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Multi-omics analysis reveals RNA splicing alterations
and their biological and clinical implications in lung
adenocarcinoma
Quanyou Wu1, Lin Feng1, Yaru Wang1, Yousheng Mao2, Xuebing Di1, Kaitai Zhang1✉, Shujun Cheng1✉ and Ting Xiao 1✉

Alternative RNA splicing is one of the most important mechanisms of posttranscriptional gene regulation, which contributes to
protein diversity in eukaryotes. It is well known that RNA splicing dysregulation is a critical mechanism in tumor pathogenesis and
the rationale for the promising splice-switching therapeutics for cancer treatment. Although we have a comprehensive
understanding of DNA mutations, abnormal gene expression profiles, epigenomics, and proteomics in lung adenocarcinoma
(LUAD), little is known about its aberrant alternative splicing profiles. Here, based on the multi-omics data generated from over
1000 samples, we systematically studied the RNA splicing alterations in LUAD and revealed their biological and clinical implications.
We identified 3688 aberrant alternative splicing events (AASEs) in LUAD, most of which were alternative promoter and exon skip.
The specific regulatory roles of RNA binding proteins, somatic mutations, and DNA methylations on AASEs were comprehensively
interrogated. We dissected the functional implications of AASEs and concluded that AASEs mainly affected biological processes
related to tumor proliferation and metastasis. We also found that one subtype of LUAD with a particular AASEs pattern was
immunogenic and had a better prognosis and response rate to immunotherapy. These findings revealed novel events related to
tumorigenesis and tumor immune microenvironment and laid the foundation for the development of splice-switching therapies
for LUAD.
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INTRODUCTION
Lung cancer is the most prevailing and fatal cancer in the world,
resulting in one-quarter of all cancer deaths.1 About 80% to 85%
of lung cancers are non-small cell lung cancer (NSCLC), and the
main subtypes of NSCLC are adenocarcinoma, squamous cell
carcinoma, and large cell carcinoma. Before the 1990s, squamous
cell carcinoma was the most common histologic subtype of lung
cancer, particularly among men. Since then, the incidence of
adenocarcinoma increased to be higher than that of squamous
cell carcinoma. Currently, lung adenocarcinoma (LUAD) has
become the dominant histologic subtype and accounted for
almost half of all lung cancer deaths.2 The past decade has seen
tremendous progress in characterizing molecular alterations in
LUAD, especially the identification of druggable mutations and
immune checkpoints, leading to the successful application of
targeted drugs and immunotherapies in clinical settings. Despite
this progress, there is still a large proportion of LUAD patients
without suitable targeted therapeutic options and the 5-year
relative survival rate is still around 20%.1 Thus, novel therapeutic
strategies are urgently needed to tackle this disease.
Gaining insight into diseases and developing novel treat-

ments require clear molecular characteristics. Currently, we have
a comprehensive understanding of DNA mutations, abnormal
gene expression profiles, epigenomics, and proteomics in

LUAD,3,4 but little is known about its aberrant alternative
splicing profiles. Alternative splicing is one of the most
important mechanisms of posttranscriptional gene regulation
in eukaryotes, which can not only lead to the generation of
mRNA isoforms with distinct or opposite functions from the
same gene but also convert pre-mRNAs into transcripts that are
non-translated or eliminated by nonsense-mediated decay. It
has been reported that alternative splicing regulates more than
90% of human genes and is a major source of protein diversity.5

Since alternative splicing leads to multiple functional conse-
quences, it not only has substantial effects on physiological
processes, such as development6 and aging,7 but also plays a
key role in various pathological processes. Recently, it has been
increasingly recognized that splicing dysregulation can lead to
cancer because alternative splicing usually changes the function
of translated proteins, potentially creating oncogenes or
inactivating tumor suppressor genes.8 For instance, previous
studies have reported that Cyclin D1 (CCND1) underwent
alternative splicing, resulting in the generation of a special
CCND1 isoform, cyclin D1b, which lacked Thr-286. Contrary to
canonical cyclin D1a, cyclin D1b was highly expressed in many
tumors and proved to be tumorigenic. In other words, the
oncogenic cyclin D1 isoform was produced and expressed in
human cancer due to alternative splicing.9
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Except for the key role in physiological and pathological
processes, alternative splicing is also an untapped source of
molecular targets for RNA-based therapies that can actually be
applied in clinical practice.10 Compared to traditional protein-
based therapies, RNA-based therapies have potential advantages
because they can theoretically target any gene (especially the
previously undruggable targets), have more direct and simple
development procedures, and are more stable at room tempera-
ture, a feature conducive to their distribution and storage.11

Several RNA-based therapeutic platforms have been developed,
including antisense oligonucleotides (ASOs), microRNA, small
interfering RNA, and aptamers.12 Among them, the application
of ASOs to convert alternative splicing is one of the most well-
established and promising disease treatment strategies.13

Recently, dozens of ASOs that modulate alternative splicing have
been developed for the treatment of intractable diseases. For
example, researchers have designed specific ASOs to reduce the
expression of detrimental SMN2 isoforms while facilitating
therapeutic SMN2 isoforms to inhibit spinal muscular atrophy,
leading to the first splice-switching therapy (Spinraza) approved
by FDA in 2016.14 Besides, a variety of preclinical studies and
clinical trials have confirmed the great promise of ASOs in the
treatment of cancer. As of January 1, 2021, a total of 229 clinical
trials have studied 60 oligonucleotide drugs for the treatment of
cancer, of which 195 trials have applied ASOs as interventions,
including 15 phase 2/3 or phase 3 clinical trials.15 Nevertheless,
little attention has been paid to exploring the abnormality of
alternative splicing in LUAD, which would undermine our
comprehensive understanding of LUAD and the development of
therapeutics targeting aberrant RNA splicing.
In this study, we integrated multi-omics data to comprehen-

sively and robustly investigate the landscape of splicing altera-
tions in LUAD based on a total of 799 LUAD samples and 204
adjacent-normal samples. Through the perspective of RNA
binding proteins, somatic mutations, and DNA methylations, we
thoroughly examined the regulatory factors mediating the splicing
dysregulation in LUAD. The functional relevance of the splicing
dysregulation was also interrogated. In addition, we found that
one LUAD subtype with particular splicing dysregulation profiles
was more immunogenic and had a better prognosis and response
rate to immunotherapies. This study not only provides new
insights into the molecular mechanism of the occurrence and
development of LUAD by revealing the characteristics of splicing
dysregulation patterns, but also lays the foundation for the
development of splice-switching therapies for LUAD and pro-
motes the application of these promising therapies in clinical
settings, which is expected to further improve the current poor
prognosis of LUAD patients.

