and only a small
number of patients benefit from these immune-based therapies.
Currently, there are no reliable biomarkers, such as tumor
mutation burden (TMB), and programmed cell death-ligand 1
(PD-L1) expression, that can accurately predict clinical out-
comes.6,7 The recent molecular understanding of SCLC has been
translated into only modest clinical improvements, highlighting
the urgent need for a better understanding of this recalcitrant
malignancy.
While SCLC has been regarded as a genetically homogeneous

malignancy with nearly universal loss of TP53 and RB1,8 recent

transcriptomic profiling studies have suggested the classification
of molecular subtypes based on the relative expression of ASCL1,
NEUROD1, POU2F3, YAP1, and other key transcription factors
(TFs).9–11 In addition, these subtypes have been shown to mediate
distinct vulnerabilities and therapeutic targets, thus promoting the
development of subtype-specific drug screens as well as clinical
therapeutic studies.12,13 Despite substantial achievements, these
studies mostly focused on the intertumor heterogeneity of
malignant cells at bulk levels, limiting the exploration of
intratumor heterogeneity (ITH) and interactions between distinct
cell components in the SCLC tumor microenvironment (TME).
Substantial evidence indicates that ITH between malignant and
nonmalignant cells, and their interactions within the TME are
critical to diverse aspects of tumor biology and therapeutic
responses.14

Single-cell RNA sequencing (scRNA-seq) technologies provide
an opportunity to profile cell components within the TME and
investigate what roles they play in tumor occurrence and
development.15 In contrast to standard bulk population sequen-
cing, which provides only average values, scRNA-seq allows the
molecular distinction of all cell types within a complex population,
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including malignant cells, immune cells, and stromal cells in the
TME.16 In addition, the ITH of these cell types as well as
interactions between these multicellular components could also
be further investigated by scRNA-seq.17 However, while scDNA-
seq and scATAC-seq approaches can be applied to archival
specimens, most scRNA-seq methods require viable cell suspen-
sions from fresh tissues,15 and have been hindered by the lack of
surgical specimens of SCLC. While single-cell transcriptomic
profiling analyses have been performed on most cancer types,
there are still no scRNA-seq studies on matched primary tumors
(PTs), normal lung tissues adjacent to the tumor (NATs), and
relapsed tumor (RTs) for human SCLC.18–20 Here, by performing
modified single-cell tagged reverse transcription sequencing
(STRT-seq) of fresh samples from primary and matched adjacent
normal lung tissues from 11 patients with limited-stage SCLC, we
revealed a heterogeneous cellular architecture of this malignant
cancer at single-cell resolution.

RESULTS
Single-cell gene expression atlas of SCLC
To describe the gene expression atlas of SCLC tumors at the
single-cell level, we performed modified STRT-seq on matched
PTs, NATs and RTs from 11 SCLC patients who underwent
surgical resection (Fig. 1a and Supplementary Table S1). All the
patients included were males, and most of them (9/11) had a
heavy smoking history, consistent with typical SCLC character-
istics.21 Single-cell transcriptomes from a total of 4911 cells from
PTs (n= 3365), NATs (n= 1274) and relapsed tumors (RTs,
n= 272) were obtained after initial quality controls (Fig. 1b–d
and Supplementary Fig. S1b). In PTs and RTs, we distinguished
1954 malignant and 1683 nonmalignant cells by their epithelial
origins, clustering patterns, and inferred large-scale chromoso-
mal copy number variations (CNVs). Epithelial biomarkers, such
as EPCAM and KRT8/18, were uniformly expressed at high levels
across all SCLC malignant cells, while KRT7/19, CDH1 and SFN
were partially expressed in individual malignant cells (Fig. 1e).
Other KRT family genes, including KRT 5/6A/6B/42P/13/14/15/16/
17, which are widely expressed in other solid tumors, such as
non-small cell lung cancer (NSCLC) and head and neck
squamous cell carcinoma (HNSCC),22,23 were rarely expressed
in SCLC, representing a cancer type-specific expression profile
(Fig. 1e). Notably, each of the malignant clusters contained cells
from patient-specific subpopulations, representing a significant
intertumor heterogeneity (Fig. 1b, c). In contrast, nonmalignant
cells in the TME and cells from the NAT, identified by the
expression of known markers, tended to cluster together by cell
type, and the same cluster contained cells from different
patients, indicating that these cell types and expression states
are largely consistent across patients, although they do vary in
their proportions (Fig. 1c, d and Supplementary Fig. S1b, c). The
inferred CNVs not only confirmed the separation of malignant
cells from nonmalignant cells with normal karyotypes but also
revealed the widespread heterogeneity of SCLC at the genome
level (Fig. 1f and Supplementary Fig. S1d–f). Specifically, while
most CNVs showed intertumor heterogeneity, 5q loss exhibited
both intertumor heterogeneity and ITH (P3 normal; P2, P4, P5,
P12, and P13 with 5q loss, and P7, P10, and P11 with partial 5q
loss). We next performed bulk DNA sequencing on multi-region
tissues matched to those used for scRNA-seq. The CNVs called
from low-pass whole-genome sequencing (WGS) data, including
uniform chromosome 10, 11p, 15, 16q, and 17p loss and 8, 9 and
18 gain in P7, 15 and 17p loss in P10, and 1, 14, 17q, and 18 gain
in P11 (Supplementary Fig. S1d–f), firmly validated the inferred
CNVs from scRNA-seq data. These results also revealed 5q loss,
which was associated with an increased risk of recurrence in our
cohort, as spatial ITH in SCLC (Supplementary Fig. S1g).

The immune landscape of SCLC
Single-cell profiles of nonmalignant cells highlighted the compo-
sition of SCLC (Fig. 2a, b). Compared with NATs, PTs exhibited an
increased fraction of lymphocytes and less myeloid cell infiltration
(Fig. 2c), indicating a more significant role played by adaptive
immunity within the TME and a more significant role played by
the innate immune response in normal lung tissues. We then re-
clustered the T cells and myeloid cells powered by their relatively
large numbers in our dataset. T cells from both NATs and the TME
were mainly composed of CD8-positive T cells and expressed high
levels of cytotoxic markers, such as GZMA/B/H/K, PRF1, NKG7, IFNG,
GNLY and CXCL13, implying significant immune surveillance in
SCLC (Supplementary Fig. S2a). Compared with only cytotoxic
T cells from NATs, we observed the increased diversity of T cells
from the TME, including four heterogeneous activation states
based on naïveness, cytotoxicity, exhaustion and proliferation
properties (Fig. 2d, e). We then calculated the scores of these T cell
states based on the average expression levels of marker genes
that have been well defined either in our dataset or in previously
published studies.24 The exhaustion score exhibited a positive
correlation with the cytotoxicity score, consistent with observa-
tions in metastatic melanoma,25 and a negative correlation with
the naïveness score (Fig. 2f). Proliferating T cells were character-
ized by high expression of cell cycle-related genes, such as MKI67
and TOP2A, implying a T cell status that is undergoing extensive
clonal expansions. This cell population also expressed high levels
of cytotoxic genes and median levels of coinhibitory receptors
(Fig. 2e). Next, we examined the expression preference in
individual patients. As shown in Supplementary Fig. S2b, the
proliferating T cell cluster was composed of T cells from almost all
patients included, implying a uniform existence of this T cell status
in SCLC patients (Supplementary Fig. S2b). In contrast, other T cell
clusters were mainly composed of cells from only one or two
patients, for example, cluster 5 was mainly from P2, cluster 1 was
from P1 and P14, and cluster 3 was mainly from P7 and P12
(Supplementary Fig. S2b). The detailed classification of T cells in
SCLC also revealed the expression patterns of markers of
dysfunction and exhaustion (e.g., PDCD1, CTLA4, HAVCR2, LAG3,
TIGIT, and LAYN), which might serve as immunotherapy targets
(Supplementary Fig. S2c). HAVCR2 exhibited the highest expres-
sion level in the exhausted T cell subcluster (mainly from P2), while
CTLA4 was preferentially expressed in other T cell subclusters from
the SCLC TME. LAYN, which is associated with the suppressive
function of exhausted CD8 T cells in NSCLC24 and liver cancer,26

