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Liquid–liquid phase separation in tumor biology
Xuhui Tong1,2, Rong Tang3,4, Jin Xu1,2, Wei Wang1,2, Yingjun Zhao 5, Xianjun Yu 1,2✉ and Si Shi3,4✉

Liquid–liquid phase separation (LLPS) is a novel principle for explaining the precise spatial and temporal regulation in living cells.
LLPS compartmentalizes proteins and nucleic acids into micron-scale, liquid-like, membraneless bodies with specific functions,
which were recently termed biomolecular condensates. Biomolecular condensates are executors underlying the intracellular
spatiotemporal coordination of various biological activities, including chromatin organization, genomic stability, DNA damage
response and repair, transcription, and signal transduction. Dysregulation of these cellular processes is a key event in the initiation
and/or evolution of cancer, and emerging evidence has linked the formation and regulation of LLPS to malignant transformations
in tumor biology. In this review, we comprehensively summarize the detailed mechanisms of biomolecular condensate formation
and biophysical function and review the recent major advances toward elucidating the multiple mechanisms involved in cancer cell
pathology driven by aberrant LLPS. In addition, we discuss the therapeutic perspectives of LLPS in cancer research and the most
recently developed drug candidates targeting LLPS modulation that can be used to combat tumorigenesis.
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INTRODUCTION
In the densely packed cellular space, the coordination of complex
biochemical reactions in a spatial and temporal manner is
important for performing biological function.1 Disruption of the
precise spatiotemporal regulation can result in dysregulation of
diverse cellular processes, including transcription,2 genomic
integrity,3 chromatin organization,4 RNA processing5 and intracel-
lular signaling.6,7 These processes are conceptual mechanisms
underlying the complex hallmarks of cancer, including the loss of
control over cell growth and proliferation, resistance to cell death,
and metabolic reprogramming.8 Therefore, it is necessary to
maintain normal spatiotemporal control in cells.
A possible cellular strategy for coordinating these reactions

involves the formation of different compartments, where the
density of the reaction components at a specified intracellular
location can be adjusted.9 In fact, enzymatic reaction components
are usually packaged in distinct subcellular compartments.9 For
instance, classical organelles with a defined stoichiometry, such as
the nucleus, Golgi apparatus, mitochondria and others, are lipid
bilayer membrane-bounded compartments that make internal
compounds inaccessible to almost all biomolecules and extra-
compartmental properties.
Notably, eukaryotic cells also achieve subcellular compartmen-

talization by forming a variety of nonstoichiometric biomolecular
condensates without membranous structures,10 including pro-
myelocytic leukemia (PML) protein bodies, nucleoli, paraspeckles,
and Cajal bodies in the nucleus and stress granules (SGs), signaling
puncta, and processing bodies (P bodies) found in the cyto-
plasm.11–13 Biomolecular condensates are composed of weak,
multivalent interactions between macromolecules9 (for example,
proteins and nucleic acids). In addition to the abovementioned

punctate membraneless bodies, other subcellular structures also
share similar physical properties, including heterochromatin14 and
membrane receptor clusters at the cell membrane.15 The majority
of these condensates exchange subunits rapidly with their
surroundings within seconds or minutes.16–18

Increasing lines of evidence suggest that biomolecular con-
densates are reversibly and dynamically assembled via
liquid–liquid phase separation (LLPS).11 LLPS is a physiological
process that spontaneously drives the separation of a homo-
geneous solution of constituents into two or more coexisting
phases: a dilute phase and a dense phase.19 Additionally, many
studies have demonstrated that biomolecular condensates can be
transformed into materials in different states, such as viscous
liquids, gels, and even solid aggregates.20–22 The material features
of biomolecular condensates are pivotal to distinct functions; for
example, biocondensates form biochemical reaction centers,
signaling hubs and the supporting architecture. Although cells
have developed a variety of mechanisms to guarantee well-
controlled LLPS, aberrant forms of phase separation are causa-
tively related to many of the dysregulated cellular processes in
cancer.20 In Table 1, we summarize the names, genes, localiza-
tions, structures and functions of 25 molecules related to the
oncogenic mechanisms related to LLPS. For instance, the LLPS of
NUP98-HOXA9 contributes to the formation of a broad super-
enhancer (SE)-like binding pattern that potentiates the transcrip-
tional activation of leukemogenic genes.23 Furthermore, it has
been estimated that most cell signaling proteins, and even a large
number of cancer-related proteins, have long intrinsically dis-
ordered regions (IDRs), which play critical roles in promoting
LLPS.24
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In this review, we describe recently obtained insights and
findings on the formation, dynamics, regulation, and function of
LLPS and highlight the various effects of biomolecular conden-
sates on cell biology. Our review specifically focuses on the
dysregulated LLPS that occurs in aberrant cellular processes
associated with carcinogenesis, including chromatin organization,
epigenetics, oncogenic transcription, aberrant signaling pathways,
and telomere lengthening mediated by LLPS. Clinical evidence for
the occurrence of abnormal LLPS processes in cancer patients has
also been extensively collected, and this information provides a
substantial basis for the importance of LLPS in tumor biology. For
example, Meng et al. observed phase-separated droplets formed
by Merlin (NF2) in dissected samples from vestibular schwannoma
patients.25 In addition, emerging evidence suggests that biomo-
lecular condensates affect the pharmacodynamic properties of
antineoplastic medicines; therefore, regulating the LLPS process
could be a potential strategy for novel cancer therapies. Therefore,
we evaluate the great potential of effectively regulating LLPS in
anticancer therapy and propose perspectives on condensates that
might contribute to future investigations in oncology.