RESULTS
Identification and statistics of aberrant alternative splicing events
in LUAD
To systematically reveal the AASEs in LUAD, we collected two
datasets. One is our integrated cohort, including 285 tumor
samples and 145 paired adjacent-normal samples with high-
quality (see methods). The other is the TCGA LUAD cohort,
including 514 tumors and 59 adjacent-normal samples. Principal
component analysis showed that tumor and adjacent-normal
samples from our integrated cohort were clearly separated into
two different groups (Fig. 1a), suggesting that the quality of
sequencing data was consistent and the batch effect of our
integrated cohort was acceptable.
Based on our integrated cohort and the TCGA LUAD cohort, we

identified 28774 high-confidence alternative splicing events
(ASEs), which affected 8726 genes, including targets for tyrosine
kinase inhibitors used to treat lung cancer, such as EGFR, RET, and
MET (see methods) (Fig. 1b). This result supported the possibility

that alternative splicing patterns might modify drug responses of
LUAD patients as demonstrated by previous reports.16,17 In this
study, seven different types of ASEs were identified, including
retained intron (RI), mutually exclusive exons (ME), exon skip (ES),
alternate terminator (AT), alternate promoter (AP), alternate
acceptor site (AA), and alternate donor site (AD) (Fig. 1c). We
further investigated aberrant alternative splicing events (AASEs)
based on our integrated cohort due to the more balanced number
of tumor samples and normal samples than the TCGA LUAD
cohort (Supplementary Fig. 1).
We identified 3688 AASEs affecting 2081 genes, of which AP

and ES events accounted for the vast majority (Fig. 1d and
Supplementary Table 1). Although some genes were affected by
multiple types (up to three) of AASEs concurrently, most genes
were only regulated by one type of AASEs (Fig. 1e). The ratio of 7
types of AASEs was similar across LUAD patients and most
patients contained more than 2000 AASEs (Fig. 1f). Among these
3688 AASEs, 1670 AASEs were also significantly aberrant in the
TCGA LUAD cohort despite only 59 normal samples in this cohort
as a reference, and 97% of them (1620/1670) have the same
direction of upregulation or downregulation in both cohorts,
suggesting the AASEs we identified were robust.
Among the 2081 genes affected by AASEs, 1981 genes

belonged to protein-coding genes, indicating that AASEs intently
affected coding genes and may have tremendous implications on
LUAD. In addition, according to Bailey et al.’s definition of driver
genes,18 53 genes belonged to driver genes and were over-
represented in AASEs-related genes (hypergeometric test,
P < 0.001), further suggesting the critical role of AASEs in LUAD.
Furthermore, most AASEs can be identified in at least 75% of
LUAD samples (Fig. 1g), implying that therapeutics targeting
AASEs may benefit a lot of LUAD patients.
One of the most significant AASEs in LUAD was the exon

skipping event of NUMB (Supplementary Fig. 2a). This event
generates two major NUMB isoforms: the long isoform NUMB PRRL

and the short isoform NUMB PRRS. They differ in the length of
their proline-rich region (PRR), due to the inclusion or exclusion of
a 48 amino-acids insert encoded by the skipping exon (Supple-
mentary Fig. 2b). It has been reported that NUMB PRRL promotes
cell proliferation while NUMB PRRS directs cell differentiation.19

Besides, NUMB PRRL increases the proliferation and metastasis of
liver and breast cancer, while NUMB PRRS inhibits these
phenotypes.20,21 The inclusion of skipping exon of NUMB (NUMB
PRRL) was significantly increased in LUAD compared to adjacent-
normal tissues (Fig. 1h). The western blotting experiment further
validated that the NUMB PRRL / NUMB PRRS ratio was significantly
increased in LUAD samples (Fig. 1i). Furthermore, survival analyses
showed that a high NUMB PRRL / NUMB PRRS ratio indicated poor
overall survival (OS) (Fig. 1j) and progression-free survival (PFS)
(Supplementary Fig. 2c), while the NUMB expression level did not
associate with OS and PFS (Supplementary Fig. 2d, e). These
findings suggested that the aberrant alternative splicing of NUMB
may contribute to the malignancy of LUAD. Further studies on the
molecular mechanism and intervention value of this AASE in LUAD
are required in the future.

The regulatory pattern of RNA binding proteins (RBPs) on AASEs in
LUAD
One of the most common regulators of ASEs is RBPs, the
disturbance of which would lead to extensive AASEs. These
regulators are a rich resource of candidate targets for cancer
treatments, as demonstrated by one recent work that aimed to
target RBPs in acute myeloid leukemia.22 To comprehensively
unveil the perturbation of RBPs and their role on AASEs in LUAD,
we identified differentially expressed RBPs and assessed the
relationship between these differentially expressed RBPs and
AASEs. As a result, one hundred differentially expressed RBPs were
detected, in which 68 RBPs were upregulated and 32 RBPs were
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downregulated in LUAD (Supplementary Table 2), which was
consistent with previous studies suggesting that RBPs tended to
be upregulated in cancer.23 In addition, we noticed that 88
differentially expressed RBPs were significantly associated with

2505 AASEs, resulting in 46704 RBP-ASE pairs. About half (47%)
(21928/46704) pairs were negatively correlated (the higher the
RBP level, the lower the inclusion level of the corresponding
alternative exon), and another half were positively correlated,
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suggesting the regulation of AASEs by RBPs was balanced on the
whole (Supplementary Table 3). We established a dysregulation
network based on the significant correlation between RBPs and
AASEs. This network illustrated that AASEs-related genes affected
by differentially expressed RBPs were enriched in processes and
pathways crucial for tumorigenesis, such as “Ras protein signal
transduction”, “NF-kappaB signaling pathway”, “Wnt signaling
pathway”, and for invasion and metastasis, such as “cell-matrix
adhesion” and “actin filament-based movement” (Fig. 2a and
Supplementary Table 4), suggesting these differentially expressed
RBPs played a critical role in tumor development through causing
splicing alterations in LUAD. Interestingly, it was largely disparate
for the number of AASEs regulated by each RBP, and ALDH18A1,
PDIA4, and NUSAP1 were the RBPs regulating the greatest number
of AASEs (Fig. 2b).
To measure the effect of AASE-regulated RBPs on drugs in

LUAD, we examined the correlation between the expression of the
top 20 RBPs with the highest regulatory capabilities and drug
activities across LUAD cell lines. As a result, we found that four
upregulated RBPs in LUAD were associated with drug sensitivities.
In detail, the DARS2 gene was positively correlated with the IC50
value of CMK and PHA-665752 drugs, and the CNOT11 gene was
positively related to the IC50 value of Parthenolide and Seliciclib
drugs, suggesting the effects of these drugs may be inhibited by
the high expression of DARS2 and CNOT11 in LUAD. Interestingly,
the DKC1 gene was negatively correlated with the IC50 value of
GSK319347A, a dual inhibitor of TBK1 and IKKε, and the PDIA4
gene was negatively associated with the IC50 value of Pyrimetha-
mine, a STAT3 inhibitor displaying anti-cancer and immune-
stimulatory effects,24 suggesting that the high expression of DKC1
and PDIA4 in LUAD may increase the sensitivity of GSK319347A
and Pyrimethamine, respectively (Fig. 2c, d).
In order to modulate ASEs directly, most RBPs have to bind their

