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JMJD family proteins in cancer and inflammation
Wang Manni1, Xue Jianxin2, Hong Weiqi 3, Chen Siyuan3 and Shi Huashan1✉

The occurrence of cancer entails a series of genetic mutations that favor uncontrollable tumor growth. It is believed that various
factors collectively contribute to cancer, and there is no one single explanation for tumorigenesis. Epigenetic changes such as the
dysregulation of enzymes modifying DNA or histones are actively involved in oncogenesis and inflammatory response. The
methylation of lysine residues on histone proteins represents a class of post-translational modifications. The human Jumonji C
domain-containing (JMJD) protein family consists of more than 30 members. The JMJD proteins have long been identified with
histone lysine demethylases (KDM) and histone arginine demethylases activities and thus could function as epigenetic modulators
in physiological processes and diseases. Importantly, growing evidence has demonstrated the aberrant expression of JMJD proteins
in cancer and inflammatory diseases, which might serve as an underlying mechanism for the initiation and progression of such
diseases. Here, we discuss the role of key JMJD proteins in cancer and inflammation, including the intensively studied histone lysine
demethylases, as well as the understudied group of JMJD members. In particular, we focused on epigenetic changes induced by
each JMJD member and summarized recent research progress evaluating their therapeutic potential for the treatment of cancer
and inflammatory diseases.
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INTRODUCTION
As one of the major causes of mortality worldwide, cancer
challenges global public health. According to cancer statistics
2018, one in every five men and one in every six women would
develop cancer during their lifetime.1 Moreover, there were
approximately 19.3 million new cancer cases and 10.0 million
cancer deaths in 2020.2 The occurrence of cancer entails a series of
genetic mutations that favor uncontrollable tumor growth. It is
believed that various factors collectively contribute to cancer, and
there is no one single explanation for tumorigenesis. For instance,
cancers can be caused by internal factors such as spontaneous DNA
mutations or external environmental factors. Epigenetic alterations
are a class of features common to cancer progression, reversibly
modulating oncogenesis through chromatin compaction, and are
susceptible to external or internal environmental factors.3 The term
“epigenetics” was originally introduced by Dr. Waddington to
describe the hereditary alterations in cell phenotypes that were
independent of DNA sequence change.4 Following decades of
research, the definition of epigenetics has reached a consensus that
epigenetics is the chromatin-based event that modulates DNA-
templated processes.5

Composed of DNA and the surrounding nucleosomes, chromatin
is a constantly-changing structure that responds to external
environments. Each nucleosome contains an octamer of four
histones (H2A, H2B, H3, and H4), the post-translational modifications
(PTMs), which influences chromatin compaction and subsequently
modulates the transcription levels of different genes.6 The histone
modifications at specific residues include acetylation, methylation,
phosphorylation, citrullination, ubiquitination, ADP-ribosylation, dea-
midation, formylation, O-GlcNAcylation, propionylation, butyrylation,

crotonylation, and proline isomerization, controlling gene expres-
sion during the development of diseases.7 It is thus not surprising
that molecules regulating the deposition and removal of histone
modifications are actively involved in oncogenesis and inflamma-
tion response.8,9

The methylation of lysine residues on histone proteins
represents a class of PTMs. Lysine residues of histones can be
either mono-, di-, or tri-methylated (Kme1, Kme2, and Kme3,
respectively) by enzymes that recognize methyl marks on histone
proteins. The different methylation status of histones leads to the
recruitment of binding proteins with varying affinities.10,11 The
methylation process of lysines is accomplished by the histone
lysine methyltransferases (KMTs), also referred to as “epigenetic
writers”, whereas the removal of methyl groups on lysine relies on
lysine demethylases (KDMs), referred to as “erasers”.12,13 KDMs are
classified into two families according to their action mechanism,
the flavin adenine dinucleotide (FAD)-dependent amine oxidases
and the Jumonji C (JmjC) domain-containing (JMJD) demethy-
lases. Figure 1 presents the phylogenetic tree of histone
demethylase members of JMJD family proteins.
The human JMJD protein family consists of more than 30

members, most of which have been identified with histone lysine
demethylase activity. The JMJD family of KDM enzymes function as
Fe2+ and 2-oxoglutarate-dependent dioxygenases and are able to
demethylate histone lysines at different methylated states (Kme1,
Kme2, and Kme3).14,15 The signature structure of JMJD proteins is a
~170 amino acids long Jumonji C (JmjC) domain where their
complexation with Fe2+ occurs.15,16 The activity of JMJD proteins
requires the involvement of cofactors oxygen and 2-oxoglutarate
(or α-ketoglutarate), resulting in the sensitivity of JMJD activity to
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the metabolic changes within cells.17 Two consecutive chemical
reactions are implicated in the lysine demethylation process,
including the hydroxylation of the methylated ε-amino group and
formaldehyde release. In addition to methylated lysine residues,
JMJD proteins also demonstrate their hydroxylation activities on
amino acid residues of aspartate, asparagine, histidine, arginine, and
unmethylated lysine, and tRNA.18

The first protein identified with JmjC domain-based catalytic
activity was HIF1AN (hypoxia-inducible factor 1 subunit alpha
inhibitor), a hydroxylase of asparagine residues.19,20 This has led to
speculation that JMJD proteins could hydroxylate methylated
lysine residues and thereby exhibit their demethylation ability.21

Soon thereafter, a number of JMJD proteins were detected for
their histone lysine demethylase activities, which collectively form
a large heterogenous JMJD protein family.14,22 The classification of
JMJD family members can be based on their molecular weight
(>100 kDa or <100 kDa), the specificity of lysine demethylation, or
the existence of functional domains. Considerable attention has
converged on those JMJD proteins reported with histone lysine
demethylase activity.23 Though some other JMJD family members
are not catalytically active, such as JARID2, which contains amino
acid mutations critical for cofactor binding, they are still essential
for the multiple biological processes.24 In this review, we will focus
on the role of JMJD family proteins in cancer and inflammation,
including the intensively studied histone lysine demethylases and
the understudied group of JMJD members. The representative
diagram of the demethylating activities of JMJD family members
in cancer and inflammation is presented in Fig. 2.

JMJD PROTEINS IN CANCER
Growing evidence has demonstrated the aberrant expression of
JMJD proteins in cancer and inflammatory diseases, which might
serve as an underlying mechanism for the initiation and
progression of such diseases. The inhibiting and promoting
effects of JMJD family proteins in different cancer types are
summarized in Table 1 and Fig. 3.

JMJD1
The JMJD1 subfamily includes JMJD1A, JMJD1B, and JMJD1C (or
KDM3A, B, and C, respectively), which all contain 2 conserved

domains required for catalytic activities,25,26 JmjC catalytic center,
and a C6 zinc finger. JMJD1A is 59.64% identical to JMJD1B in
terms of amino acids. However, both JMJD1A and JMJD1B share
less than 50% of their amino acid sequences with JMJD1C,
suggesting that JMJD1C is evolutionarily distinct.18 Though these
JMJD1 proteins have been reported to demethylate mono- and
dimethylated lysine 9 on histone H3 (H3K9), the trimethylated
H3K9 is not a substrate for JMJD1 proteins.27 It was recently
suggested that the demethylation activity of JMJD1 might include
more histone lysines in addition to H3K9.28,29 JMJD1 proteins have
long been found to regulate normal homeostasis, and here we
mainly focus on their roles in oncogenesis.
On one hand, JMJD1A functions as a tumor-suppressive factor,

with Jmjd1a knockout resulting in increased microvessel forma-
tion and the expression alterations of angiogenesis-related genes,
such as the downregulation of anti-angiogenic factors.30 JMJD1A
also suppresses the proliferation of gastric cancer cells by
regulating its target gene runt-related transcription factor 3
(RUNX3).31 On the other hand, the overexpression of JMJD1A
was found to correlate with increased metastasis and unfavorable
prognosis of colorectal cancer (CRC) and gastric cancer.32,33

JMJD1A may promote CRC progression via Wnt/β-catenin signal-
ing where it coactivates downstream targets of β-catenin32,34,35 or
coactivating STAT3 transcription factor.36 JMJD1A expression is
significantly elevated in bladder carcinomas compared with
adjacent noncancerous tissues, which promotes the G1/S cycle
transition by regulating HOXA1 gene transcription.37 Another
mechanism through which JMJD1A promotes urinary bladder
cancer progression is the increased glycolysis induced by JMJD1
through coactivation of HIF1α.38

In prostate cancer, JMJD1A promotes the proliferation and
survival of prostate cancer cells via the regulation of c-Myc
expression at both transcriptional and post-translational levels.39

In other words, JMJD1A not only enhances c-Myc transcriptional
activity but also prevents the degradation of c-Myc protein.39

JMJD1A was found to promote the expression of factors that
mediate DNA repair and radioresistance of prostate cancer cells,
making JMJD1A a potential therapeutic target to improve the
response of prostate cancer cells to chemotherapies, radio-
therapies, and PARP inhibitors.40 JMJD1A promotes the forma-
tion of alternative splicing of AR variant 7 (AR-V7), a key

Fig. 1 Phylogenetic tree of histone demethylase members of JMJD family proteins. Figure was created with Biorender (www.bioender.com)
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mechanism by which prostate cancer cells develop resistance to
androgen deprivation therapy.41