however, exhibited a sporadic expression in SCLC. These
heterogeneous states and coinhibitory receptor expression pre-
ferences of SCLC T cells not only provide potential immunother-
apy targets for SCLC, but also suggest that there might be
increased benefits for selected patients who respond to
immunotherapy.
We next performed unsupervised clustering analysis of myeloid

cells from both NATs and the TME and identified more
heterogeneous cell types based on well-annotated marker
genes.17 Re-clustering revealed essentially all major known
myeloid cell lineages, including mast cells, neutrophils, mono-
cytes, dendritic cells (DCs), and macrophages. Further clustering
revealed four distinct macrophage clusters: three lung-resident
alveolar macrophages (AM_1, AM_2, and AM_3) and one tumor-
associated macrophage (TAM) (Fig. 2g, Supplementary Fig. S2d, e).
By using the single-cell data from a published study,18 we also
validated the existence of three out of the four Mono/Macro
subpopulations identified in our study, including TAMs, AM_2, and
AM_3 (Supplementary Fig. S2g–j). These macrophage lineages
seemed to exhibit distinct tissue distributions. While AM_1 was
composed exclusively of cells from NATs, and TAMs from the TME,
AM_2 and AM_3 were composed of cells from both NATs and the
TME, implying that they could be derived from precursors
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localized in lung tissues or potential migratory features of these
two subtypes between tumor tissue and adjacent normal lung
tissue.27 AM_2 exhibited higher expression levels of major
histocompatibility complex (MHC) cluster II molecules (including
HLA-DQA2, HLA-DRB6, and HLA-DRB5) than AM_1, implying
enhanced antigen-presenting abilities of this cluster (Fig. 2h).
AM_3 featured cell cycle-associated genes, such as MKI67, AURKB,
CDK1, and ASPM, and had a similar gene expression patterns to
AM_2 and TAMs, suggesting strong proliferative properties and
the potential state transition ability of this cluster (Fig. 2h). In
contrast, TAMs in the TME of SCLC expressed high levels of TCF4,
IL2RA, PLA2G7, GAL3ST4, PLTP, CMKLR1, ADAMDEC1, and MMP12
(Fig. 2h), suggesting an immunosuppressive feature,28 and thus
providing potential targets for SCLC immunotherapies. IDO1,
which is induced by inflammation within the TME and promotes a
tolerogenic environment through immunosuppressive myeloid
cell populations,29 was highly expressed in DCs in the SCLC TME

(Supplementary Fig. S2f). Our single-cell data revealed diverse
immune cell states of the SCLC microenvironment and may help
to better understand and develop novel treatment strategies
for SCLC.

Heterogeneity of SCLC malignant cells
To analyze the expression heterogeneity of the malignant
compartment, we separated all malignant cells and ran UMAP.
Although most cells were grouped by their tumor origins,
representing extensive intertumor heterogeneity, many tumors
contained separate subclusters, indicating significant ITH at the
transcriptome level (Fig. 3a and Supplementary Fig. S3a). The
DEGs mainly included those that respond to immune stimulates,
such as MHC class molecules, CD74, IDO1, and ISG15, suggesting a
close interaction between malignant and immune cells in the TME
in this patient (SCLC-P2) (Fig. 3b, Supplementary Fig. S3b and
Supplementary Table S3). In addition, key TFs related to SCLC

Fig. 1 scRNA-seq profiling of the landscape of SCLC. a Experimental design. Schematic of the experimental workflow for the collection and
processing of fresh tissue samples of SCLC tumors and matched normal lung tissues adjacent to the tumor for scRNA-seq (created with
BioRender. com). b–d UMAP plot of all cells clustered and color coded by cell type (b), patient (b), and tissue origin (d). Clusters were assigned
to the indicated cell types by differentially expressed genes (DEGs), as shown in (b) (Supplementary Fig. S1b). e Epithelial gene expression
across all cell types in the TME, including malignant cells (malignant), normal epithelial cells (normal epithelia), T/NK cells (T/NK), B cells (B),
fibroblasts, mast cells (Mast), and monocytes/macrophages/dendritic cells (mono/macro/DC). f Heatmap shows large-scale CNVs in malignant
cells (rows) from 9 of the 11 SCLC patients. There were almost no malignant cells from SCLC-P1 and SCLC-P14 because these two patients
received neoadjuvant treatment. The inferred CNVs were deduced for each single cell based on the average expression profiles across
chromosomal intervals. Normal epithelia from NATs were used as references. Red: amplification; blue: deletion
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tumor subtypes, such as ASCL1, NEUROD1, and POU2F3, were
found to be differentially expressed in our cohort, as further
described in the following sections. In addition, potential
treatment targets or biomarkers for SCLC, such as MYC, PARP1,
SLFN11, CDK7, BCL2, and CD274, were found to be differentially
expressed in individual cells, highlighting the need for patient
selection to improve targeted therapeutic strategies. Thus, the
intertumor heterogeneity of malignant cell reflects differences in
the interactions between TME components, SCLC subtypes, and
different drug sensitivities.
To further explore what biological states or processes are

involved among individual malignant cells, we performed GSEA by
using the ‘Hallmark’ gene set collections for those genes with high
variability.30 The DEGs were mainly involved in hallmarks such as
the G2M checkpoint, inflammatory response, interferon α
response, interferon γ response, TNFα signaling via NF-κB, EMT,
KRAS signaling up, and hypoxia (Fig. 3c and Supplementary
Table S4). Pearson correlation analysis revealed that these
hallmarks could be categorized into programs associated with

proliferation, the immune response and hypoxia-related hallmarks
(Fig. 3c). The most notable feature of the module analysis was the
activity of the proliferation program in a large proportion of cells
from each tumor, ranging from 19.8% in SCLC-P12 to 75.4% in
SCLC-P3 (Fig. 3d). The proliferation program included MKI67,
which is a typical biomarker used in the clinic to indicate the
proliferating properties of SCLC, and TOP2A (topoisomerase II),
which is the target of etoposide that is most frequently used for
SCLC treatment in combination with platinum (Supplementary Fig.
S3c). Thus, the proliferation program was closely associated with
clinically reported MKI67 scores based on the immunohistochem-
istry (IHC) results (Supplementary Fig. S3d). Compared with the
proliferation program, the immune expression patterns showed
more pronounced intertumor heterogeneity in malignant cells
from SCLC-P2 (Fig. 3e), which was in accordance with the
enrichment of infiltrating immune cells. Reordering the cells by
hypoxia-related hallmarks also revealed a gradient in each sample
(Fig. 3f), indicating heterogeneous malignant components that
might be associated with variable biological processes, such as

Fig. 2 The immune landscape of SCLC. a, b UMAP plot of 2,474 immune cells colored coded by cell type (T cells, NK cells, mast cells, and
mono/macro/DC cells) (a) and tissue origin (NAT and TME) (b). c The fractions of T cells and B/plasma cells were higher and the infiltration of
myeloid cells was lower in primary SCLC tumors than in NATs. Statistical analyses were performed using two-way ANOVA followed by
Bonferroni’s multiple comparisons test. **p < 0.01. d UMAP plot of all T cells from NATs and the TME. e Heatmap of the z-score-normalized
mean expression value of T cell state-associated genes in each subcluster. The T cell subclusters were colored in accordance with those in (d).
f The naïveness, cytotoxicity, exhaustion and proliferation scores in T cell subclusters from the TME. Every score was scaled to a range of 0 to 1.
g UMAP plot of all myeloid cells from NATs and the TME. h Dot plot of selected myeloid cell-associated genes in each cell lineage. Dot size and
color indicate the fraction of expressing cells and normalized expression levels, respectively
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angiogenesis, nutritional/blood supply, and tumor metastasis.
Here, we further validated the ITH of these diverse transcriptional
programs with published single-cell data (Supplementary Fig.
S3e–g).18 Together, these data revealed a recurrent feature of