corresponding motifs near splicing sites. We further applied
DeepBind to investigate whether the ±300 bp regions around
splicing sites of AASEs can be bound by three differentially
expressed RBPs (IGF2BP3, KHDRBS2, and YBX2). Based on the
results from DeepBind and the significant RBP-ASE pairs, we built a
more robust but smaller dysregulation network (Supplementary
Table 5). This network reflected that three RBPs mediated 438
AASEs in LUAD, of which AT, AP, and ES accounted for the most
(Fig. 3a). Among these RBPs, IGF2BP3 mediated the greatest
number of AASEs, and genes affected by these AASEs were
enriched in tumor invasion and metastasis processes, such as
“extracellular matrix organization”, “cell junction organization”,
and “cell−matrix adhesion”. AASEs regulated by KHDRBS2 were
also enriched in similar biological processes (Fig. 3b). To identify
the position of motifs and validate that the motifs of these three
RBPs were enriched in regions around splicing sites of AASEs, we
identified a control set of non-differentially cassette exons
(n= 9300), a set of upregulated cassette exons (n= 543), and a
set of downregulated cassette exons (n= 506). We then
performed motif scanning analyses for the transcript sequences
flanking the differential cassette exons, comparing against the
non-differentially cassette exons. These analyses indicated that

the well-conserved binding motif for IGF2BP3 was significantly
over-represented within the upregulated cassette exonic regions
and intronic regions within 150 bp near upstream and down-
stream splicing sites. Well-conserved binding motif for IGF2BP3
was also significantly over-represented in intronic regions about
150–300 bp upstream of downregulated cassette exons (Fig. 3c).
For KHDRBS2, the binding motif was significantly enriched in
intronic regions about 150–300 bp upstream of downregulated
cassette exons, and in intron regions about 150–300 bp down-
stream of upregulated cassette exons (Fig. 3d). We also observed a
significant over-enrichment for YBX2 binding motifs within the
upregulated exons and around 150 bp downstream of upregu-
lated exons. Well-conserved binding motif for YBX2 was also
significantly over-represented in intron regions about 0–150 bp
downstream of downregulated cassette exons (Fig. 3e). Thus,
motif searching analysis further confirmed the regulatory role of
these three RBPs on AASEs. Taken together, these results
comprehensively revealed the regulatory role of RBPs on AASEs
in LUAD, suggested that RBPs disturbed alternative splicing
profiles with key functional meaning in LUAD, and provided
important information for the development of novel therapeutic
strategies.

The regulatory pattern of DNA mutation and methylation on
AASEs in LUAD
It has been reported that DNA mutations might also influence
ASEs through altering the regulatory RNA sequences, the structure
of RBPs, or other regulatory molecules. Single nucleotide variants
(SNV) having regulatory impacts on ASEs are called splicing
quantitative trait loci (sQTL). Here, the “MatrixEQTL” algorithm was
applied to uncover sQTLs in LUAD. Generally speaking, if a
regulatory SNV is within 100 Kbp around its’ corresponding
splicing site, this SNV is defined as cis-sQTL; otherwise, it is trans-
sQTL. As a result, only one cis-sQTL was identified where a
mutation in the splice site of TP53 would increase the inclusion
level of exon 10 (Fig. 4a). We also found 36 trans-sQTLs regulating
widespread ASEs in LUAD. Interestingly, most trans-sQTLs in LUAD
belonged to missense mutations (28/36) (hypergeometric test,
P < 0.001), further justifying the regulatory effects of these SNVs
on alternative splicing. In LUAD, trans-sQTLs were located on
chromosomes irregularly. Thirteen chromosomes had no trans-
sQTLs located, while 13 trans-sQTLs on chr17 and all were located
in the TP53 gene. The distribution of ASEs regulated by trans-
sQTLs was also uneven. More than 200 ASEs on chr1 but less than
50 ASEs on chr13, chr18, and chr21 were regulated by trans-sQTLs
(Fig. 4b). These results comprehensively unraveled the pattern of
sQTLs and helped us better understand the complex genetic
architecture of LUAD.
In addition to DNA mutations, epigenomic studies have

revealed that DNA methylation may also play a role in splicing
regulation via methyl-CpG binding protein 2 and heterochromatin
protein 1.25,26 To examine whether AASEs were partially caused by
disturbed DNA methylation levels, we first identified 1980 CpG
sites at boundaries of alternatively spliced exons (Fig. 4c). The
region of exon boundaries was defined based on the finding that

Fig. 1 Overview of aberrant alternative splicing events (AASEs) and related genes in LUAD. a Principal component analysis (PCA) based on
gene expression profiles of LUAD and adjacent-normal samples in our integrated datasets. Each point represents a sample. b The pipeline of
identifying high-confidence ASEs. c Ideographs of the seven types of ASEs. Each box indicates an exon. Exons connected by lower lines in
each ideograph indicate exclusion transcripts, while upper lines represent inclusion transcripts. d The number of the seven types of AASEs and
related genes identified in LUAD. e UpSet plot demonstrating the intersections among the seven types of AASEs in LUAD. f Summary of AASEs
in LUAD samples in our integrated dataset. Bars show the proportion of the seven ASE types in each sample while points indicate the total
number of AASEs identified in each sample. g Box plot displaying the detection frequency of the seven types of AASEs in LUAD samples. h Box
plot showing that the PSI values of NUMB ES event were significantly higher in LUAD samples compared to adjacent-normal samples.
i Western blot showing the expression of NUMB PRRL and NUMB PRRS in LUAD samples and paired adjacent-normal samples. j Kaplan–Meier
survival curves comparing the overall survival of high and low NUMB PRRL/NUMB PRRS ratio subgroups. Patients were stratified into high (top
25th percentile) and low (bottom 25th percentile) subgroups based on their PSI value
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Fig. 2 Regulation of AASEs by RNA binding proteins (RBPs). a The splicing-regulatory network illustrates the biological processes (green
circles) enriched by AASEs-affected genes regulated by differentially expressed RBPs. The size of green circles stands for the number of
regulated genes in each Gene Ontology term. The orange and blue circles represent high and low expressed RBPs in LUAD, respectively. b The
number of AASEs regulated by each differently expressed RBP in LUAD. c Dot plots showing the correlations between the expression levels of
RBPs and IC50 values of corresponding drugs. d Regulatory networks summarizing the Drug-RBP correlation pairs, blue circles indicating drug-
related RBPs, orange triangles representing drugs tested in LUAD cancer cell lines, red lines and green lines standing for positive and negative
correlations, respectively

Multi-omics analysis reveals RNA splicing alterations and their. . .
Wu et al.

5

Signal Transduction and Targeted Therapy           (2022) 7:270 



splicing cis-regulatory elements are most likely in the size of 200
nucleotides for intronic regions and 39 nucleotides for exonic
regions around the splice sites of exons.27 After comparing these
CpG sites between LUAD and adjacent-normal tissues, we
identified 56 CpG sites with differential methylation levels
(Fig. 4d). We then investigated the regulatory role of these
differentially methylated CpG sites on their corresponding AASEs
and found that 21 CpG sites were significantly correlated with
AASEs. Interestingly, except for one, all of these CpG sites were
negatively correlated with their corresponding AASEs, and all
these AASEs belonged to AP (alternative promoters, also known as
alternative first exons) (Fig. 4e). In another word, the higher the
methylation levels of these CpG sites around the boundary of the
alternative first exon, the lower the usage of this alternative
promoter. To investigate whether this rule was prevalent in
cancer, we analyzed the relationship between CpG sites and their
corresponding ASEs in 30 other types of cancer. As a result, the
vast majority of ASEs regulated by CpG sites were AP events (Fig.
4f) and the inclusion level of most AP events was negatively
correlated with the methylation level of corresponding CpG sites
(Fig. 4g). Besides, most CpG sites that have a regulatory effect on

AP events were located in the promoter region and a small part
were in gene body regions (Fig. 4h). All these results suggested
that the primary role of DNA methylation on ASEs in cancer is to
inhibit the usage of alternative promoters.