JMJD1B is located in the 5q31 chromosomal locus, the deletion of
which is often seen in myelodysplasia and acute myeloid leukemia
(AML). Lower expression of JMJD1B in AML patients indicated worse
prognosis,42,43 and JMJD1B was thus viewed as a tumor suppressor
for AML.44 The underlying mechanism may be the JMJD1B-
facilitated degradation of PML/RARα, a critical event in the
pathogenesis of acute promyelocytic leukemia (APL).43 JMJD1B also
appears as a tumor suppressor in CRC, the histone methylation of
which is regulated by PRL-3, an essential metastasis gene of CRC.45

JMJD1C was initially identified in undifferentiated spermato-
gonia, the knockout of which resulted in increased apoptosis of
germ cells in mice.46 In the field of cancer, JMJD1C functions as
an oncogenic factor for AML by promoting cell survival and self-
renewal. For example, intracranial germ cell cancer was
characterized by germline missense mutations in JMJD1C.47

JMJD1C is overexpressed in colon cancer tissues and increases
colon cancer metastasis via the inactivation of the ATF2
pathway.48 On the contrary, JMJD1C functions as a tumor
suppressor in esophageal cancer, which downregulates cancer
cell proliferation by targeting YAP1 gene expression via

Fig. 2 Representative diagram of the demethylating activities of JMJD family members in cancer and inflammation: JMJD3 demethylates tri-
methylated Lys 27 on histone H3 and thus affects the transcription of inflammation-associated gene. JMJD6 is a 2OG oxygenase and catalyze
methylarginine demethylation of histone H3/H4 residues, which regulates the transcription of cancer-related pathway genes such as MAPK
signaling. Figure was created with Biorender (www.bioender.com)
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H3K9me2 demethylation.49 Interestingly, in JMJD1C-knockout
mice, the global H3K9 methylation level remained unchanged,
and it thus is postulated whether JMJD1C displays H3K9
demethylase activity.50

JMJD2/KDM4
JMJD2 is one of the largest JMJD subfamilies and is comprised of
JMJD2A-D proteins, also referred to as KDM4A-D. JMJD2 family
members take active parts in multiple physiological processes,
including cell proliferation, migration,51 gene transcription,52 and
genome stability.53 In embryonic stem cells (ESCs), KDM4B and
KDM4C interact with pluripotency factors such as Sox2, Oct4, c-
Myc, and Klf4, thereby regulating cell proliferation and stem-cell
features.54,55 It was recently reported that JMJD2A, B, and C were
all crucial to the survival of acute myeloid leukemia cells,56 but the
individual role of each member varied significantly.
JMJD2A uses trimethylated H3K9 and H3K36 as demethylating

substrates. Interestingly, demethylating efficiency of JMJD2A on
H3K9me3 is 5-fold higher than on H3K36me3 and higher on
trimethylated than dimethylated H3K9/H3K36.57 The dual role of
JMJD2A in transcription, with both stimulating and repressing
effects on gene transcription, has drawn considerable research
attention. JMJD2A may directly bind to transcription factors58 or
interact with nuclear receptor corepressor to suppress gene
transcription.59,60 The oncogenic effect of JMJD2A was first
observed in breast cancer, with approximately 60% of breast
tumors identified with JMJD2A overexpression.61–63 JMJD2A is
also important for androgen and estrogen receptor (ER)
activities based on its catalytic activity.64 The absence of JMJD2A
in ER-positive or ER-negative breast cancer cells decreased the
expression of ER target genes such as the c-Jun and cyclin D1,
leading to aberrant cell proliferation.65 A recent meta-analysis
revealed the differential expression of JMJD2 in breast cancer,
with JMJD2A/D overexpression predominantly observed in
basal-like breast cancer and JMD2B in ER-positive luminal-type
breast cancer.66

JMJD2A also plays a functional role in a number of other cancers.
In lung cancer, JMJD2A decreased the transcription of tumor

suppressor gene CHD5 to block cellular senescence, which
ultimately stimulated cellular transformation.67 Likewise, the
upregulation of JMJD2A expression was later reported in prostate
cancer and bladder cancer tissues.68 In bladder cancer, JMJD2A
promoted epithelial-mesenchymal transition (EMT) by modulating
SLUG expression. However, contradictory results were reported that
lower JMJD2A intensity was observed in bladder cancer tissue
samples, predicting significantly worse overall survival.69 JMJD2A
promoted the growth and protein synthesis of gliomas via
phosphoinositide-dependent kinase-1 (PDK1)-mediated Akt-mTOR
pathway activation.70 Notably, there appeared to be no difference
between JMJD2A upregulation or downregulation in the growth of
cervical carcinoma.71 These results suggested that JMJD2A might
preferentially stimulate the growth of specific tumor types.
JMJD2B and JMJD2C share similar structures and action

specificity to JMJD2A.72 It remains unclear whether the catalytic
activity of JMJD4B is lower than other JMJD2 members because
the different sizes of recombinant JMJD4B proteins would affect
the measurement results.73 It is widely accepted that JMJD2B
supports the carcinogenesis of ER-positive tumors because it is,
in fact, an ER target gene.74–76 Though JMJD2B/C is upregulated
in breast cancers at mRNA levels, higher JMJD2B expression was
observed in ER-positive than ER-negative breast cancer, whereas
the reverse applied for JMJD2C.77,78 As a downstream target of
the pluripotency factor Oct4, JMJD2C promoted not only the
proliferation of ER-negative breast cancer cells but also cancer-
stem-cell features such as mammosphere formation in non-
transformed breast cancer cell lines,79 suggesting the important
role of JMJD2C in the maintenance of cancer stem cells. JMJD2B
is associated with invasion and metastasis of gastric cancer by
inducing EMT.80 JMJD2B and β-catenin collectively promote the
transcription of β-catenin target gene vimentin via H3K9
demethylation.80 The overexpression of JMJD2B was found to
correlate with the abundance of p-c-Jun in gastric cancer, which
is predictive of poor survival.81 In classical Hodgkin lymphoma,
the elevated expression of JMJD2B and JMJD2D was also
associated with aggressive subtypes and suboptimal treatment
response to radiation.82

Fig. 3 The inhibiting and promoting effects of JMJD family proteins in different cancer types. Figure was created with Biorender
(www.bioender.com)
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In CRC patients, the overexpression of JMJD2B in CRC
specimens indicates a poor prognosis. It has been demonstrated
that JMJD2B accelerated CRC progression based on its interaction
with TRAF6, which leads to TRAF6-mediated AKT activation.83 A
more recent study identified a novel epigenetic mechanism for
the progression of CRC, where JMJD2B enhances the transcription
of small GTPase TC10-like (TCL), leading to a malignant phenotype
of CRC cells.84 Additionally, under glucose deficient conditions,
JMJD2B sustained the autophagy-derived amino acids in CRC cells
via the epigenetic regulation of LC3B, thereby promoting the
aggressiveness of CRC.85 Similar to its action mechanism in gastric
cancer, JMJD2B supports the gene transcription induced by
β-catenin, thereby contributing to the tumorigenesis of CRCs.86

The invasion of CRC cells may also be attributed to the immune
escape via the KDM4B/HOXC4/PD-L1 axis.87

A unique member of the JMJD2 family, JMJD2D, is only half the
size of JMJD2A-C due to its lack of PHD and Tudor domains.88

Compared with JMJD2A-C, which uses H3K36 as demethylating
substrates, JMJD2D has a different substrate-binding specificity
and acts on dimethylated H1.4K26 rather than trimethylated
H1.4K26.89 JMJD2D also demethylates H3K9me2 and H3K9me3
but less efficiently demethylates H3K9me1.90,91 The expression of
JMJD2D in the margins of pancreatic tumors was indicative of
earlier recurrence in patients.92 JMJD2D is highly expressed in liver
cancer, and its demethylase-independent inhibition on p53 tumor
suppressor promotes liver cancer initiation and progression.93 The
chemical inhibition of JMJD2 by ML324 enhances cell apoptosis of
hepatocellular carcinoma via the unfolded protein response and
Bim upregulation.93

Compared with noncancerous colon tissues, JMJD2D is highly
expressed in CRC tissues and promotes tumor growth and
invasion of CRC. The crosstalk between JMJD2D and β-catenin
activates the transcription of β-catenin target genes in CRC
cells.94 The colon tumorigenesis by JMJD2D can be mediated by
Hedgehog signaling. In addition, a recent study suggested that
JMJD2D enhanced CRC progression by activating HIF1 signaling
and subsequent cell glycolysis.95 The activation of the
HIF1 signaling pathway by JMJD2D can be based on three
mechanisms: (1) JMJD2D upregulates mTOR expression, thus
promoting HIF1α translation; (2) JMJD2D upregulates HIF1β
transcription; (3) JMJD2D interacts with HIF1α to induce glycolytic
gene expression.95 JMJD2D is also involved in the immune escape
of CRC cells by upregulating PD-L1 expression, providing a new
strategy to improve response to anti-PD-1/PD-L1 immunothera-
pies.96 Bioinformatical analyses revealed that for two potential
JMJD2 members, the gene products of JMJD2E and JMJD2F were
similar to those of JMJD2D, but JMJD2E and JMJD2F are more
likely to be pseudogenes.97

Importantly, the role of JMJD2/KDM4 proteins in tumorigenesis
is especially addressed in colorectal cancer. JMJD2A promoted cell
growth of colon cancer by increasing cell proliferation and at the
same inhibiting apoptosis.58 JMJD2B is also overexpressed in CRC
tissues, the inhibition of which promotes cell apoptosis providing
a potential therapeutic strategy.98 JMJD2B could be induced
under a hypoxic environment in a HIF-1α-dependent manner in
CRC cells. Under such circumstances, the expression of several
hypoxia-inducible genes was upregulated by JMJD2B via
demethylation of H3K9me on their promoters.99 It was recently
suggested that Wnt-mediated CRC metastasis is partially depen-
dent on JMJD2 to form an epigenetic complex that activates
disintegrin and metalloproteinase (ADAM) transcription.100