tumor cell heterogeneity in SCLC (i.e., the expression of diverse
transcriptional programs), which has great potential for better
understanding the SCLC biology, optimizing current treatment,
and developing new therapeutic strategies for SCLC.
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Molecular subtype heterogeneity of SCLC
Although SCLC is considered as a molecularly homogeneous
malignancy, recent analyses have led to the classification of
molecular subtypes based on the intertumor heterogeneity of
ASCL1, NEUROD1, POU2F3, and YAP1 expression: these subtypes
are termed as SCLC-A, SCLC-N, SCLC-P and SCLC-Y.9 SCLC-A and
SCLC-N are considered to be SCLC with neuroendocrine
characteristics (SCLC-NE), in which SCLC-A represents the ‘classic’
subtype of SCLC-NE and SCLC-N represents the ‘variant’ subtype.
Although the population-level data revealed the dominant
transcriptional program, we continued to explore whether
individual cells in a tumor could vary according to these
classifications. Our data revealed that ASCL1, NEUROD1, and
POU2F3 were exclusively expressed in the malignant cells of SCLC
tumors, however, YAP1 was mainly expressed in normal epithelial
cells rather than tumor cells (Supplementary Fig. S4a). We then
determined the subtypes of our nine SCLC tumors on the basis of
merged single-cell RNA expression data. Of note, most tumors
clearly mapped to one of the four subtypes: SCLC-A (n= 5) and
SCLC-P (n= 1) (Supplementary Fig. S4b). None of the malignant
cells mapped to the SCLC-N or SCLC-Y subtypes, probably due to
their low frequencies among SCLC subtypes.9 Strikingly, three
patients (P4, P10, and P11) expressed high levels of ASCL1 and
variable levels of NEUROD1; this was termed the SCLC-A/N subtype
in our study (Supplementary Fig. S4b). We then examined the
expression of ASCL1, NEUROD1 and POU2F3 in individual
malignant cells across tumors. All five SCLC-A tumors consisted
of cells that expressed uniformly high levels of ASCL1, conforming
to their bulk-level subtypes. However, a small number of cells
exhibited highly divergent gene expression patterns; for example,
low levels of both ASCL1 and NEUROD1, represented the non-
neuroendocrine (non-NE) subpopulation in SCLC-A tumors
(Fig. 4a). In contrast, all three SCLC-A/N tumors consisted of
heterogeneous malignant cells corresponding to different SCLC
subtypes (SCLC-A, SCLC-A/N, SCLC-N and SCLC-non-NE) (Fig. 4a).
The SCLC-P tumor, with no detectable expression of ASCL1 and
NEUROD1, consisted of individual cells expressing heterogeneous
levels of POU2F3, with half of the cells having no detectable
expression of POU2F3 (Fig. 4a). Surprisingly, the SCLC-non-NE cells
in SCLC-A and SCLC-A/N and some SCLC-P tumors expressed
neither POU2F3 nor YAP1, which might suggest new subtypes
dominated by other TFs or the existence of transitional states
(Supplementary Fig. S4c).31 To understand the spatial relationships
of these transcriptional states, we performed multiplex immuno-
fluorescence staining of these three TFs in all the samples. These
images confirmed the presence of multiple subtypes within these
tumors in proportions similar to those identified by scRNA-seq
analysis (Fig. 4b). These single-cell results confirmed the diversity
of tumor cell states in SCLC tumors and the regulatory functions of
ASCL1, NEUROD1 and other TFs that shape the states of malignant
cells in SCLC patients.
To better understand the transcriptional relationships among

the malignant cells, we applied an unsupervised inference

method, Monocle 2, to construct the potential transitional
trajectories. Unsupervised pseudotime suggested a branched
trajectory, with SCLC-A/N and SCLC-non-NE cells positioned at
the opposite branches from SCLC-A cells (Fig. 4c, d and
Supplementary Fig. S4d). The faceted pseudotime trajectory
revealed that the SCLC-A and SCLC-A/N branches were mainly
composed of cells from SCLC-A tumors and SCLC-A/N tumors,
respectively (Fig. 4e and Supplementary Fig. S4e). In contrast, the
SCLC-non-NE branch included cells mainly from P2 and some non-
NE cells from SCLC-A/N tumors. As it has been widely accepted
that SCLC derived from pulmonary NE cells in the lung expresses
ASCL1, we included 54 normal neuroendocrine (normal NE) cells
described by Vieira Braga, F.A., et al.32 As expected, normal-NE
cells were located at the start of the SCLC-A branch, and an
evolutionary trajectory from SCLC-A to other subtypes was
indicated (Fig. 4c, e, Supplementary Fig. S4e). To further determine
the ‘roots’ and developmental trajectories of SCLC, we applied
CytoTRACE to delineate cellular hierarchies based on the number
of expressed genes per cell.33 The results indicated two possible
‘roots’ with fewer differentiation states, one of which was at the
start of the SCLC-A branch (Fig. 4f). Derived from normal NE cells
that have a high degree of differentiation, SCLC-A cells exhibited a
high degree of dedifferentiation, while SCLC-A/N cells showed an
increased degree of differentiation, suggesting that SCLC-A/N
might be derived from other SCLC cells (Fig. 4g). The other
potential ‘roots’ were at the SCLC-non-NE branch, which was
mainly composed of cells from P2, indicating that this SCLC-P
tumor could arise from a distinct cell of origin (not normal NE
cells) (Fig. 4f, g). As POU2F3 is a master driver of tuft cells, a rare
chemosensory cell type in the pulmonary epithelium,9 our
findings suggested that SCLC-P tumors might arise from tuft
cells,34 but further validation is needed.
Together, these results confirmed the rationality of partitioning

by using these key TFs as a fundamental feature of the molecular
landscape of SCLC. Compared with the representation of SCLC
subtypes at the bulk level, our scRNA-seq data revealed the
representation of multiple SCLC subtypes at the single-cell level, at
varying ratios, in most (or all) SCLC tumors, which emphasizes the
importance of applying single-cell sequencing and signals an
urgent need for functional studies on ITH with respect to
progression and treatment.

Functional associations of intratumor subtype signatures
Although a non-NE NOTCH-active small-cell lung cancer cell
subpopulation has been described in the genetically engineered
mouse models (GEMMs),35 its function and significance in human
tumors remain unclear. We next explored the functional associa-
tions of intratumor subtype signatures across individual cells,
focusing on three SCLC-A/N tumors in which the largest numbers
of heterogeneous cells were included (P4, P10, and P11). Based on
the expression of ASCL1 and NEUROD1, malignant cells were
clustered into three subtypes: SCLC-A, SCLC-A/N (SCLC-N
included), and SCLC-non-NE (Fig. 5a, Supplementary Fig. S5a).

Fig. 3 Expression heterogeneity of the malignant cell compartments in primary SCLC. a UMAP plot of malignant cells from nine SCLC patients
(indicated by color) reveals tumor-specific clusters. b Heatmap of DEGs (top 100 genes in each patient, ranked by the log fold-change in the
average expression between cells from one patient and all other cells) across nine individual SCLC primary tumors (columns). Expression data
were normalized with z-score transformation, in which yellow and purple represent the high and low expression of a gene, respectively,
relative to the median expression level (see the color scale). Selected genes are highlighted. MHC class I molecules (MHC-I) mainly included
HLA-A/B/C/E/F; MHC class II molecules (MHC-II) included HLA-DMA/PA1/RA/B1/B5. c GSEA of DEGs (top 2,000 genes ranked by their dispersion
values) using hallmark gene set collections. The most enriched hallmarks (ranked by the FDR q-values) are shown with the number of mapped
and total genes in the pathways. Pearson correlation analysis was performed based on the mean expression levels of the genes involved in
these hallmarks. d Heatmap reveals the expression of the proliferation program and representative genes from the program (rows) in
individual SCLC cells (columns). Cells were grouped by tumor and ordered by the single-sample GSEA (ssGSEA) score (top). e Heatmap depicts
the expression of the immune program (the inflammatory response, interferon α response, and interferon γ response) as shown in (c) and (f),
Heatmap depicts hypoxia-related hallmarks (including TNFα signaling via NF-κB, EMT, KRAS signaling up, and hypoxia) as shown in c
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Malignant cells from both the SCLC-A and SCLCA/N subtypes
expressed genes such as GRP, UCHL1 and CHGA (Fig. 5b),
displaying typical neuroendocrine features of SCLC. In contrast
to SCLC-A cells, the expression of NEUROD1 in SCLC-A/N cells did
not result in significant gene expression alterations, with the DEGs