LIQUID–LIQUID PHASE SEPARATION
LLPS is a decent explanation for the formation of multiple
membraneless structures in cells.26 The profound exploration of
membraneless organelles began with the discovery of P granules
in Caenorhabditis elegans in 2009. The P granules are liquid-like
structures composed of proteins and RNAs, which can flow, fuse,
deform and fission under shear force.27 Following the study of P
granules, other intracellular substructures, such as the nucleoli,
SGs, and paraspeckles, have also been revealed to be formed by
LLPS and are enriched in RNA-binding proteins (RBPs) and
RNAs.28,29

LLPS is thought to be triggered by weak, multivalent interac-
tions between proteins and nucleic acids13 rather than covalent,
high-affinity interactions. These weak interactions also play a
pivotal role in concentrating components at discrete cellular
sites,30 which is very important to ensure the accurate spatio-
temporal regulation of normal cell biological activities. Below, we
summarize the thermodynamic conditions necessary to trigger
LLPS and various interactions between proteins and nucleic acids
that promote LLPS.

Thermodynamic conditions of LLPS
If we consider the cytoplasm or nucleoplasm as a macromolecular
solution, the surface of macromolecules would exhibit weak,
transient, nonspecific interactions with each other and with the
solvent.31 These low-affinity interactions tend to dissolve the
molecules and evolve the entire system into a well-mixed state
(entropy).31 The solubility of macromolecules is dominated by the
balance of weak interactions between macromolecules and
macromolecules versus macromolecules and solvent.32 As the
concentration of macromolecules in the solution is increased to
the solubility limit—the threshold concentration—the interactions
between the macromolecules will become stronger than the
interactions between the macromolecules and the solvent, and as
a result, this solution will gain propensity to LLPS.33 The threshold
concentration depends on several biophysical parameters, such as
the salt concentration, temperature, and other ions.34 Therefore,
the concentration dependence suggests that the threshold
concentrations are hallmarks of LLPS.19

Multivalency driving LLPS
The macromolecules undergoing LLPS can be classified into
scaffolds and clients.35 Scaffold molecules are characterized by
multivalent proteins or nucleic acids that are indispensable for
triggering LLPS.36 Higher valency enables the formation of larger
oligomers or polymers at lower saturation.37 Multivalency can beTa
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achieved by proteins containing multiple folded domains, IDRs,28

and nucleic acid chains.38 The client proteins are molecules with
low valency that are recruited by the scaffold and partition into
condensate structures. Clients cannot themselves undergo LLPS,
and their recruitment level is determined by the scaffold
stoichiometry.35

Compared with the very-low-affinity interactions determining
solubility, the multivalent interactions between macromolecules
show higher affinity and high stereospecificity and enable
assembly into large oligomers or polymers.39

Multiple folded domains that promote LLPS. LLPS in living cells
was initially investigated based on the multivalent interactions
among Nephrin, Nck and neural Wiskott-Aldrich Syndrome protein
(N-WASP). The phosphotyrosines (pTyrs) in Nephrin can each bind
the SH2 domain of Nck, and Nck possesses three SH3 domains
that can bind the ~six proline-rich motifs (PRMs) of N-WASP (as
shown in Fig. 1a).37 When the adhesion receptor Nephrin is
attached to the lipid bilayer, the three-component system
(Nephrin/Nck/N-WASP) can also undergo LLPS and form liquid-
like clusters on the membrane surface.40 Similarly, the signaling
proteins governing the organization of actin in T cells can also
assemble into membrane puncta in response to T-cell receptor
(TCR) activation.15