JMJD3/KDM6B
The JMJD3 gene is located on chromosome 17p13.1101,102 and
88% homologous to the gene histone demethylase gene UTX
(ubiquitously repeat transcribed tetratricopeptide repeat on the X
chromosome).103 UTX was the first identified mutated histone
demethylase gene associated with cancer104 and can remove the

methyl groups from di-trimethylated H3K27.103,105–107 The loca-
tion of JMJD3 is adjacent to p53 as well, a tumor suppressor, the
mutation of which is a frequent event in cancer. It was found that
JMJD3 might also directly interact with p53.108,109 The role of
JMJD3 on cancer is highly controversial, with tumor inhibitory
effects on CRC, hepatic cancer, pancreatic cancer, glioma and
B-cell lymphoma, and tumor-promoting effect on cancers such as
renal breast, prostate, and ovarian cancer.
The regulating effect of JMJD3 in cancer is partially attributed

to its role in the EMT of cancer cells. Transforming growth factor-β
(TGF-β) is a well-characterized multipotent cytokine that inhibits
tumor cell proliferation at the early stage but induces EMT at the
late stage of cancer progression.110 The increased expression of
JMJD3 was proved to be associated with metastatic capacities of
ovarian cancer via the increased expression of TGF-β.111 More-
over, JMJD3 promoted EMT of Ras-mutated lung cancer cells via
TGF-β-mediated Smad stimulation.112 In line with the in vitro
studies, non-small cell lung cancer (NSCLC) patients with high
JMJD3 expression in tumor specimens displayed higher risks of
lymphatic and distant metastasis and poor overall survival.113

Further studies provided a potential mechanism through which
JMJD3-mediated EMT of cancer cells. JMJD3 enhanced TGF-
β-induced EMT by upregulating the EMT-related gene, SNAI1, in
invasive breast cancer.114

Previous evidence also investigated the important yet poorly
defined role of JMJD3 in the metastasis of CRC, the second most
lethal cancer worldwide in 2020.2 The aberrant expression of Wnt/
β-catenin pathway molecules is often observed in a wide
spectrum of cancers and is believed to be associated with
epigenetic modulation of key gene promoters in colon cancer.115

JMJD3 has a dual role in CRC as a tumor suppressor and tumor
activator. JMJD3 is under-expressed in CRC patient specimens, and
the absence of the JMJD3 in the tumor is characterized as a
marker of poor clinical outcome in CRC.116 Earlier evidence
identified JMJD3 as a downstream target of vitamin D metabolite
1α,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) in colon cancer cells
which mediates the effects of 1,25(OH) 2D 3 on a subset of EMT-
inducer genes such as ZEB1, ZE, B2, and SNAI1.117 The expression
of JMJD3 was found to inversely correlate with that of SNAI1 in
colon cancer tissues, and the inhibition of JMJD3 abolished
1,25(OH)(2)D(3)-induced β-catenin transcriptional activity.118 On
the other hand, JMJD3 promotes the expression of the epithelial
cell adhesion molecule (EpCAM) gene in CRC based on its histone
promotor demethylation function.119 The aberrant activation of
NOTCH1, and the subsequent increase in Ephrin type-B receptor 4
(EPHB4) expression, are considered a hallmark of CRC progression.
The intracellular NOTCH domain led JMJD3 to the EPHB4 enhancer
region, and modified the chromatin architecture by regulating the
H3K27me3 level, which ultimately resulted in EPHB4 activation.120

Recently, JMJD3 has been reported to control tumor immuno-
suppression. JMJD3-mediated H3K27me3 reduced the production
of Th1-type chemokines CXCL9 and CXCL10, mediators of effector
T-cell trafficking in colon cancer.121

In accordance with the tumor-supportive action of JMJD3 in
CRC, the regulation of JMJD3 on cancer development based on its
demethylation activities can also be found in a series of other
cancer types. The brain is the most investigated organ for JMJD3
regulation. Patients with pediatric brainstem glioma often
experience a decrease in H3K27me3, and the methylation
maintenance by JMJD3 inhibition thus becomes an important
treatment strategy.122,123 JMJD3 expression was elevated in
glioma relative to normal tissues, and the inhibiting JMJD3
demethylation reduced tumor cell proliferation and migration,
and at the same time enhanced apoptosis.124 In contrast, some
reports addressed JMJD3 as a tumor suppressor in glioma via
modulating the expression of the key transcription factors,
including the p53.125 As discussed earlier, JMJD3 may directly
interact with p53 and regulate its activity independently of
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chromatin modification, leading to glioblastoma stem-cell (GSC)
differentiation.108 Moreover, JMJD3 expression is partially deter-
mined by STAT3 (signal transducer and activator of transcription
3), which binds to and inhibits the promotor region of JMJD3.
Once JMJD3 expression was resumed from STAT3 inhibition,
JMJD3 reduced the formation of neurosphere and cell prolifera-
tion of GSC.126 One of the treatment strategies for glioblastoma is
an aptamer which targets the ligand of platelet-derived growth
factor receptor A (PDGFRα), leading to decreased STAT3 and
increased JMJD3 expression, and subsequent upregulation of
p53.127 Collectively, these results suggested the central position of
JMJD3 in the STAT3-JMJD3-p53 signal network that regulates
glioma progression.128

The occurrence of prostate cancer (PC) is highly relevant to
histone modifications such as methylation,129 and the fact that
an H3K27 methyltransferase has been found to indicate prostate
cancer progression further supports the oncogenic role of
histone methylation status at H3K27 in prostate cancer.130 PC is
hormone-dependent cancer with overexpression of androgen
receptor (AR).131 A wide breadth of literature has suggested the
link between JMJD3, H3K27me3, and the AR metabolic path-
way.132–136 Increased transcriptional level of JMJD3 was reported
in metastatic prostate cancer,105 with higher expression in AR-
positive compared to AR-negative PC cell lines.132 The signature
genes activated by JMJD3 in PC include (O-methylguanine-DNA
methyltransferase (MGMT), transformer 2 alpha homolog
(TRA2A), and 2 small nuclear RNA auxiliary factor 1 (U2AF1),
and ribosomal protein S6 kinase A2 (RPS6KA2)), identified as
signature genes in PC.137

The overexpression of JMJD3 is often observed in germinal
center B (GC-B) cells in Hodgkin lymphoma (HL)138 and diffuse
large B-cell lymphoma (DLBCL).139,140 Following JMJD3 blockade
treatment, the H3K27me3 level on target genes was significantly
decreased in HL, supporting the conclusion that JMJD3 is involved
in the development of HL.138 In DLBCL, JMJD3 promotes the
phosphorylation of proteins mediating the B-cell receptor (BCR)
signaling. It affects its downstream B-cell lymphoma 6 protein
(BCL6), facilitating normal B-cell survival and lymphogenesis of
B-cell non-Hodgkin lymphoma (NHL).141 Moreover, JMJD3 is
involved in the treatment response to chemotherapies, with
JMJD3 inhibitors demonstrating significant chemo-sensitization
on B cells.139 Recently, a potential link was established between
JMJD3 demethylase and cyclin-dependent kinase 9 (CDK9), the
abnormal expression of which was a frequent event in DLBCL. The
use of CDK9 inhibitors reduced JMJD3 expression, which
specifically elevated the trimethylation of H3K27.142

JMJD3 is also involved in a broad spectrum of cancers such as
PML/RARα-positive leukemic, where JMJD3 activates expression of
the homeobox (HOX) gene via interaction with PML-RARα fusion
protein.143 In neuroblastoma which is mainly induced by the
activation of oncogenes and the failure of neural crest cell
differentiation, blocking JMJD3 may regulate the expression of
several key differentiation genes such as the v-myc myelocyto-
matosis viral-related oncogene (MyCN).144 Based on these
intriguing findings, further studies are warranted to clarify the
precise role and action mechanisms of JMJD3 in cancer under
different circumstances.

JMJD4
JMJD4 is a recently identified histone demethylase homologous to
JMJD6. However, compared with JMJD6, which has been
intensively studied, experimental work to characterize the role
of JMJD4 in cancer has lagged far behind. Currently, the only
reported enzymatic activity of JMJD4 is the hydroxylation of the
lysine residue of eukaryotic release factor 1 (eRF1).18 Though the
inhibition of eRF1hydroxylation led to less efficient transcriptional
termination, researchers failed to identify any physiological
consequences.145 An initial investigation suggested significantly

higher JMJD4 expression in tumor tissues than in normal tissues of
the colon and hepatic cancer and the differential expression of
JMJD4 protein in colon cancer of different histological grades and
metastasis status.146 Recent research revealed the increased
expression of JMJD4 expression in renal cancer, which might be
a prognostic marker in renal cancer patients.147 Thus, more studies
are needed to delineate the role of JMJD4 in cancer.