mainly including those associated with neural development, such
as NEUROD1, CHRNA3, and CNTN2 (Fig. 5b). In SCLC-non-NE cells, a
number of genes, such as MYC, CD44, HES1, ANXA1/2, and CXCL1/8
/17, were highly expressed. MYC, which has been demonstrated in
GEMMs to drive a NE-low “variant” subset of SCLC with NEUROD1
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expression,10 exhibited a gradually decreased expression pattern
from SCLC-non-NE to SCLC-A/N to SCLC-A cells (Supplementary
Fig. S5b). Recent studies have suggested that MYC-amplified SCLC
may be sensitive to aurora kinase inhibitor (alisertib) and CHK1
inhibitors,10 suggesting a combinational strategy with drugs that
target SCLC-NE populations for SCLC treatment. CD44, a multi-
functional cell surface adhesion receptor, has been described to
be highly expressed in non-NE SCLC cells,35 and is associated with
the migration and invasion processes involved in the metastasis of
this subtype (Supplementary Fig. S5c).36 Consistent with the
results from GEMMs and human SCLC, the high expression of HES1
(Supplementary Fig. S5d), a transcriptional target of the NOTCH
signaling pathway, together with the low expression of DLK1
(Supplementary Fig. S5e), indicated an activated NOTCH signaling
pathway in this cell population. To target the heterogeneous
compositions of SCLC-NE and SCLC-non-NE malignant cells, we
developed a combinational treatment strategy that composed of
etoposide and cisplatin (EP), a conventional chemotherapy for
SCLC, in combination with silibinin (a major bioactive component
of the plant Silybum marianum) that has been studied extensively
for its efficacy in cancer by inhibiting CD44 promoter activity.37,38

The addition of silibinin greatly enhanced the cancer inhibition
efficacy of chemotherapy for SCLC both in vitro and in vivo
(Supplementary Fig. 5f–h).
We next performed GSEA to explore the biological functions

associated with these three clusters. Compared with SCLC-non-NE
cell populations, SCLC-NE (including SCLC-A and SCLC-A/N) cell
populations exhibited prominent enrichment of signatures of the
hallmarks of E2F targets and the G2M checkpoint (Fig. 5c and
Supplementary Fig. S6a), indicating a relatively strong proliferation
signature in this cell population. The co-expression of NEUROD1
with ASCL1 might drive malignant cells to a ‘variant’ subtype of
SCLC, showing an enrichment of signatures involved in the
hallmarks of angiogenesis and EMT (Supplementary Fig. S6b),
which would promote tumor cell survival and metastasis.39 This
‘hybrid’ state might indicate biological plasticity between sub-
types that is shaped by the microenvironment and tumor
progression. In contrast, the SCLC-non-NE clusters with relatively
low proliferation ability exhibited prominent enrichment of
signatures involved in the hallmarks of TNFa signaling via NF-κB,
the interferon α response and the interferon γ response, indicating
a close interaction with immune components in the SCLC
microenvironment (Fig. 5c and Supplementary Fig. S6c).
To further describe the heterogeneous characteristics of these

subtypes, we analyzed the gene expression scores of cell cycle-,
immune-, and hypoxia-related hallmarks that were described in
the previous section. In accordance with the GSEA results, cells
from the SCLC-NE subtype, including SCLC-A and SCLC-A/N,
exhibited a higher cell cycle score, while the SCLC-non-NE subtype
exhibited the highest immune- and hypoxia-related hallmark
scores (Fig. 5d–f, Supplementary Fig. S6d–f). The ITH of SCLC
inferred by TF expression was associated with a short disease-free
survival (DFS) time after surgical treatment in our study (Fig. 5g). In
addition, we also performed immunohistochemistry (IHC) on
formalin-fixed paraffin-embedded (FFPE) tissues from a large
cohort of 90 SCLC patients (Supplementary Table S5), in which, the

expression of ASCL1 and NEUROD1 were evaluated at the protein
level (Supplementary Fig. S6g). The results further indicate that
heterogeneous expression of ASCL1 and NEUROD1 is associated
with a relatively short overall survival (OS; Supplementary Fig.
S6h). Using CellPhoneDB, we illustrated the interacting molecules
of ligand–receptor pairs and confirmed that SCLC-non-NE clusters
tended to have more interactions with other cell clusters and
immune and stromal cells (Supplementary Fig. S6i, j). While
CD74_COPA, CD74_APP and C5AR1_RPS19 were significantly
enriched in all three SCLC clusters with macrophages/mono-
cytes/DCs, specific pairs were enriched in different SCLC clusters
(Fig. 5h–j, Supplementary Table S6).
In brief, although population-level data revealed the dominant

transcriptional programs, our single-cell transcriptional data
revealed intratumor subtype heterogeneity, potentially providing
important insights into SCLC tumor biology and clinical implica-
tions for SCLC treatment.

ITH of SCLC is recapitulated during tumor relapse
To gain further insight into potential determinants of SCLC
relapse, we closely monitored these patients for over three years
and ultimately obtained one fine-needle biopsy sample after
relapse from SCLC-P2. While most cell clusters contained cells
from both the PT and RT, most cells from the NAT were identified
as myeloid cells (Supplementary Fig. S7a, b). We then isolated
malignant cells from both the PT and RT. UMAP revealed three
clusters, two from the PT and one from the RT (Fig. 6a, b), and an
overlapping cluster composed of cells from both origins. DEG
analysis and GSEA revealed that the PT cells exclusively expressed
immune-associated genes and hallmarks, while the RT cells mainly
expressed hypoxia- and apoptosis-associated genes and pathways
(Fig. 6c, d). The consistent signature between the PT and RT were
mainly enriched in cell cycle-associated hallmarks, such as
E2F_TARGETS, G2M_CHECKPOINT, and MITOTIC_SPINDLE, repre-
senting a subpopulation in both the PT and RT with high
proliferation activity. POU2F3 expression was consistent during
tumor relapse (Supplementary Fig. S7c), with a consistent
expression level in some of the malignant cells from both the
PT and RT. To gain further insight into potential determinants of
SCLC recurrence, we deduced the CNVs in the PT and RT of P2
(Supplementary Fig. S7d). The RT exhibited CNV patterns similar to
those of the PT, including the deletion of 3p, 4p, 4q, and 10q, the
deletion of 13q (containing RB1) and 16q, and the loss of 17p
(containing TP53). Our results indicate that although there were no
significant genomic-level alterations during tumor recurrence,
transcriptional evolution does occur during tumor relapse.

SCLC subtypes associated with different immune
microenvironments and therapeutic responses
The heterogeneous expression patterns of immune-associated
properties by malignant cells as well as immune components
suggested that SCLC might have different immune microenviron-
ments that are associated with distinct subtypes, which prompted
us to extract additional insights from bulk SCLC data. First, we
downloaded the bulk expression data for 50 SCLC cell lines from
the Cancer Cell Line Encyclopedia (CCLE) and categorized them

Fig. 4 Intertumor heterogeneity and ITH of the molecular subtypes of SCLC defined by the expression of key TFs. a Expression of ASCL1,
NEUROD1 and POU2F3 in individual cells from nine patients. bMultiplex immunofluorescence imaging shows the expression patterns of ASCL1
(red), NEUROD1 (green) and POU2F3 (pink) in SCLC samples at the protein level, in accordance with the expression patterns of key
transcriptional regulators. PanCK (gray) was used to stain epithelial cells in SCLC tumors. DAPI was used to label cell nuclei. Scale bars, 50 µm.
White arrows indicated co-expression of ASCL1 and NEUROD1. c Pseudotime trajectory of malignant SCLC cells in a two-dimensional state
space inferred by Monocle 2. Monocle components were correlated with the SCLC-A, SCLCA/N and SCLC-non-NE clusters. Each dot
corresponds to one single cell, colored according to its patient of origin. d Relative expression of ASCL1, NEUROD1 and POU2F3 in three
trajectory branches. e Faceted pseudotime plots indicating the distribution of cells from each patient. f Combined application of CytoTRACE
and Monocle 2 to dissect SCLC differentiation. diff, differentiated. g Boxplots showing CytoTRACE values for three Monocle branches in (f).
Statistical analyses were performed using the Wilcoxon signed-rank test. ****p-value < 0.0001
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according to the key TFs ASCL1, NEUROD1, POU2F3 and YAP1
(Supplementary Fig. S8a). The immune signature of these cell lines
revealed a heterogeneous intertumor immune profile, with half
(25/50) of the cell lines expressing strong immune characteristics