The functional implications of AASEs in LUAD
So far, we have comprehensively uncovered the upstream
regulators of AASEs in LUAD, but the functional implications of
these AASEs are still unexplored. Revealing the biological
relevance of AASEs in LUAD can point us to promising directions
when designing splice-switching therapeutics.28 Here, we found
that for 2081 genes affected by AASEs, most have isoforms with
varying features at the transcript levels, such as CDS length, 3′UTR
length, as well as at the protein levels, such as protein domains.
These results suggested that aberrant splicing of these genes may
lead to considerable functional changes (Fig. 5a). To further
unravel the biological effects of AASEs on LUAD, we conducted
gene ontology (GO) enrichment analysis on genes affected by
AASEs. As a result, we noticed that among seven types of ASEs,
only genes affected by aberrant AP and ES events were
significantly enriched in cancer-associated GO terms. Interestingly,

Fig. 3 More robust regulatory effects of RBPs on AASEs. a The more reliable splicing-regulatory network. The orange and blue circles indicate
high and low expressed RBPs in LUAD, and the colored dots represent AASEs grouped by seven types. b The number of AASEs affected by
three RBPs. Pink bars indicate the GO terms significantly enriched by those regulated AASEs. c–e Motif search analysis for IGF2BP3 (c),
KHDRBS2 (d), and YBX2 (e) binding sites around alternative spliced exons. Arrows indicate peaks of significant over-enrichment. The colored
dashed lines represent the degree of over-enrichment of motifs within upregulated (red) and downregulated (blue) exons as demonstrated by
negative log10 (p value). The green horizontal line is set at p= 0.05

Multi-omics analysis reveals RNA splicing alterations and their. . .
Wu et al.

6

Signal Transduction and Targeted Therapy           (2022) 7:270 



aberrant AP events and ES events exerted impacts on distinct
biological processes. To illustrate, aberrant AP events primarily
affected “small GTPase mediated signal transduction”, such as the
“Ras signaling pathway” and “Rho signaling pathway”, which were

well-known pathways boosting tumor proliferation. Aberrant ES
events mainly affected tumor metastasis-related biological pro-
cesses, such as “cilium assembly”,29 “cell junction organization”
and “cell−matrix adhesion” (Fig. 5b). To investigate the functional
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implications of AASEs more deeply, we measured the activation
degree of 14 tumor hallmarks through the Single-sample Gene Set
Enrichment Analysis (ssGSEA) method and examined the relation-
ship between AASEs and the activation degree of these hallmarks.

After filtering correlation pairs based on correlation coefficient
(|r| > 0.3) and false-discovery rate (FDR < 0.05), each hallmark was
significantly associated with 34–857 AASEs (Supplementary Table
6). The hallmarks mostly affected by AASEs were “TGF beta

Fig. 5 Functional implications of AASEs. a The number and percentage of genes with each feature (indicated on the y-axis) among the 2081
AASEs-related genes. The dark color in each bar represents the percentage of genes having isoforms that each feature varies. b GO
enrichment analysis result for AASEs-related genes. c Heatmap of the correlation coefficients of the AASEs correlated with 14 cancer hallmarks.
Each column represents a single AASE and each row depicts the results of the correlation to a single hallmark signature. The color represents
the strength and direction of the correlation (red indicating positive; blue indicating negative) of a single AASE with each hallmark. Columns
are sorted by hierarchical clustering. Rows are ranked by the total number of AASEs correlates passing statistical criteria for each hallmark. The
number of AASEs significantly correlated with each hallmark was represented in the bar chart. d Hive plot depiction of AASEs correlated with
14 cancer hallmarks and the biological processes associated with genes affected by AASEs. All hallmarks-related AASEs are displayed on the
left axis. The top seven hallmarks with the most correlated AASEs are represented as nodes on the middle axis. The size of these nodes reflects
the number of AASEs correlated with each hallmark. The right axis indicates four summary gene ontology terms. The width of the edges
connecting the nodes on the middle axis to the nodes on the right axis is proportional to the −log10 (p value) of the enrichment result. The
size of the nodes on the right axis is proportional to the total number of hallmarks associated with each biological process

Fig. 4 Regulatory pattern of DNA mutation and methylation on AASE in LUAD. a Box plot showing the ES event of TP53 were regulated by the
splice site mutation of TP53. b Overview of the trans-sQTLs. The x-axis indicates the mutation positions and the y-axis indicates the splice sites
across chromosomes. Bars vertical to the x-axis summarize the number of trans-sQTLs in each chromosome and bars parallel to the x-axis
summarize the regulated ASEs within each chromosome. c Schematic plot showing the boundary regions of alternative exons. d Volcano plot
showing the differential methylated CpG sites within the boundary regions of alternative exons in LUAD. e Summary of the 21 differentially
methylated CpG sites that regulated their corresponding AS events. The X-axis represents the position of CpG sites across chromosomes and
the Y-axis indicates the significance of correlation coefficients between CpG sites and corresponding ASEs. Red and blue dots stand for highly
and lowly methylated CpG sites in LUAD, respectively. Ellipse indicates a positive (orange) or negative (blue) relationship between methylated
levels of the CpG sites and the inclusion rate of corresponded alternative exons. f The number of seven types of AASEs regulated by
methylated CpG sites across 30 cancer types. g The number of AP events positively (red) and negatively (blue) regulated by methylated CpG
sites across 30 cancer types. h Bar plot showing the number of methylated CpG sites that regulated AP events in promoter regions, gene body
regions, and intergenic regions (IGR) across 30 cancer types
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signaling pathway”, “cell signaling”, “cell cycle process”, and “Ras
signaling pathway”. However, “EMT processes” and “generation of
precursor metabolites and energy” were scarcely affected (Fig. 5c).
We further investigated the biological processes enriched by the
AASEs associated with cancer hallmarks and employed the hive
plot to exhibit how AASEs (left axis) associated with cancer
hallmarks (middle axis) and the functional enrichment of genes
affected by these AASEs (right axis). We found that AASEs
associated with many hallmarks were also significantly enriched in
“cell-substrate junction assembly” and “cell-matrix adhesion”
(Fig. 5d). These results further suggested that AASEs in LUAD
had substantial functional implications on biological processes
relating to tumor proliferation and metastasis.