JMJD5 and JMJD7
JMJD5/ KDM8 shuttles between the cytoplasm and the nucleus148

exhibit a wide range of enzymatic activities, including the
demethylation of H3K36me2,149,150 hydroxylation at the C3 of
arginine residues,151–153 and proteolysis.154,155 Recent research
has cast doubt on the demethylation of JMJD5 H3K36me2 based
on the crystal structure results that the catalytic center of JMJD5 is
not favorable to the accommodation of methylated lysine
residues.151,156–158 Further, no valid in vivo evidence has been
reported for the arginine hydroxylation activities of JMJD5.153 In
keeping with JMJD5, JMJD7 is able to hydroxylate the C3 position
of lysine residues and at the same time, cleaves arginine
methylated histone as a protease.154 The hydroxylation of DRG1/
2, two GTPases involved in ribosome biogenesis,159 by JMJD7
enhanced the binding of DRG1/2 to RNA. Noteworthy, the
occupancy of JMJD7 at gene promoter regions negatively
regulates osteoclast differentiation, suggesting the critical role of
JMJD7 in bone formation and turnover.160 The divalent cation-
dependent protease activities of JMJD5 and JMJD7 preferentially
cleave the tails of H2, H3, and H4 bearing methylated arginine.
Like other aminopeptidases, JMJD5 and JMJD7 digest the
C-terminal products following the initial specific cleavage,
providing a new repertoire for removing histone tails with
methylated arginine residue.154 Interestingly, histones such as
H3 and H4 and their arginine methylated isoforms were increased
in cells lacking either JMJD5 or JMJD7 in vivo.154

JMJD5 is highly expressed in breast cancer cell lines, the
knockdown of which resulted in tumor cell growth arrest.149 It was
recently suggested that there is significantly lower mRNA
expression of JMJD5 in breast cancer, hepatocellular carcinoma,
and lung cancer, but a higher expression in stomach adenocarci-
noma than in normal tissues. Accordingly, high JMJD5 expression
indicated a good prognosis in breast cancer, hepatocellular
carcinoma, and lung cancer but a poor prognosis in stomach
adenocarcinoma.161 In this study, JMJD5 expression was also
related to the abundance of infiltrating immune cells in tumors,
which might jointly serve as a prognostic marker.
In cancer cells, JMJD5 promotes the transcription of PKM2-HIF-

1α target genes that mediates glucose metabolism, leading to
increased glucose uptake and lactate secretion.162 JMJD5 has
been identified as a binding partner for p53 tumor suppressor and
positively regulates cell proliferation and cell cycle.163 Thus, in oral
squamous cell carcinoma, the downregulation of
JMJD5 significantly induces apoptosis and reduces tumor
metastasis via p53/NF-κB pathway.164 A recent study described
potential mechanisms for the regulation of both androgen-
responsive and metabolic genes by JMJD5 in castration-
resistance of prostate cancer (CRPC) cells. JMJD5 can either
interacts with androgen receptor (AR) and modulates androgen
response, or with PKM2 to regulate tumor metabolism under
androgen-deprived conditions.165 Moreover, JMJD5 inhibition
prevented cancer-stem-cell-like mediated by cancer upregulated
gene 2 (CUG2).166 In pancreatic cancer however, JMJD5 negatively
regulates c-Myc expression, which suppresses tumor cell pro-
liferation and glycolytic metabolismr.167

Likewise, deletion of JMJD7 also impaired the viability of
prostate cancer cells,168 and reduced colony formation of breast
cancer cells.154 JMJD7 also promoted cell survival of head and
neck squamous cell carcinoma (HNSCC) by modulating the
phosphorylation of protein kinase B.169 It was recently
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hypothesized that the loss of function of mixed-lineage leukemia
gene (MLL) 1 fusion, a major cause of pediatric leukemia, coupled
with the failed conversion of H3K4me1 to H3K4me3, might trigger
the malignant transformation of cells, suggesting a potential role
of JMJD5 and JMJD7 in leukemia development.170

JMJD6
JMJD6 is a 47.5 kDa protein with 403 amino acids. JMJD6 is a
monomer and can be in the trimeric, pentameric or larger
oligomeric form in solution and in fibril form in the absence of its
poly-Ser sequence.171 Earlier reports refereed JMJD6 as a surface
marker on macrophages, fibroblasts and epithelial cells, origin-
ally named PSR (phosphatidylserine receptor).172,173 Later studies
found that JMJD6 was in fact predominantly located in the
cellular nucleus both in cells endogenously expressing JMJD6
and JMJD6-transfected cells.174 As PSR was further proved as a
nuclear 2-oxoglutarate (2OG)-and Fe(II)-dependent oxyge-
nase,175 it was later renamed to JMJD6.176 In mouse models,
JMJD6 deficiency resulted in neonatal lethality and serious
defects in the development of organs, independent of its
apoptotic cell removal activities.177

A key catalytic activity of JMJD6 is the arginine demethylation,
both on mono-methylarginine and dimethylarginine residues of
histones. To date JMJD6 is the only enzyme reported with a
potential arginine demethylation activity in vivo.178 Recent
evidence has presented non‐histone targets of arginine demethy-
lation by JMJD6, including RNA helicase A, estrogen receptor α
(ERα), tumor necrosis factor receptor‐associated factor 6 (TRAF6),
and the transcription factor PAX3 and heat‐shock protein 70
(HSP70).179–182 However, some studies cast doubt on the function
of JMJD6 as a histone arginine demethylase in cells such as
endothelial cells.183 Researchers failed to identify arginine methy-
lation at H4R3 in JMJD6-knockdown endothelial cells,184 which was
further supported by the crystal structure analysis that
JMJD6 structure was not conduction to demethylation activities.185

As a multi-functional enzyme intensively involved in chromo-
somal rearrangement and gene transcription, JMJD6 functions as
arginine demethylase and lysyl hydroxylase,186 and even tyrosine
kinase of histones.187 In glioblastoma and neuroblastoma, JMJD6
forms protein complexes with N-Myc and BRD4 (Bromodomain-
containing protein 4), which is important for gene transcription of
a number of genes including E2F2, N-Myc and c-Myc.188,189 As a
tumorigenesis factor for neuroblastoma, JMJD6 is highly
expressed in human neuroblastoma tissues and the knockdown
of JMJD6 decreased neuroblastoma cell proliferation and tumor
progression in vivo, suggesting the potential of JMJD6 as a
therapeutic target in neuroblastoma.190 Moreover, JMJD6 is a
critical regulator of AR splice variant 7 (AR-V7) which mediates the
endocrine resistance in advanced prostate cancer.191

Accumulating evidence suggested that increased JMJD6
expression in breast cancer cells was associated with increased
tumor growth and metastasis.192–194 According to analyses from
patient tumor samples, the expression level of JMJD6 varies
among breast cancer subtypes. For instance, ER‐positive tumors
exhibited significantly lower JMJD6 expression than ER‐negative
tumors, which explained the fact that JMJD6 was consistently
related to ER‐negative diseases.193 However, in this study, no
significant correlation between the JMJD6 level and the prognosis
was identified.193,194 Furthermore, Claudin‐low breast tumors
displayed the highest JMJD6 expression, followed by basal-like,
HER2‐enriched and luminal B subtypes, with the lowest expression
detected in luminal A subtype.193

The oncogenic role of JMJD6 in oral squamous cell carcinoma
is potentially attributed to stem‐like properties mediated by
JMJD6,195–197 which is assumed as a key factor for cancer
recurrence and treatment failure.198 JMJD6 is crucial to mela-
noma progression as well, the mutation, amplification, or deletion
of which indicates unfavorable prognosis.199 Interestingly, a

study identified a novel post-translational modification of P53 by
JMJD6 independent of its histone arginine demethylation
activity, where JMJD6 antagonized p53 acetylation and repressed
its following transcriptional activity in colon cancer.200 Other
cancer types that have been reported to be affected by JMJD6
expression levels include lung cancer,201,202 hepatic cancer,203

and ovarian cancer,204 where high level of JMJD6 expression
correlates with increased cell proliferation, invasiveness, and poor
clinical outcomes.

JMJD8
JMJD8 is evolutionarily distant from the other members of the
JMJD family,18 which contains a JmjC domain at 74–269 amino
acid residues with no other recognizable protein domains.205

JMJD8 is mainly localized at the endoplasmic reticulum and
reportedly involved in angiogenesis and cell metabolism.206,207

Previous research has demonstrated that JMJD8 JMJD8 functions
as a positive regulator of TNF-induced NF-κB signaling.205 The
knockdown of JMJD8 upregulated AKT/NF-κB/COX-2 pathway and
enhanced Ku70/Ku80 expression in cancer cells, thereby regulat-
ing cell proliferation and their responses to cancer treatments that
induced DNA damage.208 A recent study investigated the
prognostic value of 8 glycolysis-related genes in HNSCC and
identified JMJD8 as a protective gene for HNSCC.209 Another study
verified that JMJD8 functioned as an oncogene in CRC which
promoted cell proliferation and EMT through the NF-κB path-
way.210 Likewise, JMJD8 promoted carcinogenesis of NSCLC cells
by maintaining EGFR stability and the downstream PI3K/AKT
signaling pathway,211 which accorded with a recent finding that
JMJD8 could modulate tumor EMT via AKT activation.212 Thus,
JMJD8 is a potential prognostic marker and therapeutic target for
cancer patients. However, JMJD8 has not been thoroughly studied
and its precise role in cancer remains to be elucidated.