(Fig. 7a), which were termed as ‘immune hot’, and half expressing
weak immune characteristics (‘immune cold’). “Immune hot
tumors” refer to immune cell well-infiltrated tumors, whereas
“Immune cold tumors” refer to immune cell poorly- or non-

Fig. 5 Inter/intratumor heterogeneity of the subtypes of SCLC defined by the expression levels of ASCL1 and NEUROD1. a Hierarchical
clustering of ASCL1 and NEUROD1 expression in malignant cells from P4, P10 and P11 revealed three main clusters. b Heatmap shows the DEGs
among the three clusters, with interesting genes indicated in corresponding colors. c GSEA was performed to interpret gene expression data
from the SCLC-non-NE cluster compared with the SCLC-NE cluster (including SCLC-A and SCLC-A/N). d–f Scores of the three subtypes
regarding the cell cycle- (d), immune- (e) and hypoxia-related (f) hallmarks described in Fig. 2. The boxes display the interquartile range
(IQR=Q3–Q1; the 25th (Q1) to the 75th percentiles (Q3)), with the centerline denoting the median. Whiskers were drawn to represent
Q1 minus 1.5 × IQR and Q3 minus 1.5 × IQR. All other observed points are plotted as outliers. Dots were added to box plots using the function
geom-dotplot. Statistical analyses were performed using one-way ANOVA followed by Bonferroni’s multiple comparisons test, with the p-
values indicated. g Disease-free survival (DFS) was analyzed by the comparison of 3 SCLC patients (heterogeneous) to 6 other SCLC patients
(homogeneous). The log-rank test was performed to indicate a difference with a p-value of less than 0.05. h–j Dot plots derived from
CellPhoneDB show selected ligand–receptor interactions (top 20 based on the expression level) from SCLC-A (h), SCLC-A/N (i) and SCLC-non-
NE (j) clusters with other clusters or cell types. The size of the circle represents the p-values. The means of the average expression level of
interacting pairs are indicated by color. The cell clusters labeled blue and red on the ‘x’-axis indicate that they act as receptors and ligands in
the interaction pairs, respectively
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infiltrated tumors, which is associated with immunotherapy
responses in many cancer types.40 Our data also revealed that
most SCLCs with NE characteristics, including SCLC-A and SCLC-N,
tends to have a ‘immune cold’ character, while non-NE SCLCs,
including SCLC-P and SCLC-Y, tend to have ‘immune hot’
characteristics (Fig. 7b). To validate these results, we further
downloaded the bulk expression data from 81 human SCLC
tumors described by George et al.,8 including data from malignant
cells, stromal cells, and infiltrating immune cells. The relative
frequencies of these four subtypes were similar to those of the
CCLE cell lines and in accordance with those described in the
review by Rudin et al.,9 with the SCLC-A as the most frequent
subtype (Supplementary Fig. S8b). The data also revealed that
most the SCLC-NE tumors exhibited cold immune characteristics
(45/69; 65%) (Fig. 7c), and non-NE SCLC tumors tended to exhibit
hot immune characteristics (10/12; 83%) (Fig. 7d). To investigate
whether changes in immune and stromal cell type components in
the TME are correlated with SCLC tumors with different immune
characteristics, we used the MCP-counter method to deduce the
relative abundance of heterogeneous cell populations based on
bulk gene expression data. The results indicated that SCLC tumors
that exhibited the hot immune signature were associated with
more immune and stromal cell infiltration (Fig. 7e).
To further deduce whether SCLC tumors with different immune

properties would be associated with different immune checkpoint
blockade (ICB) responses, we performed targeted gene expression
analysis of 14 samples from SCLC patients who received anti-PD-1
treatment. Based on our immune genes, four patients were
identified as having ‘immune hot’ features, while the other
patients (n= 10) were identified as having ‘immune cold’ features.
With close follow-up for 20 months, our data indicated that
patients with ‘immune cold’ SCLC tended to benefit more from ICB

than patients with “immune hot” SCLC. These findings suggest
significant intertumor heterogeneity and ITH of SCLC regarding
immune characteristics and warrant validation in large cohorts.

DISCUSSION
Research on SCLC has been hampered by a lack of available tumor
tissues due to disease aggressiveness, thus limiting our under-
standing of the landscape of the SCLC TME and possibly
constituting one of the reasons behind the failure of current
therapies. Although surgical resection is rarely a therapeutic
option for SCLC, our study included 11 matched samples of PTs
and NATs. Here, by using a modified STRT-seq approach, we
presented a comprehensive characterization of this disease. Our
study revealed a complex cellular ecosystem of the SCLC tumor
microenvironment, including the heterogeneous characteristics of
malignant cells and tumor-infiltrating immune and stromal cells.
As SCLC has historically been regarded as a single disease and the
standard treatment for SCLC has not been improved for decades,
our study revealed a previously unappreciated cellular architec-
ture of SCLC at single-cell resolution, thus providing fundamental
implications to SCLC biology and therapeutic strategies.
While intertumor heterogeneity mainly describes the differ-

ences across individual patients, intratumor heterogeneity (ITH)
refers to the variations among individual cells and a complex
network of extracellular matrix (ECM). A better understanding of
the numerous mechanisms of both tumor heterogeneities has
been achieved along with advanced molecular and biochemical
technologies.41 Both intrinsic and extrinsic factors, such as genetic
and epigenetic alterations, gene expression switching, and
influences of surrounding microenvironment, contribute to
ITH.42 In our study, by performing multiregional analyses at

Fig. 6 ITH of SCLC is recapitulated in relapsed tumors. a UMAP plot of malignant cells from SCLC-P2 revealed three specific clusters (indicated
by color). b UMAP plot of malignant cells from SCLC-P2 revealed specific clusters in the primary and relapsed tumors by the cell of origin.
c Heatmap shows the DEGs and related pathways that correspond to the primary and relapsed tumors, as well as the three specific clusters.
d GSEA of all DEGs using hallmark gene set collections. The top 3 enriched hallmarks (ranked by the FDR q-values) along with the number of
mapped and total genes in the pathways are shown
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Fig. 7 SCLC subtypes associated with different immune microenvironments. a, b Heatmap of gene expression according to the immune
signatures shown in Fig. 3e in 50 SCLC cell lines from the CCLE (a) and 81 SCLC tumor samples described by George et al. (b). The immune
characteristics of “hot” and “cold” tumors, as well as SCLC subtypes, are indicated. c, d Pie charts illustrate the proportion of different immune
characteristics in SCLC subtypes from 50 SCLC cell lines from the CCLE (c) and 81 SCLC tumor samples described by George et al. (d).
e Qualitative and quantitative analyses of the abundance of eight immune and two stromal cell populations in 81 SCLC tumor samples
described by George et al. f Heatmap of gene expression according to the immune signatures shown in Fig. 3e in 14 SCLC patients who
received ICB treatment. g Progression-free survival (PFS) of these 14 SCLC patients. The immune “hot” (red) and “cold” (blue) characteristics are
indicated
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single-cell level, we interrogated ITH. First, the inferred CNVs
revealed significant spatial ITH of SCLC at genomic level, which
might also contribute to the differential transcriptomic profiles of
SCLC. Second, we deduced the ITH at both biological hallmarks of
malignant cells as well as subtypes based on the expression of key
transcription factors of SCLC. Meanwhile, we revealed the
associations of these two ITH properties and the interactions with
tumor infiltrating immune cells. Third, by including normal cells
from adjacent normal lung tissues, we were able to deduce the
origin of the tumor cells by analyzing trajectory paths to specific
malignant subtypes, which could be regarded as one of the most
important causes of SCLC ITH.
Our data revealed the existence of heterogeneous expression