LUAD subtype classification based on AASEs showed distinct
biological characteristics
Molecular subtyping based on RNA splicing patterns has been
shown to stratify patients with different prognosis or treatment
efficacy in other tumor types,30–32, and thus could be leveraged to
improve patient stratification in LUAD. Based on 3688 AASEs, we
split 514 TCGA LUAD samples into three subtypes through
consensus clustering analysis: G1 (n= 176, 34.2%), G2 (n= 130,
25.3%), and G3 (n= 208, 40.5%) (Supplementary Fig. 3a–c and
Supplementary Table 7). We noticed that the total number of
AASEs (AASEs frequency) was the highest in G3 compared to G1
and G2 (Fig. 6a). The proportion of seven types of AASEs was
similar among the three subtypes (Fig. 6b), which was concordant
with Fig. 1f. Potential links between AASE frequency and gene
alterations were found. For example, the non-silent mutations of
splicing factors CWC22, ELAVL1, and PRPF40B were associated
with high AASEs frequency (Supplementary Fig. 4a–c), while the
non-silent mutations of splicing factors RNF20 and MBNL2 were
related to low AASEs frequency (Supplementary Fig. 4d, e). Almost
all samples with non-silent mutation of U2AF1 or SF3B1 or RBM10
or SRSF2 have AASEs larger than 3000 (Supplementary Fig. 4f).
What’s more, high AASEs frequency indicated high levels of
immune cell infiltration as well as a good prognosis in LUAD
(Fig. 6c, d).
The three AASE subtypes of LUAD had specific AASEs

characteristics and patterns. For example, the AP events of several
tumor-related genes, such as TRIM7, MLK4, ADNP, and TRAP1, had
higher inclusion levels in G1. AASEs of tumor-related genes, such
as DDX17, PLCB2, and SEMA6C had higher inclusion levels in G2.
While AASEs of tumor-related genes, such as ARMC3, TPM4, and
TNFRSF12A had higher inclusion levels in G3 (Fig. 6e and
Supplementary Table 8).
We further investigated the biological characteristics of the

three subtypes and found that G1 was a quick-proliferation
subtype, with pathways enriched in “Cell Cycle”, “DNA Repair”,
“DNA replication”, and so on (Fig. 6f). G1 was also a high-
metabolism subtype, with pathways enriched in “Oxidative
Phosphorylation”, “Glucose metabolism”, “Metabolism of pro-
teins”, “Metabolism of nucleotides”, and so on (Fig. 6f). These
results suggested that G1 may get more benefit from the
conventional chemotherapies targeting highly proliferative cells.
G3 had a specific metabolism pattern, characterized by a
preference for fatty acid metabolism (Fig. 6f). Besides, G3 was a
subtype having high cell adhesion molecules, PD1 signaling
(Fig. 6f) as well as low stemness index and telomerase activity (Fig.
6g). In addition, from the landmark LUAD paper,33 we collected
719 most variable DNA methylation-specific probes in CpG island
promoter regions that were used to identify LUAD methylation
subtypes. According to these probes, G2 was methylation-high
while G3 was methylation-low (Fig. 6h, i).

AASE subtypes of LUAD showed distinct immune characteristics
Since the AASEs frequency was positively correlated with immune
cell infiltration levels, we further deeply characterized the immune

characteristics of AASE subtypes. Firstly, we evaluated and
compared the infiltration levels of 22 immune cell types among
the three subtypes (Supplementary Table 9). As a result, 11 cell
types showed significant differences including seven types of
innate immune cells and four types of adaptive immune cells
(Fig. 7a). Most cell types exhibited the highest infiltration levels in
the G3 subtype, such as CD4+memory resting T cells and
myeloid dendritic cells (Fig. 7b). The infiltration level of all immune
cells was also the highest in G3 (Fig. 7c).
Another criterion to measure the immune microenvironment is

the activation state of immune-related pathways. We quantified
the activation degree of 17 immune pathways in each tumor
sample through ssGSEA analysis (Supplementary Table 10) and
found that 16 pathways exhibited significant differences among
the three subtypes (Fig. 7d). Many immune pathways critical for
suppressing tumor growth were consistently upregulated in G3,
such as “Antigen processing and presentation”, “NK cell cytotoxi-
city”, and “TCR signaling pathway” (Fig. 7e). Consistent with the
infiltration level of immune cells, the activation level of all immune
pathways within the tumor microenvironment was the highest in
G3 (Fig. 7f).
To make the evaluation of the immune microenvironment more

comprehensive, we further examined 78 immunomodulators in
each tumor and noticed that the expression levels of 19
immunomodulators were significantly different among the three
subtypes (Fig. 7g). Most differentially expressed immunomodula-
tors were the highest in the G3 subtype, including important co-
stimulators (CD28 and CD80) and genes for antigen presentation
(HLA-DPA1 and HLA-DRA) (Fig. 7h). The total expression of 78
immunomodulators was also the highest in G3 (Fig. 7i).
To validate the immune cell signatures in each tumor sample,

we further employed TIMER2.0 to estimate the immune infiltration
levels. The immune microenvironment measured by EPIC, MCP-
counter, quanTIseq, TIMER, and xCell algorithms all suggested that
the immune cell signatures were the highest in G3 (Supplemen-
tary Fig. 5a–f). These results consistently suggested that AASEs
patterns were related to the immune microenvironment of LUAD
and the G3 subtype was more immunogenic among all LUAD
samples.
To investigate whether the AASE subtypes of LUAD were

general, we did a similar analysis on our own cohort. Ninety-six
LUAD samples in our own cohort were split into three groups with
different AASE profiles: G1 (n= 42, 43.75%), G2 (n= 7, 7.29%), and
G3 (n= 47, 48.96%) (Supplementary Table 11). As a result, the
AASEs characteristics and the biological characteristics of each
subtype in our own cohort were similar to the corresponding
subtype identified in the TCGA LUAD cohort (Supplementary Fig.
6a–c). Besides, similar to the TCGA LUAD cohort, the levels of
immune cell infiltration, immune pathways activation and
immunomodulators expression were consistently the highest in
the G3 subtype, suggesting that our identification of the AASE
subtypes of LUAD was robust and reliable (Supplementary Fig.
6d–i). To experimentally validate the immune characteristics of
each subtype, two experienced pathologists independently
evaluated the proportion of infiltrated immune cells on H&E-
stained slides of 60 LUAD samples in our own cohort. As expected,
the proportion of infiltrated immune cells was the highest in G3,
suggesting that G3 was indeed “hot” tumors (Fig. 7j, k and
Supplementary Table 12). We also performed immunohistochem-
ical (IHC) staining of CD8 and PD-L1 and evaluated their
expression levels using Histoscore (H-score). H-score takes the
proportion of positive cells (0–100%) and the average intensity of
the positive staining (0, 1+, 2+, or 3+) into consideration.
Representative images corresponding to each intensity level were
shown in Supplementary. Fig. 6j. We found that CD8 and PD-L1,
the key immune markers and predictors of immunotherapy
efficacy, were the highest in G3 (Fig. 7j, k and Supplementary
Table 12).
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The clinical implications of AASE subtypes of LUAD
In general, the immunogenic microenvironment implies a good
prognosis and a good response rate to immune checkpoint
blockades. Due to the consistently higher immune infiltration of

the G3 subtype, we wondered whether this subtype had better
survival than the other two subtypes. As expected, G3 had the
best prognosis and could serve as an independent prognostic
factor (Fig. 8a and Supplementary Fig. 7a). To further investigate