JMJD10/MDIG
Given the different identification sources and multiple biological
functions, JMJD10 is also frequently referred to as RIOX2, Mina53/
Mina, NO52 or MDIG (mineral dust-induced gene).213–216 JMJD10
was initially detected in alveolar macrophages of coal miners and
its expression can be induced by environmental cancer risk factors
such as silica, smoke and arsenic.217 The inverse correlation
between MDIG expression and H3K9me3 level in lung tumors218

supported the role of MDIG as a histone demethylase and an
epigenetic regulator in a number of cancer types.219–221 One
structural study failed to prove the histone demethylase activity of
MDIG, but rather identified its hydroxylase activity toward the
ribosomal protein L27a (RPL27a).222 For the first time, the recent
study for the first time identified MDIG as an antagonist for
histone methylation repressors, suggesting the potential of MDIG
as a new target for cancer therapy.223

Many cancers have been identified with overexpression of
MDIG relative to normal tissues, such as breast cancer,224 colon
cancer,225,226 lymphoma.220,227–231 The screening results of the
expression pattern of lung cancer revealed that 90 percent of lung
cancers displayed elevated MDIG expression level.230 An under-
lying mechanism for MDIG-induced invasion and metastasis of
lung cancer cells may be the destabilization of β-catenin and
subsequent suppression of EMT-related genes.232 MDIG was
frequently overexpressed in hepatocellular carcinoma (HCC) which
was associated with higher histological grades, potentially
modulating HCC progression via MDIG/H3K9me3/p21 pathway.233

In some cancers, higher MDIG expression is predictive of worse
prognosis.234 Interestingly, the prognostic value of MDIG may vary
in the same cancer types. For instance, increased MDIG expression
is associated with longer OS in breast cancer patients with lymph
node or distal metastasis.224 Likewise, overexpression of MDIG is
indicative of prognosis only in patients at stages I/II, but not in
stages III/IV patients.216 These results suggest that MDIG may be
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an oncogene that promotes tumor growth at early stages and a
tumor-suppressive gene that reduces the metastatic capacity of
tumor at late stages.

JARID1(Jumonji And AT-Rich Interaction Domain Containing 1)/
KDM5
Before identifying of their histone demethylase activities, JARID1
family members were initially reported to play important roles in
stem-cell biology and congenital disease. Four JARID1 members
that are upregulated in cancers have been identified so far,
JARID1A, JARID1B, JARID1C and JARID1D. JARID1A was first
identified by screening a library of cDNA that interacted with
retinoblastoma gene product (pRb),235 and its crosstalk with pRb
reinforced the transcription repression on cell differentiation by
retinoblastoma family.236

JARIDA is highly expressed in pediatric acute megakaryoblastic
leukemia (AMKL), and its C-terminal PHD finger forms a fusion
gene with NUP98.237,238 This fusion impairs myeloblast differentia-
tion and promotes self-renewal of progenitor cells, which is
important to leukemogenic transformation.239 The expression of
JARIDA is also upregulated in breast cancer,240–244 prostate
cancer,245 and gastric cancer,246–249 potentially by enhancing
tumor cell proliferation and metastasis. In triple-negative breast
cancer (TNBC), the anti-tumoral effect of blocking JARIDA impaired
cell cycle progression and p16/p27-mediated senescence,244

which accorded with previous results on gastric cancer where
JARID1A repressed cyclin-dependent kinase inhibitors including
p16, p21, and p27.249 The oncogenic effect of JARIDA on PC is
partially attributed to its demethylation activities on H3K4, which
decreases the expression of KLF4 and E-cadherin, and facilitates
cell proliferation and metastasis.250 JARIDA can also induce tumor
metastasis of TNBC independent of its demethylase-dependent
function, by promoting integrin β−1 (ITGB1) expression.240

Furthermore, JARIDA is responsible for the generation of
therapeutic responses in cancer.251 One such example is breast
cancer resistance to trastuzumab and erlotinib induced by
JARIDA.252 On the contrary, JARIDA improved the treatment
response of melanoma cells to immune checkpoint blockade,253

suggesting that the role of JARIDA in treatment response may vary
based on tumor types and drug types.
JARID1B was initially regarded as an oncogene in breast

cancer,254 the overexpression of which was significantly asso-
ciated with poor prognosis,255 despite later research identifying its
suppressive activities on the invasion of TNBS cells.256 JARID1B is
upregulated in a wide range of cancers including prostate,257

hepatocellular,258 head and neck cancers259 and ovarian can-
cer,260except for melanomas with relatively low JARID1B expres-
sion.261 JARID1B expression has been reported to confer stem cell-
like features to cancer cells,262 and regulate oxidative metabo-
lism.263 JARID1B may also reduce the progression by suppressing
the genome-wide H3K4me3 hyper-methylation in leukemias.264

Recent evidence suggested that JARID1-targeted inhibitors could
overcome cisplatin resistance to platinum-based chemotherapeu-
tics in melanoma.265 Likewise, CPI-455, the first tool compound
selectively targeting the JARID1 family, inhibited the stem cell-like
properties of oral cancer.266

JARID1C is an X-linked gene,267 the aberrant function of which
leads to X-linked retardation.268 It has been well established that
JARID1C plays a dual role both as a tumor promoter and a tumor
suppressor. For instance, in clear cell renal cell carcinoma (CCRCC),
mutations in JARID1C gene lead to its functional loss and the
preferential occurrence of CCRCC in males.269,270 JARID1C could
impair the development of papilloma virus-related malignancies
by forming a complex with viral E2 that suppressed the E6 and E7
viral oncoprotein promoters.271

Earlier studies referred to JARID1D as a minor histocompatibility
antigen on the Y chromosome.272 The downregulation, mutation,
or loss of JARID1D was recently shown in metastatic PC and

CCRCC.273In hormone-sensitive PC, the interaction between
JARID1D and androgen receptor inhibits the transcriptional
activation of AR target genes and loss of JARID1D may result in
treatment failure due to dysregulating AR signaling.274 These
efforts may only represent the tip of the iceberg regarding the role
of JARID1D in cancer progression, and more studies are warranted
to address the biological contributions of JARID1 to cancer.

JARID2 (Jumonji And AT-Rich Interaction Domain Containing 2)
JARID2 is often described as and probably the most widely studied
a PRC2-associated factor.275–279 PRC2 is a protein complex
consisting of 4 core subunits, including the enhancer of zeste
homolog 1 or 2 (EZH1/2), embryonic ectoderm development
(EED), suppressor of zeste 12 (SUZ12) and retinoblastoma
associated protein 46/48, (RbAP46/48), also known as RBBP4/
7.280 PRC2 is responsible for the mono-, di and tri-methylation of
H3K27, with approximately 70% of H3 histones being methylated
by PRC2.281–284

Though JARID2 is a founder member of the JMJD protein
family,285 it lacks the essential residues required for enzymatic
activity, making its JmjC domain inactive.286,287 Since its discovery,
the role of JARID2 in mammalian development has mainly
converged in the embryonic stem cell pluripotency. Accumulating
evidence has reported its function in embryonic lethality, based
on different genetic backgrounds of the mutant strain.288 Apart
from the JmjC domain, JARID2 contains a JmjN domain and two
other domains with DNA-binding capacity which is likely to be
independent of its crosstalk with PRC2.278

Except for the its function in the embryological context,289,290

JARID2 was also dysregulated in cancer and considered as an
oncogene that promotes cancer progression. Through inhibiting
the overactivation of AKT induced by phosphatase and tension
homolog (PTEN), JARID2 facilitated EMT and invasion of HCC
cells.291 It is thus not surprising that the knockdown of JARID2
reduced the TGF-β-mediated EMT in colon and lung cancer
cells.292 A recent study demonstrated the essential role of the
LINC021/IMP2/JARID2 signaling axis in CRC tumorigenesis where
LINC021 enhanced the mRNA stability of JARID2.293 In bladder
cancer, JARID2 promoted the proliferation, migration, invasion
and sphere-forming capacities of bladder cancer cells.294 Previous
studies suggested that tumor cells undergoing EMT are more
likely to be resistant to cisplatin.295,296 Researchers later found that
JARID2 was involved in developing cisplatin resistance in non-
small cell lung cancer via upregulation of Notch1.297 Nevertheless,
JARID2 is not always an oncogene that facilitates tumorigenesis.
JARID2 can also function as a hematopoietic tumor suppressor
that limits the self-renewal of multipotent progenitor cells and
prevents the transformation of nonmalignant blood disorders
such as myeloproliferative neoplasms and myelodysplastic syn-
dromes, into AML.298

UTX/KDM6A and UTY
KDM6A or UTX was first identified in 2007 together with JMJD3
and ubiquitously transcribed tetratricopeptide repeat on chromo-
some Y (UTY) as a group of H3K27 demethylases.299,300 Whereas
UTX is an X-linked protein with demethylating activities on
H3K27me2/3, UTY is the Y-linked homolog of UTX which shares
similar structures with UTX with minimal demethylase activity due
to a mutation in the JmjC catalytic domain.107,301

UTX is one of a few cancer suppressors that escape X
inactivation, leading to a predominant occurrence rate in the
male population.270 According to the analyses of 4,742 human
tumor specimens.302 UTX is highly mutated across various
cancers, including acute lymphoblastic leukemia,303 chronic
myelomonocytic leukemia,304 bladder cancer,305 medulloblas-
toma,306 prostate cancer,307 and renal carcinoma.308 The
proliferation of cancer cells was reduced when inactivating UTX
mutations were resumed with the addition of wild-type UTX.
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An increased mutational rate of UTX was observed from 10.7% to
21.6% in pancreatic cancer samples. The knockdown or inactive
mutations of UTX increased TP63 expression, which was
considered a key driver of pancreatic cancer.309