Another example is Nucleophosmin (Npm1), a highly abundant
protein that contributes to the maintenance of genome stability
and regulation of the p53 tumor suppressor pathway and has

been implicated in mediating the LLPS of nucleolar granule
components.41–43 The Npm1 monomer encodes only a 2-valent
interaction partner, which is insufficient for triggering phase
separation. However, the unphosphorylated form of the Npm1
monomer oligomerizes into pentamers through its N-terminus
(Npm-N) and binds to proteins with Arg-rich linear motifs. The
oligomerizing process effectively increases the valency to 10,
which is sufficiently high to mediate phase separation (Fig.
1b).44,45 This excellent example proves the importance of multi-
valency between interacting motifs for controlling LLPS. Similarly,
the speckled POZ protein (SPOP), a tumor suppressor, is a cullin-3-
RING ubiquitin ligase (CRL3) substrate adapter that can self-
assemble into higher-order polymerized forms and localize to
nuclear speckles.46

IDRs promote LLPS. The IDRs in proteins are another method for
gaining multivalency and driving LLPS. IDRs lack a stable tertiary
structure, which allows access to a wider conformational space
and enables the formation of three-dimensional networks of
protein molecules.47 These regions have low amino acid sequence
complexity and comprise only a limited set of amino acid types,
such as Gly, Ser, and Gln, and aromatic residues, including Phe and
Tyr.9,48,49 Recent evidence suggests that the aromatic residues in
IDRs are particularly important for the promoting effect. In Ddx4,
the cation-pi interactions between Phe and Arg motifs have been
proven to be significant for driving LLPS (Fig. 1c).50 Analogously,
the Tyr residues in other RBPs, such as fused in sarcoma (FUS),51

Fig. 1 Summary of various types of interactions that promote the occurrence and maintenance of LLPS. a Nephrin contains three
phosphotyrosines (pTyrs) motifs, which bind the SH2 domain of Nck, and Nck possesses three SH3 domains that can bind the ~six proline-rich
motifs (PRMs) of N-WASP. b The unphosphorylated form of the Npm1 monomer oligomerizes into pentamers through its N-terminus (Npm-N)
and binds to proteins with Arg-rich linear motifs. c In Ddx4, Phe and Arg motifs in the intrinsically disordered regions (IDRs) drive LLPS. d In
LAF-1 and SERBP1 proteins, the positively charged Arg/Gly-rich (RGG/RG) domain binds to negatively charged RNA and effectively promote
LLPS. e In TDP43, the pi-pi interactions in IDRs facilitates LLPS. f Low-complexity amyloid-like reversible kinked segments (LARKS) in TDP43,
and FUS proteins would give rise to phase separation via mediating reversible amyloid-like interactions. g Hydrophobic interactions existing
in coiled-coil domains are essential for phase separation. h Local α-helix in the C-terminus of the TDP-43 protein enables TDP-43 self-
connections and facilitates LLPS. i LLPS of YTHDF1 can be enhanced by the mRNAs with multiple m6A residues. j NEAT1_2 lncRNA
subdomains selectively bind NONO/SFPQ proteins and dynamically oligomerize. k In the Wnt signaling cascade, Disheveled contacts the DIX
domain of the AXIN protein in a head-to-tail manner and transduce Wnt signals into the nucleus. l SAM domains of tankyrase protein form
dynamic puncta via head-to-tail polymerization with AXIN, promoting Wnt signaling
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hnRNPA152 and BuGZ,53 can also promote the process of phase
separation in vitro and/or in cells. The mutation of Tyr residues in
BuGZ53 and FUS54 significantly blocks the formation of phase-
separated liquid droplets.
Additionally, the electrostatic interactions (salt bridges)

between opposing charge residues contribute to the promotion
of LLPS. In the Caenorhabditis elegans protein LAF-1, the
positively charged Arg/Gly-rich (RGG/RG) domain binds to
negatively charged RNA and effectively promotes the formation
of P granules (Fig. 1d).55 The same interaction pattern can also be
observed in nucleation events at DNA damage response (DDR)
sites, where negatively charged poly(ADP-ribose) (PAR) can rapidly
recruit positively charged proteins containing IDRs and cause
liquid demixing upon DNA damage (Fig. 2).56 Moreover, IDRs can
drive LLPS through other weak interactions, such as pi-pi
interactions mediated by aromatic residues (Fig. 1e),57 reversible
amyloid-like interactions occurred in TDP43, and FUS proteins (Fig.
1f),58,59 hydrophobic interactions triggered by coiled-coil domains
(Fig. 1g),60–62 along with dipolar interactions (data was not
shown).63