Fig. 6 The AASEs and biological characteristics of the three LUAD subtypes. a Box plot showing the AASEs frequency of LUAD samples in each
subtype. b Bar plot showing the proportion of the seven AASEs types in each LUAD sample. c AASEs frequency was positively correlated with
immune cell infiltration levels. d Kaplan–Meier overall survival curves comparing AASEs frequency high and low subgroups in LUAD. Patients
were stratified into high (top 25th percentile) and low (bottom 25th percentile) subgroups based on their AASEs frequency. e Heatmap
representing the subtype-specific AASEs in each LUAD subtype. f The subtype-specific biological characteristics of each AASE subtype. g Bar
plots showing the stemness index and telomerase activity of each LUAD sample. h, i Heatmap and box plot showing the methylation levels of
719 most variable DNA methylation-specific probes in CpG island promoter regions
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Fig. 7 The immune characteristics of AASE subtypes of LUAD. a Heatmap showing the infiltration levels of immune cells that are significantly
different in the three subtypes. Fisher’s exact test was used for categorical variables: age, gender, TNM stage, and status of TP53, KRAS, EGFR,
ALK, RET, and MET mutations and splicing factors RBM10, SF3B1, SRSF2, and U2AF1 mutations. b, c Box plot showing the infiltration levels of
CD4 memory resting T cells, resting mDCs, activated mDCs (b), and total immune cells (c) in the three subtypes. *P < 0.05, **P < 0.01,
***P < 0.001, ****P < 0.0001, ns indicating no significance. d The activation degree of immune pathways showed a significant difference among
the three subtypes. e, f Distribution of the intensity of “Antigen Processing and Presentation”, “NK Cell Cytotoxicity”, “TCR signaling pathway”
(e), and the whole intensity of all immune pathways (f) in the three subtypes. g Heatmap showing the expression of significantly different
immunomodulators in the three subtypes. h, i Distribution of the expression of CD28, HLA-DPA1, and HLA-DRA (h), and total
immunomodulators (i) in the three subtypes. j Box plot showing the levels of immune cell infiltration, CD8 expression, and PD-L1 expression
in the three subtypes, which were evaluated through the H&E-stained and IHC-stained slides of 60 LUAD samples in our own cohort. The blue
dot in each box represents the mean value. k H&E and IHC (CD8 and PD-L1) staining of representative LUAD samples belonging to G1, G2, and
G3, respectively. Scale bars, 100 μm
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whether G3 had a better response rate to immune checkpoint
blockades, we applied the TIDE algorithm to predict the response
of each LUAD sample to immunotherapy and observed that G3
had the highest response rate (Chi-square test, p= 6.966e-07)
(Supplementary Fig. 7b). Taken together, based on the AASEs
profiles, we found one subtype of LUAD with an immunogenic
microenvironment that has a better prognosis and response rate
to immunotherapy.
One of the most important applications of molecular subtype is

to stratify patients for precision medicine. To measure whether the
three LUAD subtypes were sensitive to different drug profiles, we
employed Connectivity Map (Cmap), a data-driven method for
uncovering relationships among diseases, chemical compounds,
and genes, to look for potential drugs that might be useful against
each LUAD subgroup. We found that different LUAD subtypes
were sensitive to distinct compounds, further confirming the
significance of molecular subtyping based on distinct AASEs
profiles. Noticeably, although the three LUAD subtypes were
sensitive to distinct drugs that target different pathways, they
were all sensitive to HSP inhibitors, such as AT-13387 and nomilin
(Fig. 8b). To experimentally validate this finding, we first down-
loaded the raw RNA sequencing data of 55 LUAD cell lines derived
from the Cancer Cell Line Encyclopedia (CCLE). For each cell line,
we combined this cell line with the TCGA LUAD cohort to perform
the consensus clustering analysis to determine which subtype

each cell line belonged to. As a result, among 55 LUAD cell lines,
49 belonged to G1, 6 belonged to G2, while no cell lines belonged
to G3 (Supplementary Table 13). Then, we selected LUAD cell lines
A549 (G1), NCI-H2347 (G1), and NCI-H441 (G2) to validate the
efficacy of AT-13387 and nomilin. The inhibitory effect of both
drugs on HSP90 in cell lines were determined by a western blot
experiment, which showed that the protein expression levels of
HSP90AB1 were reduced after adding AT-13387 and nomilin
(Supplementary Fig. 7c). Through the cell proliferation experi-
ments, we confirmed that both drugs could significantly inhibit
the proliferation of LUAD cell lines A549, NCI-H2347, and NCI-H441
(Fig. 8c), and the inhibitory ability was positively related to the
drug concentration (Supplementary Fig. 7d). The effects of these
two drugs on cell growth were further confirmed using a colony
formation assay (Fig. 8d).
We further interrogated the association between AASE subtypes

and known subgroups defined by other researchers. We observed
that our novel AASE subtypes were correlated to the published
transcriptome subtypes of LUAD defined by The Cancer Genome
Atlas Research Network.33 In detail, most samples in the
G3 subtype were the terminal respiratory unit (TRU) transcriptome
subtype (69/100, 69%). G1 mainly belonged to the proximal
proliferative (PP) subtype and proximal inflammatory (PI) subtype
(86/98, 87.8%), while G2 was dispersed in TRU, PP, and PI (chi-
square test, p < 0.001) (Supplementary Fig. 8a). As reported by The

Fig. 8 The clinical implications of AASE subtypes of LUAD. a Kaplan–Meier curve showing the survival probability of LUAD patients grouped
by the three LUAD subtypes. b Upper panel showing the top ten compounds that reverse the expression profiles of each LUAD subtype.
Lower panel shows the action mechanism of each drug. c Growth curves of LUAD cell lines treated with AT-13387 and nomilin. Representative
data from six biological repeats were shown (mean ± SD). d Colony formation assays of three LUAD cell lines treated with DMSO or both drugs
as indicated
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Cancer Genome Atlas Research Network, the TRU subtype
membership was prognostically favorable while PP and PI
subtypes had worse prognoses.33 This justified the best prognosis
of G3 and the worst prognosis of G1 in our study. Furthermore, we
compared the AASE subtypes with the immune subtypes defined
by ref. 34 We observed that most samples in the G3 subtype were
C3 (Inflammatory) immune subtype that had the best prognosis
among all six immune subtypes and high levels of immune cell
infiltration (111/196, 56.6%) (chi-square test, p < 0.001) (Supple-
mentary Fig. 8b), further justifying the best prognosis and the
highest immune cell infiltrations of G3 among the three AASE
subtypes. In addition, we analyzed the correlation between AASE
subtypes and the tumor microenvironment (TME) subtypes
defined by ref. 35 We found that G3 had the highest proportion
of immune-enriched (IE) and immune-enriched, fibrotic (IE/F)
subtypes compared to G1 and G2 (53.4% for G3; 45% for G2;
27.9% for G1) (chi-square test, p < 0.001) (Supplementary Fig. 8c).
The IE and IE/F subtypes showed better OS in non-small cell lung
cancer patients treated with anti-PD-L1 therapy, further suggest-
ing that G3 may get more benefit from immunotherapies. These
results consistently indicated that AASE subtypes can not only
reflect the transcriptomic characteristics of the tumor parenchyma
but also reflect the tumor immune microenvironment.