On the contrary, specimen analysis of patients with oral tongue
squamous cell carcinoma (OTSCC) suggested that UTX expression
in tumor tissues may predict poor survival outcomes in theses
patients.310 In NSCLC cells, UTX is regarded as an oncogene which
promotes cell proliferation and migration, and its expression is
modulated by the EGFR-STAT3 axis.311 The promoting effect of
UTX on lung cancer oncogenesis is mainly mediated through the
upregulation of EZH2, and the UTX-deficient lung cancer is
preferentially sensitive to EZH2 inhibitors.312 In addition, immu-
nohistochemistry staining results revealed that UTX was highly
expressed in CRC tissues and promotes CRC cell proliferation and
maintains G0/G1 cell cycle progression via upregulating KIF 14
and pAKT.313 UTX positively regulates E-cadherin expression via
modulating H3K27 demethylation and acetylation, activating the
transcription of the E-cadherin at its promoter regions.314

In breast cancer, depletion of UTX resulted in upregulation of
Myc-dependent expression of EMT factors, including SNAI and
ZEB1/2.315 Thus, by forming a transcriptional repressive complex
with LSD1, HDAC1 and DNMT1, UTX is a tumor suppressor and a
negative regulator of EMT-induced CSC-like properties in breast
cancer.314 However, pro-tumor functions of UTX were observed in
the ER+ subtype of breast cancer cells where the transactivation
of UTX and estrogen receptor (ER) forms a feed-forward loop in
response to hormone treatments.316

UTY on the other hand, is less frequently mutated in cancer
than UTX317 and had less tumor-suppression effect than
UTX.309,318,319 It was recently reported that UTY displayed weaker
tumor-suppression abilities than UTX in leukemia, which was
further reduced by the deleting the UTY cIDR (residues
498–795).320 Similar to UTX, the depletion of UTY promoted cell
proliferation of urothelial bladder cancer cells321 and 12% of
urothelial bladder carcinomas were identified with the absence of
UTY.322 Moreover, the knockout of both UTX and UTY had a

synergistic effect on the increase of proliferation, which might be
attributed to the loss of dosage-dependent suppression effect of
UTX/UTY in urothelial cancer.

JMJD PROTEINS IN INFLAMMATION
Histone modifications lead to significant alterations in genome
structures and functions. Figure 4 presents the signaling pathways
involved in the regulation of cancer and inflammation by JMJD
family members and their crosstalks.

JMJD1 and JMJD2
Under hypoxic conditions, the increased HIF-1α expression
promotes the inflammatory injury of endothelial cells, which is
independent on the NF-κB pathway. In JMJD1A-knockdown
human umbilical vein endothelial cells (HUVECs), a number of
genes involved in inflammation and the oxidative stress pathways
were significantly downregulated.323

The involvement of JMJD2 in inflammation is best represented
by JMJD2D which mediates inflammatory responses elicited by
cytokines such as tumor necrosis factor α (TNFα), and conse-
quently reshapes the immune microenvironment. TNFα is a pro-
inflammatory cytokine produced by monocytes during acute
inflammation and is implicated in a range of events leading to cell
necrosis or apoptosis.324 TNFα was able to induce JMJD2D
expression in dendritic cells and macrophages,23 and the
demethylation of H3K9 by JMJD2D in turn participated in the
TNFα response.325 In response to colon injury caused by
inflammatory bowel disease (IBD), TNF-α secreted by macro-
phages activates the NF-κB signaling, upregulating JMJD2D in the
colon epithelial cells.326

The expression of JMJD2B is significantly upregulated in gastric
epithelial cells during H. pylori infection via β-catenin signaling.327

β-catenin directly binds to the promoter region of JMJD2B gene and
activates its transcription. The upregulated JMJD2B, together with
NF-κB, binds to COX-2 promoter to stimulate its transcription via
demethylation of H3K9me3.327 Vascular inflammation is regarded as

Fig. 4 The signaling pathways involved in the regulation of cancer and inflammation by JMJD family members and their crosstalks. Figure was
created with Biorender (www.bioender.com)
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an preliminary step towards multiple human diseases, and its
contributing factors remain incompletely defined. A recent study
investigated the epigenetic changes during the transformation of
vascular smooth muscle cells (VSMCs) into osteoblast-like cells in
response to inflammation, and found that JMJD2B was the
downstream target of IL-6/STAT3 axis, suggesting the pathogenic
role of JMJD2B during chronic inflammation.328 In a LPS-induced
vascular inflammation model, JMJD2A promotes the transactivation
of pro-inflammatory cytokines, facilitating the binding of SET1A to
NF-κB promoter.329

JMJD3
As discussed earlier, JMJD3 together with UTX and UTY, belongs to
the KDM6 family. However, as UTX and UTY are mainly involved in
developmental processes, JMJD3 is implicated in regulating of
inflammation and cellular senescence.330–332 JMJD3 is usually
expressed at a low levels under normal conditions, but its
expression is drastically increased by inflammatory stresses such
as hypoxia inducers and oncogenic factors.333–336

JMJD3 interacts with distinct transcription factors and potently
promotes the expression of inflammatory genes through
H3K27me2,3 demethylation.337,338 One such example is the
JMJD3-induced activation of NF-κB signaling genes.339–341 The
knockdown of JMJD3 in human monocytic cells altered the
expression profile of inflammatory genes in including chemokines,
CD40 signaling and NF-κB-related inflammatory genes. In
particular, JMJD3 knockdown and the subsequent enrichment of
H3K27me3 at the promoter regions of NF-κB signaling genes
suppresses the transcription of genes such as such as monocyte
chemoattractant protein-1 (MCP-1) and IL-1β.340 In glomerular
mesangial cells, the activation of the NF-κB/JMJD3 signaling
pathway could promote high glucose-induced inflammation.342

JMJD3 also participates in the transcription process indepen-
dent of its demethylase activity.343,344 For instance, STAT1 and
STAT3 stimulated the transcription, which subsequently enhanced
the expression of Lipopolysaccharide (LPS)-induced inflammatory
genes.345 Besides, JMJD3 is also implicated in the SMAD3-
mediated TGF-β signaling pathway.346

JMJD3 is involved in several inflammation-related diseases
such as rheumatoid arthritis (RA)347,348 where JMJD3 modulates
the inflammation persistence and angiogenesis of RA via
transcription factor GATA4.349 Given that the H3K27 level is
elevated in the midbrain of aged mice, JMJD3 might reshape the
immune microenvironment of Parkinson’s disease.350 In Parkin-
son’s disease, JMJD3 enhances the M1 pro-inflammatory
response by suppressing the anti-inflammatory microglia M2
phenotype, resulting in increased neuronal cell death.350,351 In
diabetic peripheral tissues, JMJD3 mediates the chronic activa-
tion of macrophages, providing another rationale for using
histone demethylase inhibitors for the treatment of nonhealing
diabetic wounds.352

JMJD3 also plays a pivotal role in cell response to bacteria,
parasites, or virus infection. JMJD3 modulates the recovery of
murine macrophages from exposure to the lethal anthrax toxin.353

During the latency stage of herpes simplex virus 1 (HSV-1)
infection, JMJD3 prevents the reactivation of HSV-1 in sensory
neurons by decreasing H3K27me3.354 JMJD3 deficiency in CD4+
T cells leads to the accumulation of T cells in the thymus, and
reduced T-cell trafficking to the secondary lymphoid organs. The
underlying mechanism for the regulation is the binding of JMJD3
to the Pdlim4 promoter which modulates its expression to affect T
cell trafficking.355

JMJD6
JMJD6 is most highly expressed in innate immune cells. One of
its target genes by its arginine demethylase activity is tumor
necrosis factor receptor-associated factor 6 (TRAF6), which can
be both methylated and demethylated at different arginine

sites.181 TRAF6 could be involved in the pathogenesis of a variety
of autoimmune diseases,356 and the reversible arginine methyla-
tion status of TRAF6 by JMJD6 thus provides a novel mechanism
for regulation of innate immune pathways. A recent study
reported a potential underlying mechanism for the pathogenesis
of neuropathic pain. The overexpression of JMJD6 suppressed
the activation of NF-κB signaling peripheral nerve injury,
suggesting its therapeutic value in neuropathic pain.357 JMJD6
is also involved in viral RNA replication. Immunoprecipitation
assays confirmed a physical interaction between recombinant
JMJD6 and DHX9,179 which is required to replicate the foot-and-
mouth disease virus (FMDV) in cells.358

The impact of JMJD6 on transcriptional regulator Aire reflects
its critical role in the spontaneous development of multi-organ
autoimmunity in mice, such as thymus and T cell development.359

For example, in patients with chronic hepatitis B virus infection, T
lymphocytes usually experience a decrease in JMJD6 expres-
sion.360 It is thus postulated that the “exhausted” T cells when
exposed to chronic inflammation can be partially attributed to
aberrant JMJD6 expression. In fact, the deficiency of JMJD6 in
normal peripheral blood mononuclear cells specifically inhibited
CD4+ T cell proliferation and is associated with an increased level
of cyclin-dependent kinase inhibitor 3 (CDKN3),360 a suppressor of
cell cycle progression.361 However, it remains incompletely
defined whether the activity of JMJD6 in T cell exhaustion is
cell autonomous.362

JMJD8
A recent gene expression profiling analysis demonstrated the
highly enriched expression of JMJD8 in adipocytes, which is
affected by metabolic and nutritional status.363 JMJD8 expression
in turn exerts its regulatory effect on the expression of a series of
pro-inflammatory genes, thereby triggering inflammation
responses. Importantly, functional interaction between JMJD8
and IRF3, a pro-inflammatory factor involved in adipocyte
inflammation and insulin sensitivity, suggested that JMJD8 might
be a junction bridging adipocyte insulin sensitivity and inflamma-
tion.363 Moreover, JMJD8 functions as a positive regulator of TNF-
induced NF-κB signaling,205 which regulates a large array of genes
involved in multiple immune and inflammatory responses.364

MDIG
Despite conflicting results regarding the impact of MDIG on Th2
development, it has been well established that MDIG is involved in
Th2 response-related atopic asthma and parasitic helminth
infection. A genetic case-control study suggested that the T allele
of MDIG correlated with an increased risk of atopic asthma, a
disease typically driven by pulmonary inflammation.365,366 MDIG
deficiency extenuates airway hyper-responsiveness and pulmon-
ary inflammation, possibly by controlling IL-4 production.367 MDIG
may also promote silica-induced lung fibrosis by altering the
balance between Th17 and Treg cells.368 More recently, MDIG
mediates the response to environmental exposure to COVID-19,
making it a therapeutic target of COVID-19 ameliorates the
pulmonary symptoms.369 Further studies are warranted to
elucidate the underlying mechanisms for the involvement of
MDIG in pulmonary inflammation.