programs of malignant cells related to the cell cycle, immunity,
hypoxia, EMT and other hallmarks. The cell cycle program is
present in a large proportion of all SCLC patients, explaining why
SCLC patients always benefit from the radiation therapy and
chemotherapy that target these highly proliferating cell popula-
tions.43 Other relatively quiescent cells with diverse transcriptional
programs, which might drive therapeutic resistance and tumor
relapses,44 provide actionable targets for combinational treatment
strategies with current therapy regimens.36 We also observed that
the cell cycle program consistently existed in longitudinal samples
of PTs and RTs after surgical treatment, while other programs
experienced state switching or evolution during tumor relapse.
SCLC has been categorized into subtypes based on the

expression of key transcriptional regulators at the bulk level.
However, the classification and characterization of SCLC subtypes
are still in progress, especially at single-cell resolution. Our scRNA-
seq results revealed the co-expression or mutually exclusive
patterns of key TFs, most commonly ASCL1 and NEUROD1. Our
data also revealed a cell population in nearly all SCLC tumors with
varying ratios that expressed none of these four TFs, implying
plasticity between subtypes or even from different cell ori-
gins.45–47 The results also suggested that there might be
exceptions of SCLC cases at the bulk level, despite rare, that are
beyond the current subtypes and dominated by other TFs and
thus need to be further specified. Deep mining of the ITH of
diverse subtypes enables us to identify the associated biomarkers
and signaling pathways, paving the way for optimizing current
treatments and developing novel combinational therapeutics.
The malignant cells in NE tumors in our study exhibited uniform

immune features, highlighting their potential of interactions with
immune components and a distinct microenvironment.48 We then
validated the results by analyzing SCLC cell lines from the CCLE as
well as bulk transcriptome data described by George et al.8 As
expected, approximately half of the CCLE cell lines and SCLC cases
in the George dataset, most of which were non-NE SCLC, exhibited
strong immune properties (Fig. 7). In addition, as the immune
properties were calculated based on the immune-associated
markers that expressed on malignant cells, high levels of immune
cell and stromal cell infiltration were observed in these SCLC
tumors. Our scRNA-seq data, together with public transcriptomic
data from a large number of SCLC tumors, revealed the ‘immune
desert’ and ‘immune oasis’ phenotypes of SCLC and strong
correlations with NE/non-NE characteristics.49 These immunology
subtypes might be correlated with the clinical outcomes of
immunotherapy and be used to help select patients who might
benefit from these promising strategies.50

In a recent study on SCLC by JM Chan et al., scRNA-seq
technology was used to demonstrate a certain level of biological
complexity in SCLC. However, although 21 SCLC patients were
included, a substantial number of samples was collected from
small biopsies, which may not fully represent the biology of the
entire tumor. In addition, the study cohort included variable
samples with a diversity of treatment histories, tissue locations,
and SCLC subtypes. In comparation, our study mainly included
SCLC patients with more tightly restricted clinical variables. First,

we only included surgically resected samples (11/11), mainly from
those patients who did not receive any neoadjuvant therapy (9/
11), so as to better recapitulate the original landscape of the SCLC
TME. Second, we included paired adjacent normal lung tissue and
primary tumors, providing valuable comparisons to unravel the
unique characteristics of the SCLC TME. Third, to better decipher
the role of ITH in SCLC, we performed multi-region sampling of
tumor tissues (2–4 regions per tissue), which were used to
extensively delineate ITH by bulk-level sequencing. In addition to
the unique sample cohort, our study presents two aspects of the
ITH of SCLC: 1) the heterogeneous expression in malignant cells of
genes related to the cell cycle, immunity, hypoxia, EMT, and other
hallmarks; 2) the heterogeneous expression of key TFs of SCLC,
most commonly ASCL1 and NEUROD1. These results markedly
enhanced our understanding of the clinical features of SCLC. Deep
mining the ITH of SCLC is expected to enable the optimization of
the current treatments and develop novel therapeutics. Of note,
the results of our in vitro and in vivo experiments demonstrate
that CD44, which was highly expressed in SCLC-non-NE popula-
tions, which are present to some degree in nearly all SCLC tumors,
may be targeted to enhance the treatment efficacy of chemother-
apy (cisplatin plus etoposide) for SCLC.
As one of the pilot studies that employ single-cell sequencing

technologies to delineate ITH of SCLC, there are still some
limitations. The sample size of our study is relatively small,
including only one matched primary and relapsed tumor, which
limits the scope of our analysis. To address this issue, we have
included scRNA-seq data of 21 SCLC patients from the study by JM
Chan et al. as validation. In addition, more in vitro and in vivo
studies will contribute to further deciphering the relationship
between ITH and clinicopathological features of SCLC. In fact,
most of the conclusions obtained from our samples have been
validated by using published data, a validation cohort composed
of patients from different platforms (Cancer Hospital, Chinese
Academy of Medical Sciences and Peking Union Medical College
vs Memorial Sloan Kettering Cancer Center (MSKCC)) and
generated with different sequencing methods (STRT-seq vs 10X
Genomics). The fine-needle biopsy also gave limited information
about the tumor. While the collection of more paired surgical
samples during SCLC relapse presents technical challenges in
clinic, genetically engineered mouse models (GEMMs) of SCLC and
the development of future technologies by using archival tissues
may help to address the issues.15 In summary, our study provides
an unbiased high-precision scRNA-seq analysis of the TME in
human SCLC, serving as the basis for directing the design of
therapies.

MATERIALS AND METHODS
Patients and tumor specimens
In total, 11 patients who were histologically diagnosed with early-
stage SCLC and underwent surgical resection between July 2017
and April 2019 were included in our study. Of these patients, two
(SCLC-P1 and SCLC-P14) received inductive chemotherapy (etopo-
side plus cisplatin), while the other 9 did not receive therapy
(treatment-naïve). Primary tumor (PT) tissues and paired adjacent
normal lung tissues were collected immediately after surgical
resection. For each PT tissue, we performed multi-region sampling
(2–4 regions for each patient) according to the sample size. Each
region was divided into two parts: one for single-cell collection
and the other for hematoxylin and eosin (H&E, to obtain accurate
pathological diagnosis information for each sample site) and
multiplex immunofluorescence staining. With a close follow-up of
over 2–4 years after surgery, 6 patients relapsed, and fresh fine-
needle aspiration biopsy tissue from one of them was obtained
and subjected to high-precision single-cell transcriptome analysis.
Relevant clinical information, such as stage, tumor size, smoking
status, treatment information, and disease-free survival, was
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collected (Supplementary Table S1). This study also included 14
patients who were diagnosed with extensive-stage SCLC and
received first-line anti-PD-1 monotherapy (nivolumab) (Supple-
mentary Table S2). Fine-needle aspiration biopsy tissues from
treatment-naïve patients were obtained and subjected to targeted
transcriptomic sequencing. We also analyzed publicly available
transcriptome data of human primary SCLC tumor samples
(n= 81, George et al., 2015)8 and human SCLC cell lines (n= 52,
CCLE).45 This study was approved by the Ethics Committee of the
National Cancer Center (NCC1799). All patients provided written
informed consent to participate.

Preparation of single-cell suspensions
Individual human SCLC samples were immersed in RPMI-1640
medium (Thermo Fisher Scientific, 21875034) immediately after
resection. Within an hour, the fresh tissues were washed with cold
phosphate buffered saline (PBS), dissected, minced, and trans-
ferred into digestion buffer ((2 mg/ml collagenase type I (Gibco,
17100017), 0.8 mg/ml Dispase II (Millipore, SCM133) and 0.2 mg/ml
DNase I (Roche, 10104159001)). After incubation on a thermo-
mixer (1000 × rpm) at 37 °C for 30 min, cell suspensions were
filtered through a 70 μm strainer, pelleted (500 × g, 5 min, 4 °C),
resuspended in 1ml of 1× red blood cell lysis buffer (Sigma,
R7757) and incubated for 3 min at room temperature. The reaction
was stopped by adding RPMI-1640 medium. The dissociated cells
were pelleted again (500 × g, 5 min, 4 °C) and resuspended in PBS
supplemented with 1% bovine serum albumin for single-cell
isolation.