DISCUSSION
As demonstrated by Lee et al.28, a clear insight into splicing
dysregulation in cancer would promote our understanding of
tumor pathogenesis and nominate several novel therapeutic
strategies. Previous research investigating alternative splicing in
LUAD only used transcriptomics to explore survival-associated
ASEs,36–38 which ignored the aberrant splicing programs that are
critical for tumorigenesis and the development of new therapeu-
tics. To the best of our knowledge, this study is the first to apply
multi-omics to reveal the landscape of AASEs in LUAD. Through
integrating LUAD and adjacent-normal samples from a wide range
of populations, including Caucasian, Korean, Chinese, and African
Americans, we obtained a comprehensive and robust repertoire of
AASEs in LUAD. These AASEs primarily affected coding genes and
multiple driver genes, which was consistent with a previous study
on esophageal cancer,39 indicating that the disturbance of ASEs
may have a huge impact on LUAD.
Revealing the regulators of AASEs would make us understand

why extensive AASEs occurred in LUAD. Besides, The regulators of
AASEs are rich sources of splice-switching therapeutic targets.28

Here, we systematically investigated the regulators of AASEs in
LUAD, from the perspective of the splicing-regulatory proteins,
somatic mutations, and DNA methylations. About 100 differen-
tially expressed RBPs were identified and 88 RBPs exerted impacts
on AASEs that were crucial for tumorigenesis and metastasis.
Previous studies have reported that RBPs can be tumor driver
genes by disturbing a wild range of ASEs. For example, Warzecha
et al.40 found that ESRP1 regulated the epithelial-mesenchymal
transition process by promoting epithelial splicing programs in
breast cancer and suggested this RBP was a potential candidate
for splicing-targeted therapies. In this study, we revealed that
more than 200 AASEs were affected by ESRP1, which expressed
significantly higher in LUAD than adjacent-normal samples,
suggesting a critical role of this RBP in LUAD. Previous studies
reported that IGF2BP3 is critical for tumorigenesis and associated
with poor patient survival.41,42 Here, we noticed that IGF2BP3
affected cell-matrix adhesion through disturbing alternative
splicing profiles in LUAD. Thus, IGF2BP3 is an attractive
therapeutic target as demonstrated in this study and other
researches.43

In addition, we found that DNA mutations regulated extensive
AASEs primarily through trans-regulatory mode and most trans-
sQTLs belonged to missense mutations. Especially, we noticed

that the hotspot mutation of TP53 would affect a wild range of
alternative splicing of other genes in LUAD, which is difficult to
understand at first glance. However, one recent study reported
that mutant TP53 increases the expression of splicing regulator
hnRNPK,44 justifying the trans-sQTLs role of TP53 mutations
in LUAD.
The usage of alternative exons can be enhanced or suppressed

by DNA methylation in a context-specific manner. For example,
one research reported that exon methylation promotes its
selective usage in human normal tissues,45 while the other study
suggested that in mouse embryonic stem cells, some DNA
methylation would inhibit the usage of exons.46 Here through
pan-cancer analysis, we found that the primary role of DNA
methylation in regulating ASEs in cancer is that methylation sites
in gene promoters and body regions around first exons would
inhibit the usage of the alternative promoters. Many genes have
alternative promoters, typically located upstream of the transla-
tion start site but also commonly existed within gene bodies.47

Through investigating human and mouse normal brain tissues,
one study also suggested that intragenic DNA methylation
abolished the activity of alternative promoters of SHANK3 in a
tissue- and cell-type-specific manner.48 These results we found
further deepen our understanding of the whole landscape of
regulatory effects of DNA methylation on ASEs, especially in the
context of cancer.
One of the most important determinants for effective splice-

switching therapies was targeting AASEs with significant biological
implications. To reveal the functional relevance of AASEs in LUAD,
we performed deep analyses on AASEs-related genes. AASEs
connected with many cancer hallmarks were enriched in “cell-
substrate junction assembly” and “cell-matrix adhesion”. This result
was consistent with previous studies suggesting that the interaction
between cell and extracellular matrix is associated with multiple
tumor-boosting pathways.49,50 Besides, our data showed that
biological processes related to tumor proliferation and metastasis
were primarily affected by AASEs. Thus, splice-switching therapeu-
tics targeting AASEs associated with proliferation and metastasis is a
promising approach for the treatment of LUAD.
We also noticed that one group of LUAD patients with a

particular AASEs profile was immunogenic and predicted with a
better response rate to immunotherapy. Previous studies aimed to
subclass LUAD were only based on the expression profiles or
somatic mutation status.3,51 Our study suggested that LUAD
subtypes based on alternative splicing profiles may help identify
candidates who are likely to benefit from immunotherapies.
Besides, these results implied that splicing-switching therapeutics
may reconstruct the tumor immune microenvironment and
improve the response rate of LUAD patients to immunotherapy.
This study has some limitations. Although we applied multi-

omics methods to systematically reveal the splicing dysregulation
in LUAD based on large-scale and multicenter datasets, the
specific function of ASEs and isoforms of many genes is still
ambiguous. In-depth insights into the accurate biological function
of each isoform would help to select prospective targets for splice-
switching therapeutics. However, no high-throughput approaches
are available to differentiate between therapeutic or pathogenic
isoforms and isoforms with no role in tumor development. Thus,
based on current technology, labor-intensive experiments are
necessary to investigate the precise function of plentiful isoforms.
In summary, this study systematically investigated the land-

scape of AASEs in LUAD and unraveled the biological relevance of
AASEs and their regulators from multiple perspectives. Besides,
this study clarified the effects of splicing dysregulation on the
tumor immune microenvironment and laid the foundation for
designing splice-switching therapeutics for LUAD. The resource
we provided in this study would promote the understanding of
molecular characteristics of LUAD and facilitate basic research and
precision medicine in LUAD.
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MATERIALS AND METHODS
RNA sequencing data collection and curation
We collected two LUAD cohorts in this study. The first one is our
integrated cohort, including dataset SRP074349, ERP001058, and
Chinese LUAD patients we collected in the Cancer Hospital of the
Chinese Academy of Medical Sciences. There are 108 LUAD
samples in dataset SRP074349, 81 LUAD samples and 77 paired
adjacent-normal samples in dataset ERP001058, and 112 LUAD
samples and 76 paired adjacent-normal samples we collected, in
which 48 LUAD samples and 46 normal samples have been
published in our previous research.52 The other cohort is the TCGA
LUAD cohort, including 514 tumor samples and 59 normal
samples. All samples in these cohorts have undergone RNA
sequencing. Raw RNA sequencing data in our integrated cohort
were processed as follows. First, we employed FastQC to examine
the quality of sequencing data and applied Trim-Galore to get rid
of adapters and low-quality reads. Then, SpliceSeq53 was used to
identify and quantify ASEs. Salmon54 was applied to calculate the
expression level of genes and transcripts in each sample. For the
TCGA LUAD cohort, we obtained alternative splicing profiles and
gene expression profiles from TCGASpliceSeq55 and UCSC Xena56,
respectively.