JARID2
The role of JARID2 in inflammation is best characterized by its
function in Crohn’s disease (CD), the most common type of
inflammatory bowel disease. An intricate series of pathological
factors are associated with the onset of CD, but the exact
molecular mechanisms remain incompletely defined.370,371 Reg-
ulatory B cells producing IL-10 facilitate intestinal homeostasis,
which potently inhibits mucosal inflammatory responses of
intestines.372 Patients with Crohn’s disease have a decreased level
of regulatory B cells373,374 and the deficiency in B10 cells is
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reportedly related to CD development.375 A recent study
demonstrated the increased IL-10 production by B cells mediated
by JARID2 which promotes H3K27me3 binding to the IL10
promoter regions. This provides a novel molecular explanation
for the pathogenesis of B10 cells in CD patients.376

Another study introduced a novel mechanism through which
inflammatory cytokine interferon-γ (IFN-γ) and class II transacti-
vator (CIITA) collectively reset the fate of post-inflammation
muscle cells.377 IFN-γ has been found to prevent muscle
development during inflammation.378 Circulating IFN-γ increased
PCR recruitment in a JARID2-dependent manner, thereby sup-
pressing muscle-specific genes. Moreover, as one of the target
genes of miR-155, JARID could attenuate theTh2 and Th17-
mediated airway inflammation.379

UTX
As described earlier, it remains to be elucidated whether UTX
expression contributes to the female predominance of auto-
immune diseases. Previous analyses investigated UTX expression
in CD4+ T lymphocytes of female versus male mice,380,381 and
suggested that the X escape of UTX is involved in a wide range of
immune response genes, providing a potential explanation for
the female susceptibility to autoimmune disease.382 The role of
UTX in innate immune responses described so far relies on its
H3K27me2/3 demethylation activities in macrophages, which
promotes pro-inflammatory cytokine transcription such as IL-6
and IFN-β.383 NF-κB signaling can be activated by UTX, leading to
increased secretion of macrophage migration inhibitory factor in
neural stem cells.384 Thus, UTX could be recognized as a
protecting marker that improves neurological function recovery
after spinal cord injury.
Besides, UTX is necessary for the differentiation of CD4+ T cells

to Tfh cells during chronic virus infection. The depletion of UTX in
mice promoted H3K27 methylation level, decreased the gene
expression at Tfh-related genetic loci, and led to deficient virus-
specific IgG production.385 UTX gene mutations are often
associated with bladder cancer. Recently, the absence of UTX
was reported to induce activation of inflammatory pathways that
contributes to bladder cancer in cooperation with p53 dysfunc-
tion.386 The loss of UTX in CD4+ T cells also aggravates allergic
contact dermatitis in mice.387

JMJD PROTEINS AS THERAPEUTIC TARGETS
Given that the JMJD class of histone demethylase is involved in
various physiological and pathological processes, specific JMJD
inhibitor would be an attractive strategy, the utility of which
should not be limited to combating cancer but also the treatment
of inflammatory disorders such as asthma. However, due to its
highly polar 2-OG binding pocket, the development of small-
molecule inhibitors for the JMJD family has lagged behind, with
several JMJD inhibitors being reported but functionally inac-
tive.388,389 We summarized known inhibitors targeting JMJD family
proteins evaluated for the treatment of cancer and inflammatory
disease (Table 2).

JMJD2 inhibitor
An early study described a variety of inhibitor scaffolds with the
capacity to suppress 2-OG-dependent JMJD2 histone demethylases,
which would facilitate the establishment of small-molecule probes
for the identification of enzyme functions in epigenetic signaling.390

Known JMJD2 inhibitors can be classified as either 2-OG cofactor
mimics, substrate-competitors, metal cofactor inhibitors, and
peptide inhibitors.391 Cofactor mimics competitively binding to
Fe(II) at the catalytic site of JMJD2 proteins and modifies the
availability of the 2-OG cofactor required for cancer cell metabolism.
This class of JMJD2 inhibitors includes fumarate and succinate,
which have long been identified as 2-OG antagonists.392

As the overexpression of JMJD2 is frequently observed in
breast cancers, previous studies mainly analyzed the therapeu-
tic potential of JMJD2 inhibitors in breast cancer. For instance, a
JMJD2 inhibitor, NCDM-32B, effectively decreased cell growth of
basal breast cancer cell lines.66 With structure-based drug
design, a novel JMJD2 inhibitor QC6352 was developed, which
potently suppressed the proliferation, sphere formation, and
in vivo tumor growth of TNBC, as well as PDX models of colon
cancer.389 Moreover, QC6352 abrogated EGFR expression,
thereby overcoming therapeutic resistance in breast cancer.393

Recently TACH101, a pan inhibitor of the JMJD2 subfamily was
introduced. This compound exhibited high inhibitory efficacy on
four KDM4 isoforms (A-D) and was able to induce cell apoptosis
of esophageal cancer, TNBC, and CRC cell lines. Animal studies
presented a 4.4-fold lower tumor-initiating cell frequency by
TACH101.394 In lung cancer, JMJD2 inhibition by either
JMJD2 selective inhibitor ML324 or pan-JMJD inhibitor JIB04
could overcome cisplatin resistance, potentially by preventing
ATR-Chk1 replication checkpoint.395 Furthermore, the combined
treatment of JMJD2 inhibitors and LSD1 inhibitors may
represent a more effective strategy for the enhancement of
chemotherapy efficacy.396

The 5-chloro-8-hydroxyquinoline (5-c-8HQ), also referenced
under CAS 5852-78-8, is a well-studied JMJD2D inhibitor used in
multiple researches. The treatment of 5-c-8HQ in mice leads to
significantly smaller and fewer colitis-associated tumors.94 JMJD2D
inhibition using 5-c-8HQ decreased the self-renewal capacities of
liver cancer stem-like cells, thereby suppressing live cancer
progression.397 It has also been reported that 5-c-8HQ works in
synergy with Hedgehog inhibitor vismodegib to suppress CRC
tumorigenesis and cell proliferation.326

A group of tumor-initiating cells (TIC) were isolated from patient
samples of esophageal squamous cell carcinoma (ESCC) which is
characterized by stem cell-like features. Importantly, JMJD2C
expression was upregulated in this subpopulation, suggesting the
potential of JMJD2C inhibition in eliminating ESCC TIC compart-
ment.398 JMJD2C was reported to confer stem-cell-like character-
istics in ESCC cells and caffeic acid (3,4-dihydroxycinnamic acid,
CA) is able to suppress its demethylation activity.399 An ongoing
clinical trial aims to investigate the efficacy and safety of caffeic
acid for the treatment of esophageal cancer (NCT03070262).400 It
is the only clinical trial up to date that is registered on
www.clinicaltrials.gov to assess the efficacy of JMJD protein
inhibitors for cancer treatment. In this trial, 240 patients with
advanced esophageal squamous cell cancer (ESCC) were rando-
mized into two arms: coffeic acid treatment (300 mg, tid, po) or
placebo treatment. Patients will be followed every year and the
clinical outcomes will be recorded as overall survival and
progression-free survival. The application of JMD2 inhibitor is
not limited to cancer treatment. ML324 has potent anti-viral
activity against both herpes simplex virus (HSV) and human
cytomegalovirus (hCMV) infection and recurrence, suggesting the
therapeutic value of chromatin-based inhibitors against viral
infection.401,402 ML324 was also tested for the treatment of the
depression-like condition in mice by increasing the repressive
histone methylation in the nucleus accumbens.403

JMJD3 and UTX inhibitor
A research team reported the first selective JMJD3 inhibitor,
supporting its role as a therapeutic target in epigenetic drug
discovery. With the optimization of a series of compounds
obtained from the screening of a compound collection,404 a
JMJD3 and UTX specific inhibitor GSK-J1 was developed with a
half-maximum inhibitory concentration (IC50) of 60 nM.405,406