Whole-genome sequencing (WGS) and targeted transcriptome
sequencing
In total, we performed low-pass WGS for 27 multi-region samples
from 11 patients (2–4 regions for each patient). Genomic DNA was
extracted with a DNeasy Blood & Tissue Kit (QIAGEN, 69506). The
DNA concentration was quantified with a Qubit instrument, and
DNA qualitiy was assayed with a Fragment Analyzer. Approxi-
mately, 500 ng genomic DNA was sheared to approximately
300 bp by the Covaris S2 system. The purified DNA fragments
were used for library construction using the KAPA Hyper Prep Kit.
The prepared libraries were subjected to sequencing on the HiSeq
4000 platform with 150-bp pared-end reads.
Targeted transcriptome sequencing was performed on the 14

fine-needle aspiration biopsy tissues. A custom RNA panel of 1392
genes of interest was designed with the DesignStudio software
tool and polymerase chain reaction (PCR)-based library prepara-
tion was performed. An Agilent 2100 bioanalyzer system was used
to evaluate the integrity of the extracted RNA. Sequencing was
performed by using the NextSeq 500 platform (Illumina).

scRNA-Seq data processing, quality control, and batch effect
adjustment
Raw scRNA-seq data were processed as previously described.51–53

The cell barcode and UMI information were inserted in Reads2,
and cDNA sequences were inserted mainly in Reads1. First, raw
reads were split by cell barcodes in Reads2, and UMIs from Reads2
were added to the header of Reads1. Low-quality base pairs,
adapters, template switch oligos (TSOs) and polyA sequences
were then trimmed from Reads1, and low-quality reads (N > 10%)
and short reads (<37 bp) were removed. Next, ‘clean’ Reads1 were
mapped to hg19 (downloaded from UCSC) with TopHat (version
2.0.12). Uniquely mapped reads were counted via HTseq,54 and
counts from the same UMI were merged to obtain the
transcriptional count of each gene from single cells. Cells with
fewer than 1000 genes detected or 1000 UMIs were excluded from
further analyses. In addition, cells among in the top 1% according
to gene expression were also filtered as doublet cells.55 Finally, a
total of 4,911 cells with high-quality reads were retained for
downstream analyses. We used the k-BET (a robust and sensitive

k-nearest neighbors (KNN) batch effect test) R package to perform
statistical analysis of possible batch effects.55 k-BET evaluates the
accordance of replicates based on Pearson’s chi square test. By
using this method, we aimed to find the most similar cells
between the batches, which were assumed to belong to the same
cell type. The systematic differences between the KNN cells were
then used to quantify the strength of the batch, which was used
to scale the rest of the cells in the batches. In detail, k-BET was run
on major immune cell types, including myeloid cells, B cells, and
T cells, under default parameters. A control dataset with known
significant batch effects was included to assist with data
integration. The algorithm creates a KNN matrix and chooses
10% of the samples to assess batch-label distribution in the
neighborhood. If the local batch label distribution is sufficiently
similar to the global batch label distribution, Pearson’s chi square
test does not reject the null hypothesis (that is, ‘all batches are
well mixed’). The neighborhood size k is fixed for all tests. The
lower the result of k-BET (i.e., the mean test rejection rate), the less
bias is introduced by the batch effect.

DEGs and pathway analyses
DEGs were accessed through the FindMarkers and FindAllMarkers
functions in Seurat,56 in which, the default two-sided nonpar-
ameteric Wilcoxon rank-sum test with Bonferroni correction was
performed. With this method, only significant genes with the
adjusted p-value of less than 0.05 and avg_logFC over 0.5 were
considered marker genes and subjected to pathway enrichment
analysis. The DEGs in malignant cells per patient were visualized
by using Seurat’s DoHeatmap function, and their expression value
was normalized from −2 to 2 (Fig. 3b).

Cell type determination
To define the major cell types from scRNA-seq data, we first ran
Uniform Manifold Approximation and Projection (UMAP) in Seurat
for dimension reduction. DEGs were then identified for each
cluster as indicated before and the top-ranked DEGs (according to
the p-value and avg_logFC) were carefully reviewed. Feature plots
were generated based on the top 10–20 DEGs, followed by a
manual review process. High expression of epithelial (EPCAM, KRT
family genes), canonical immune (PTPRC, CD3D/CD4/CD8A/FOXP3
for T cells, NKG7 for NK cells, CD79A/CD19 for B cells, CD68/CD163/
MRC1 for myeloid cells, and MS4A2/CPA3 for mast cells) and
stromal cell (DCN/COL1A1/FAP for fibroblasts) markers in certain
clusters was considered a strong indication of the clusters
representing the corresponding cell type.

Inference of copy number variations (CNVs) from scRNA-seq data
Large-scale CNVs were inferred from scRNA-seq data by using the
inferCNV tool (https://github.com/broadinstitute/inferCNV; v1.2.1).
As previously described,14,22,55 initial CNVs were estimated by
sorting the analyzed genes by their genomic locations and
applying a moving average to the relative expression values, with
a sliding window of 100 genes within each chromosome. Normal
epithelial cells from normal adjacent tissues (NATs) in this dataset
were used as a reference for CNV analysis. The true CNVs called
from WGS were used to assess the performance of the CNVs
inferred from scRNA-seq data. In addition to the criteria for cluster
distribution and marker gene expression, the inferred CNVs were
applied to validate the identities of malignant and nonmalignant
cells in the TME.

Gene set enrichment analysis (GSEA)
GSEA was applied to evaluate the enrichment of a prior defined
sets of genes associated with particular biological processes. In
detail, GSEA was performed by calculating the enrichment score
(ES) of each gene set on the preranked gene lists between two
different samples or clusters.57 The normalized enrichment score
(NES) was then yielded by normalizing the ES of each gene set to
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account for the size of the set. We also calculated the false
discovery rate (FDR) by comparing the tails of the observed and
null distributions for the NES. The hallmark (referred to as ‘H’) gene
sets were obtained from the Molecular Signatures Database
(MSigDB; v7.3).

Definitions of proliferation, immune and hypoxia scores
We first calculated the standard deviation (SD) of each gene in all
malignant cells from 9 SCLC patients. The top 2,000 genes with
the highest SD values were subjected to pathway analysis by
mapping to the hallmark gene sets obtained from the MSigDB, in
which hallmarks with overlapping genes that met the FDR
criterion were obtained. We then calculated the Pearson correla-
tion coefficient of the top eight hallmarks with the highest FDR
values to categorize them into three biological processes:
proliferation (hallmark of the G2M checkpoint), immune (hallmark
of the inflammatory response, interferon alpha response, and
interferon gamma response), and hypoxia-associated pathways
and signaling (abbreviated hypoxia; hallmark of hypoxia, TNF
signaling via NFκB, epithelial mesenchymal transition (EMT), and
KRAS signaling up). We used the top 45 genes in each biological
process category to define the proliferation, immune and hypoxia
scores as the average expression of these genes after z-score
normalization.

Single-cell trajectory analyses
We performed an unsupervised pseudotemporal analysis by using
Monocle 2 to examine the trajectory of malignant cells dominated
by different TFs.58 DDRTree, a reversed graph embedding
algorithm in Monocle 2, was used to project our scRNA-seq data
into a reduced dimensional space and reconstruct the temporal
and bifurcation structure of the datatype based on global gene
expression levels. In the gene selection step, we used the
‘dpFeature’ approach to perform unsupervised analysis, in which
there was no forehead knowledge of the Monocle 2 genes used as
input. Reverse graph embedding was used to reduce the data’s
space to one with two dimensions. Then, the trajectory in the
reduced dimensional space was visualized, in which we set the
root based on the expression of key TFs in SCLC (including ASCL1
and NEUROD1). We used a jitter plot to determine which state
corresponds to those TFs.

CytoTRACE
We used CytoTRACE,33 a computational framework, to predict
developmental potential based simply on the number of
expressed genes per cell. Generally, this algorithm predicts cellular
differentiation states from scRNA-seq data based on the negative
correlation between the number of expressed genes per cell and
transcriptional diversity. We used CytoTRACE as a complement to
the trajectory analysis from Monocle to deduce the potential
developmental directions.