Identification of high-confidence ASEs from high-quality samples
For our integrated cohort, we removed samples with a mapping
rate <60% or detected ASEs <5000. As a result, 285 tumors and
145 paired adjacent-normal samples in this cohort were kept for
further analysis, including 81 LUAD and 77 normal samples
derived from dataset ERP001058, 108 LUAD samples from dataset
SRP074349, and 96 LUAD and 68 normal samples we collected in
China. Then we kept ASEs that were detected in at least 20%
LUAD and 20% normal samples. For the TCGA LUAD cohort, we
also kept ASEs detected in at least 20% LUAD and 20% normal
samples. Those ASEs occurred in both cohorts were defined as
high-confidence ASEs.

Identifying and filtering AASEs in LUAD
In this study, percent spliced in (PSI), also known as the exon-
inclusion ratio, was used to quantify alternative splicing events
(ASEs). To explore aberrant ASEs (AASEs), we conducted Wilcoxon
rank-sum test to measure the difference of each ASE between
LUAD and adjacent-normal samples in our integrated dataset. We
adjusted p values through the Benjamini–Hochberg method. ASEs
were considered aberrant when satisfying the criteria of |ΔPSI|
>0.1 (more than 10% difference in PSI value) and adjusted p values
<0.05. Finally, 3688 AASEs were identified.

Investigating the regulatory role of RBPs on AASEs
A total of 1779 RBPs were collected based on two previous
reports.57,58 The R package “DEseq2”59 was applied to identify
differentially expressed RBPs between LUAD and paired adjacent-
normal samples. RBPs that met |logFc| > 1 and adjusted p values
< 0.05 were considered to be differentially expressed. We then
applied Spearman correlation analysis to test the relationship
between the expression levels of 100 differentially expressed RBPs
and the PSI values of 3688 AASEs. Criteria for |r| > 0.5 (absolute
value of the correlation coefficients larger than 0.5) and adjusted
p value < 0.05 indicated that differentially expressed RBPs would
play a regulatory role on their corresponding AASEs. To promote
the robustness of the RBP-ASE pairs identified, we applied
DeepBind (version 0.11)60 to predict whether the RBP could bind
to ±300 bp around the splice sites of its corresponding ASEs. Due
to the limited training sets, DeepBind can only predict the binding
region of 85 human RBPs, containing three differentially expressed
RBPs (IGF2BP2, KHDRBS2, and YBX2) in this study. For each RBP,
chromosome regions with scores greater than the first quantile of
all regions around splicing sites of AASEs were recognized as the
candidate binding sites of this RBP. We integrated this binding

information with the significantly correlated RBP-ASE pairs and
revealed more solid interactions between RBPs and ASEs.
Cytoscape61 was employed to build RBPs-ASEs networks based
on the identified interactions. To further scan the position of
motifs for the three differentially RBPs, we applied rMAPS262

running for ES events with a sliding window of 50 bases.

Investigating cis-sQTLs and trans-sQTLs in LUAD
To make the sQTLs we identified robustly, we combined 506 TCGA
LUAD samples with 57 LUAD samples we collected in China with
mutation data. ASEs detected in at least 70% of LUAD samples and
SNVs observed in more than two LUAD samples were retained for
further analysis. The commonly-used R package “matrixEQTL” was
applied to identify sQTLs.63 In detail, the additive linear regression
model was used to evaluate the effects of somatic mutations on
ASEs. We included gender, background, batch, age, and TNM
stage as covariates to reduce their effects on the sQTLs results. We
investigated local (cis) and distant (trans) sQTLs separately. Cis-
sQTL is within 100 Kbp around its’ corresponding splicing site. The
location of splicing sites (hg19) was obtained from the TCGASpli-
ceseq database. SNV-ASE pairs were kept when the ASE can be
detected in more than two corresponding mutant samples. FDR
<0.01 suggested that the SNV-ASE pairs were significant and this
SNV was an sQTL.

Revealing the regulatory pattern of DNA methylation on ASEs
DNA methylation data generated by Illumina Human Methylation
450 K BeadChip were obtained from UCSC Xena. Only CpG sites
within the boundary of differentially spliced exons were reserved
for differential testing. The boundary was defined as 39
nucleotides in exonic regions and 200 nucleotides in intronic
regions around splice sites according to Castle’s study.27

Differentially methylated CpG sites were detected by R package
“CHAMP”64 according to the criteria of adjusted p values < 0.05
and |Δmeth| > 0.15 (more than 15% difference in methylation).
Subsequently, we correlated these differential CpG sites with their
corresponding AASEs. To investigate the regulatory role of DNA
methylation on multiple cancer types, we collected 30 cancer
types’ DNA methylation data from UCSC Xena and alternative
splicing profiles from TCGASpliceSeq. CpG sites at the boundaries
of alternatively spliced exons were kept and investigated their
correlation with corresponded ASEs. Adjusted p value < 0.05 and
|r| > 0.3 suggested the CpG-ASE pairs were significantly correlated.

Investigating tumor immune microenvironment of LUAD samples
We used CIBERSORT65 to estimate the infiltration level of 22
immune cell types and then employed TIMER2.066 to confirm the
immune cell signatures in LUAD samples. The ssGSEA analysis was
conducted to evaluate the activation degree of 17 immune
pathways defined by ImmPort.67 To further investigate the
immune microenvironment of LUAD, we measured the expression
levels of 78 immunomodulators obtained from one previous
report.34

Comparing tumor immune microenvironment among three LUAD
subtypes
We classified LUAD samples into three subtypes according to
AASEs profiles through the R package “ConsensusClusterPlus”68

and compared the immune signatures (immune pathways,
immune cell abundance, and immunomodulators) among these
subtypes. Analysis of variance and t-test were applied to
investigate the difference in immune pathways among the three
subtypes due to the normal distribution of these values. The
Kruskal–Wallis test and Wilcoxon rank-sum test were used to
evaluate the difference in the level of immune infiltration and
immunomodulators among the three subtypes. To predict the
clinical responses to immune checkpoint blockades among LUAD
patients, we utilized the TIDE algorithm69 with setting “NSCLC” in
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the parameter “Cancer type” and “No” in the parameter of
“Previous immunotherapy.” The Chi-square test was used to verify
the relevance between the three clusters and the immunotherapy
response.

Immunohistochemical (IHC) staining and scoring
Immunohistochemical (IHC) staining and scoring of CD8 were the
same as in our previous research.52 In detail, we spliced formalin-
fixed, paraffin-embedded tumor tissues into 4 mm slides for IHC
staining with CD8 antibody (1:50, ZSGB Bio, catalog No: ZA-0508)
using an automated Leica Bond staining system according to the
manufacturer’s protocol. The PD-L1 IHC staining procedure was
performed with the PD-L1 IHC 22C3 pharmDx (Dako, Inc.)
companion diagnostic test on the Dako Autostainer Link 48
platform. For scoring the IHC image, Histoscore (H-score) was
calculated by multiplying the proportion of positive cells in the
sample (0–100%) by the average intensity of the positive staining
(1+, 2+, or 3+) to obtain a score ranging between 0 and 300 as
previously described.70
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