GSK-J3 was refined based on GSK-J1 with substitution at the para
position to the pyridine nitrogen and improved access to solvent.
Later, the acid groups of GSK-J1 and GSK-J2 were concealed with
ethyl esters, which derived new compounds GSK-J4 and GSK-J5.
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The inhibition of JMJD3 by GSK-J4 increased the level of H3K27
methylation and demonstrated potent antitumor efficacy in
glioma and leukemia where the H3K27me dysregulation occurs
recurrently.122,407,408 The underlying mechanism for the potent
efficacy of GSK-J4 in leukemia might be its downregulation of
Cyclic-AMP response element-binding protein.409 Recent evidence
suggested a potential combinatory effect of GSK-J4 and decita-
bine in leukemia cells by inducing cell cycle arrest, cell apoptosis
and PKC-α/p-bcl2 pathway inhibition.410 In glioma cells, GSK-J4 is
a combination partner for deacetylase inhibitor panobinostat in
glioma cells, and for doxorubicin in KRAS-mutant anaplastic
thyroid cancer.411,412 GSK-J4 is also involved in the radiosensitiza-
tion of diffuse intrinsic pontine glioma, an aggressive pediatric
brainstem tumor by inducing DNA repair deficiency.408 Other
cancers that responded to GSK-J4 included BC,413 PC,131 lung
cancer,414 hemangiosarcoma,415 SMARCA4-mutant cancer,416

Ewing sarcoma,417 and chondrosarcoma418 where GSK-J4 dis-
played potent antitumor effect.
GSK-J4 cannot be perceived solely as an antitumor drug, as it is

also applied for the treatment of inflammatory diseases such as
inflammatory colitis by suppressing the inflammatory potential

and increasing the generation of tolerogenic dendritic cells.419

GSK-J4 selectively reduced intracellular labile iron in dopaminergic
neurons, and this neuroprotection is based on its epigenetic
mechanism, suggesting the therapeutic potential of GSK-J4 for
Parkinson’s disease.420

JMJD6 inhibitor
Given that JMJD6 has been reported with both demethylation and
hydroxylation activities, both of which require the presence of Fe
(II) and 2-OG and occur at the same active sites, it is thus
speculated that the inhibition of JMJD6 can rely on the targeting
of either arginine demethylation or lysyl hydroxylation.
To date, three JMJD6 inhibitor candidates have been proposed

which all remain at the preclinical stage. The first JMJD6-targeting
inhibitor, WL12, was developed following silico protocol by
targeting the druggable 2OG-binding site. The inhibition of
JMJD6 enzymatic activity by WL12 lead to decreased cell
proliferation.421 Another JMJD6 inhibitor, SKLB325, significantly
suppressed the proliferation and induced cell apoptosis of ovarian
cancer in a dose-dependent manner. The study further suggested
the colocalization of JMJD6 with p53 in the nucleus, upregulating

Table 2. Inhibitors targeting JMJD family proteins evaluated for the treatment of cancer and inflammatory disease

Inhibitor Function in cancer Function in inflammation

JMJD2

NCDM-32B Inhibits cell growth of basal breast cancer cell lines

QC6352 Inhibits proliferation and overcomes therapeutic resistance of breast
cancer cells

TACH101 A pan inhibitor of JMJD2 subfamily

JIB04 Overcomes cisplatin resistance of lung cancer

ML324 Overcomes cisplatin resistance of lung cancer Anti-viral activity against both herpes simplex virus (HSV)
and human cytomegalovirus (hCMV) infection

Caffeic acid Under clinical trial for the treatment of esophageal cancer
(NCT03070262)

JMJD3/UTX

GSK-J4 Antitumor efficacy in glioma, leukemia, breast, prostate, lung cancer,
hemangiosarcoma, Ewing sarcoma and chondrosarcoma

Combination partner for deacetylase inhibitor panobinostat in
glioma and decitabine in leukemia

Radiosensitization of diffuse intrinsic pontine glioma

JMJD6

WL12 Inhibits JMJD6 enzymatic activity and JMJD6-dependent cell
proliferation

SKLB325 Suppresses the proliferation and induces cell apoptosis of
ovarian cancer

Sensitizes renal cell carcinoma cells to sunitinib and work
synergistically with sunitinib

J2 Highly selective JMJD6 inhibitor with minimal activity against other
JMJD family proteins

JARID1

1,7-naphthyridones Selective to JARID1 over JMJD2 related isoforms Achieves the same efficacy with dexmedetomidine on
acute kidney injury

CPI-455 JARID1-specific inhibitor that reduces the stem cell-like features of
oral squamous cell carcinoma cells

Reduces drug tolerant persister (DTP) cells in cancer models

Effective in temozolomide (TMZ)-resistant glioblastoma

KDOAM-25 Inhibits proliferation of multiple myeloma cells

Ryuvidine Exerts inhibitory activity on JARID1A but also recombinant
JARID1B and C

KDM5-inh1 A novel panel of selective JARID1 inhibitors that is especially
effective in HER2+ breast cancer
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p53 and its downstream effectors.204 SKLB325 also sensitizes renal
cell carcinoma cells to sunitinib and works synergistically with
sunitinib in inhibiting RCC growth.422 Recently, a research team
performed molecular docking and retrieved a new JMJD6
inhibiting compound J2, the optimization of which yielded a
more potent JMJD6 inhibitor 7p. The IC50 value of 7p against
JMJD6 was 0.681 μM, with minimal activity against other JMJD
family proteins.423

JARID1 inhibitor
The contributions of JARID1 to cancer progression have derived
respective countermeasures targeting JARID1. A series of pan-
JARID1 inhibitors were optimized from compound 1, a hit initially
designed to specifically target JARID1C. The optimization of
compound 1 led to compound 20 which is highly selective for
JARID1 enzymes and able to induce a global increase in H3K4me3
level.424 Another study combined a high throughput screening hit
with an established scaffold, and developed a novel JARID1
inhibitor 1,7-naphthyridones, which is more selective to JARID1
over JMJD2 related isoforms.425

The first JARID1-specific inhibitor is CPI-455, with 200-fold
higher selectivity for JARID1 than for JMJD2.426 The inhibition of
JARID1B by CPI-455 reduced the stem cell-like features of oral
squamous cell carcinoma cells, but cells also displayed
demethylase-independent activities refractory to inhibition.266

JARID1A is highly expressed in drug tolerant persister (DTP) cells,
a subpopulation of tumor cells that contributes to the growing
number of drug resistant cells427 such as TMZ-resistant glioblas-
toma cells.428 Given that drug tolerance of tumor cells was
partially dependent on demethylase activity, CPI-455 was used to
reduce DTPs in multiple models.426 CPI-455 is more effective in
temozolomide (TMZ)-resistant glioblastoma cells than in TMZ-
native cells. Thus, CPI-455 may be a sensitizing agent for TMZ in
glioblastoma, indicating the combinational potential of targeting
the epigenetic landscape with cytotoxic therapies.429 Likewise in
leukemia, CPI-455 treatment sensitized acute promyelocytic
leukemia (APL) cells to all-trans retinoic acid-induced differentia-
tion.430 Importantly, CPI-455 may also be applied in the context of
inflammatory diseases. Dexmedetomidine (DEX) is frequently used
to prevent excessive inflammatory response in sepsis-induced
organ failure. In a mouse model with acute kidney injury, DEX and
CPI-455 achieved the same effect in decreasing H3K4me3
enrichment of multiple inflammatory cytokine genes. Thus, DEX
can be used to attenuate acute kidney injury by blocking JARID1
during sepsis.431

Another JARID1 inhibitor KDOAM-25, has a half maximal
inhibitory concentration of <100 nM for JARID1A-D, and demon-
strates no off-target effect on a panel of 55 other enzymes. As
discussed earlier, JARID1B is an oncogenic factor for multiple
myeloma. The treatment of multiple myeloma cells with KDOAM-
25M led to decreased cell proliferation and increased global
H3K4 methylation level at transcription sites.432 Furthermore,
ryuvidine might be a lead compound for JARID1-targeting
therapeutics, which exerted its inhibitory activity on not only
JARID1A but also recombinant JARID1B and C.433 Recent research
assessed the antitumor effect of KDM5-inh1, a novel panel of
selective JARID1 inhibitors in multiple cancer cell lines, and
found that JARID1 inhibition is especially effective in
HER2+ breast cancer, which might serve as a diagnostic tool
for the selection of target patients.434

CONCLUSION AND FUTURE PERSPECTIVES
JMJD protein family members regulate multiple tumor-associated
genes either dependent or independent of its histone demethy-
lase activity according to different cellular contexts. Growing
evidence has suggested the diverse functions of JMJD class of
histone demethylase in pathological processes, justifying the

development of small-molecule inhibitors against JMJD proteins.
The utility of JMJD protein inhibitors should not be limited to
combating cancer but also the treatment of inflammatory
disorders such as asthma. However, several obstacles need to be
overcome in the application of JMJD proteins as treatment targets
for cancer and inflammatory diseases.
First, as some of them promote cancer progression, their

overexpression or the activation of their enzymatic functions
could be hallmarks of tumorigenesis. Nevertheless, the cancer-
suppressive activities have also been implicated for some JMJD
family members such as JMJD3 which exhibits a dual role in CRC
progression, making it both a tumor suppressor and a tumor
activator. Thus, before using JMJD protein blockade for treatment,
it is important to elucidate the specific functions of each JMJD
protein in cancer under different conditions.
Secondly, due to its highly polar 2-OG binding pocket, the

development of small-molecule inhibitors for the JMJD family
has lagged behind, with several JMJD inhibitors being reported
but functionally inactive. Moreover, despite growing research,
no known inhibitors to date are commercially available for the
treatment of any cancer type. For instance, various JMJD2
inhibitors have been reported as cancer therapeutic agents, but
currently there is only one agent under clinical evaluation. To
eradicate non-selective target effects and improve the selectiv-
ity of JMJD inhibitors, further studies on the structural
information and structure-activity relationship of JMJD proteins
are warranted.
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