Cell-cell communication analysis
We applied CellPhoneDB,59 a computational framework based on
a public repository of ligands, receptors and their interactions, to
infer cell-cell communications between different SCLC clusters
and immune and stromal cell subsets in the SCLC TME. Based on
the expression of ligands and receptors from our scRNA-seq
dataset, biologically relevant interacting ligand–receptor partners
between two cell subsets were identified. The permutation test
was used to estimate the enrichment of ligand–receptor interac-
tions, and those with p-value of less than 0.05 were visualized
using dot plots, as shown in Fig. 5h.

Deconvolution of immune and stromal cells from bulk gene
expression data
We used the Microenvironment Cell Populations (MCP)-counter
method60 to robustly quantify the abundance of tumor-infiltrating

immune and stromal cell populations from bulk gene expression
data (Fig. 7e). The results were realized by using the MCP-counter
R package, which implements the MCP-counter method and
predicts the abundance of 10 cell populations (8 immune
populations, endothelial cells and fibroblasts) from the transcrip-
tional profiles of human tissues.

In vitro and in vivo antitumor efficacy of silibinin
The human SCLC cell lines H1048 and H69 were from BeiGene
(Beijing) Co.Ltd., and cultured in RPMI-1640 supplemented with
10% FBS and antibiotics (1% penicillin/streptomycin) as previously
described.44 All cells were maintained in 5% CO2 at 37 °C. silibinin,
cisplatin, and etoposide were obtained from Millipore Sigma (CAS
No. 22888-70-6 15663-27-1, and 33419-42-0). Cells were treated
with silibinin at final concentration of 25 µM, cisplatin of 5 µM, and
etoposide of 1 µM.61

Five-week-old female BALB/c nude mice used in vivo experi-
ments were purchased from Beijing Vital River Laboratories.
Human SCLC cell line H1048 (1.0 × 106) was subcutaneously
injected in the posterior flank in a volume of 100 µL serum-free
media. Animals were monitored regularly and euthanized when
they exhibited signs of morbidity or when the size of the
subcutaneous tumor required sacrifice. Tumor volume was
measured with a caliper: tumor volume = 1/2(length × width2).
The tumor-baring mice were randomly divided into different
experimental groups. Mice were treated by intragastric adminis-
tration with silibinin (20 mg/kg)62 and/or by intraperitoneal
injection with etoposide and cisplatin (4 mg/kg cisplatin dissolved
in 0.9% saline solution on day 1, and 12mg/kg etoposide
dissolved in 0.9% saline solution on days 1–3).44 All procedures
were conducted following the procedures approved by the
Committee on the Ethics of Animal Experiments of the Health
Science Center of Peking University.

Immunohistochemistry (IHC) of formalin-fixed, paraffin-embedded
(FFPE) sections
In our study, IHC combined with tissue microarrays, including
tissue from 90 SCLC patients (Supplementary Table 5), was
performed to evaluate the expression of ASCL1 and NEUROD1
at the protein level. In detail, tissue cores (1.5 mm in diameter)
were obtained from FFPE tumor samples, using a hollow
needle, and then inserted into a recipient paraffin block in a
precisely spaced array pattern. Sections (4-μm thick) from this
block were cut, mounted on microscope slides and analyzed
by IHC.
FFPE sections were deparaffinized and rehydrated by immer-

sing the slides in BioDewax and Clear Solution I (Servicebio) for
15min; BioDewax and Clear Solution II for 15 min; BioDewax and
Clear Solution III for 15min; 100% ethanol twice for 5 min; 85%
alcohol for 5 min; 75% alcohol for 5 min, and finally rinsed with
deionized H2O. Antigen retrieval was performed and endogenous
peroxidase activity was quenched. The sections were then blocked
with serum blocking reagents for 30 min at room temperature,
and incubated with a primary antibody (Anti-MASH1 [anti-ASCL1],
abcam, ab211327; anti-NEUROD1, abcam, ab60704) overnight at
4 °C and then a secondary antibody (HRP-labeled goat anti-rabbit
IgG, Servicebio, GB23303) for 50min at room temperature. DAB
color developing solution was then added after the sections were
rinsed with wash buffer 3 times for 15 min, and stopped by rinsing
the sections with water. The stained tissues were mounted with a
nuclear counterstain to better visualize tissue morphology. The
stained tissues were then dehydrated, mounted, and examined by
light microscopy. The hematoxylin stains nuclei blue, while
positive detection with DAB gives a brownish yellow. IHC analysis
of ASCL1 and NEUROD1 was defined as positive if the sample had
an H-score63,64 in the top 30 samples (Supplementary Table 5).
“Heterogeneous” samples were those with double positive
expression of ASCL1 and NEUROD1, while “homogeneous” refers
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to those samples with single positive or double negative
expression of the two markers.

Histopathology and multiplex immunofluorescence
FFPE Sections (4-μm thick) were mounted and routinely stained
with H&E for histopathological examination (Supplementary Fig.
S1a). Multiplex immunofluorescence was applied to identify the
expression patterns of key transcriptomic regulators of SCLC,
including ASCL1 (Abcam, ab211327), NEUROD1 (Abcam, ab60704)
and POU2F3 (Novus Biologicals, NBP1–83966). Multiplex immuno-
fluorescence staining was performed using a PANO 7-plex IHC kit
(Panovue, Cat# 0004100100), as previously described.65 In brief, the
FFPE sections were subjected to deparaffinization, rehydration, and
antigen retrieval according to the protocol supplied by the
manufacturer. After blocking, the sections were incubated with a
primary antibody and then a secondary antibody (polymer HRP-
anti-mouse/Rabbit IgG). Other primary antibodies were sequentially
applied by repeating the previous procedures. Nuclei were stained
with DAPI (Sigma-Aldrich, D9542) after all the human antigens had
been labeled. Multispectral images were obtained by scanning the
stained slides with the Mantra System (PerkinElmer, Waltham,
Massachusetts, US) and analyzed using inForm image analysis
software (PerkinElmer, Waltham, Massachusetts, US) (Fig. 4c).

Single-cell RNA-seq library construction and sequencing
A single-cell RNA-seq library was constructed according to the
STRT-seq protocol with slight modifications.66 In brief, single cells
were transferred to 96-well plates containing prepared cell lysis
buffer by mouth pipetting. After cell lysis, mRNA from single cells
was immediately reverse transcribed into cDNA with Superscript II
Reverse Transcriptase (Thermo Fisher Scientific, 18064071), during
which an 8 nt cell barcode and 8 nt unique molecular identifiers
(UMIs) were added to the cDNA from each cell. Second-strand
cDNAs were synthesized and subsequently preamplified using
KAPA HiFi HotStart Ready Mix (KAPA Biosystems, KK2602). Then,
the cDNAs were pooled together and purified. The products were
then fragmented with a Covaris S2 ultrasonicator (Thermo Fisher
Scientific), and the 3′ ends of cDNAs were enriched for library
construction using a KAPA HyperPrep Kit (KAPA, KK8504) and
sequenced on an Illumina HiSeq 4000 platform with 150-bp
paired-end reads by Novogene.

Statistics and reproducibility
No statistical method was used to predetermine sample sizes.
Box plots were generated using the boxplot function of the
ggplot2 R base package under default parameters. Violin plots,
hybrid box plots and kernel density plots were generated using
the ggplot2 R package to compare the distributions of different
groups. The distribution shape of the data was estimated by
kernel density estimation, where wider sections represent a
higher probability that members of the population will take on
the given value, and the skinnier sections represent a lower
probability. Bar plots, which were generated by using the
ggplot2 and ggpubr R packages, show the mean ± standard
error of the mean, with individual data points displayed. Dot
plots were generated by using ggplot2 to show gene expression
in each categorical group (cell type). The dot size and color
represent the fraction of cells expressing a given gene in each
category and the average number of cells expressing the given
gene within each category, respectively. Within each category,
the normalized gene expression score is averaged only over cells
expressing the given gene, where the gene is considered
expressed if its normalized gene expression score is greater than
zero. Comparisons between two groups were performed using
unpaired two-tailed t-tests. One-way analysis of variance
(ANOVA) with Tukey’s multiple comparisons test was used for
multiple group comparisons. All statistical analyses and pre-
sentations were performed using R.
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