In addition, the short stretches of amino acids in IDRs can form
localized structures and promote self-interaction. For instance, the
IDRs located in the C-terminus of the TDP-43 protein contain a
structural domain that forms a local α-helix, which enables TDP-43
self-connections and facilitates LLPS (Fig. 1h). Mutations affecting
the structure or intermolecular contacts in the TDP-43 alpha-helix
and/or nearby regions can disrupt multivalent interactions and
result in altered phase separation.64

RNAs modulate phase behavior. As mentioned above, RNAs are
found in membraneless condensates19,20,65 and have been shown
to promote LLPS.65 RNAs can not only drive LLPS via electrostatic

interactions, but repetitive intermolecular base pairing can also
achieve multivalency and thus drive the formation of clusters
in vitro and in vivo.65 For example, RNAs added to SERPINE1
mRNA-binding protein 1 (SERBP1) medium effectively induce LLPS
by interacting with the RG/RGG-rich domains of SERBP1 (Fig. 1d).
Furthermore, fluorescence signals are more rapidly recovered in
the presence of RNA, which suggests that RNA at a certain
concentration (0.05 mg/ml) (measurement of the RNA sequence
5’-GCGCGGG-3’) makes SERBP1 droplets more dynamic and
fluid.66 However, the experiments conducted by Burke and Janke
suggest that FUS monomers can interact with RNA to initiate the
construction of fibrillar FUS condensates, but a higher quantity of
RNA dissolves FUS condensates.51

N6-methyladenosine (m6A) is the most frequent nucleotide
modification of mRNA67,68 and is necessary for various cellular and
physiological processes. The expression level of the correlated
proteins is frequently increased in a variety of human cancers.69,70

In diverse RNP granules, including SGs, keratin granules, and P-
bodies, the m6A-binding protein YTHDFs in the cytoplasm
undergo spontaneous LLPS in vitro and in extracted cells, and
the process can be clearly enhanced by the addition of mRNAs
containing multiple m6A residues (Fig. 1i).68 Polymethylated
mRNAs may function as scaffolds for proteins with multivalency
in combination with YTHDF proteins through their IDRs, resulting
in LLPS.68

In addition, a great number of long noncoding RNAs (lncRNAs)
are localized on chromatin and often form an RNA cloud in a
particular nuclear area to regulate gene expression. ncRNAs are
major components of several membraneless structures, such as
the nucleolus and paraspeckles,54,71 the formation of which is
frequently dysregulated in cancers. Numerous findings have
recently demonstrated that NEAT1_2 lncRNA subdomains can

Fig. 2 LLPS supports various DNA damage response (DDR) mediator to form DNA repair foci in different pathways. (Left) MRE11–RAD50–NBS1
complexes bind to the exposed DNA damage sites to initiate the pathway. Subsequently, the damage-induced lncRNAs (dilncRNAs) and P53-
binding protein 1 (53BP1) are recruited to the DDR site to promote the formation of DNA damage repair foci via LLPS. (Right) Nucleation of
PAR with FUS and 53BP1 at DDR sites forms liquid-like compartments and facilitates subsequent signaling and repair
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selectively attach to NONO/SFPQ proteins, and these proteins can
dynamically oligomerize and recruit additional proteins through
LLPS to facilitate the assembly of paraspeckles (Fig. 1j).72

New mechanism to multivalency—head-to-tail polymerization. In
contrast to IDRs, there remain stably structured domains in
proteins that can attain multivalency by improving local
condensation.73 The DIX and SAM domains are two distinct
domains capable of spontaneously assembling dynamic head-to-
tail polymers, condense into filaments and are then crosslinked to
form three-dimensional condensates.74,75 The DIX domain was
discovered in the Wnt signaling cascade, Disheveled,76 which can
contact the DIX domain of the AXIN protein in a head-to-tail
manner and transduce Wnt signals into the nucleus (Fig. 1k).77

Analogously, the SAM domains of tankyrase protein can also form
dynamic puncta via head-to-tail polymerization, promoting Wnt
signaling by binding to and ribosylating the poly (ADP) AXIN
destruction complex (Fig. 1l).78 The difference between the DIX
and SAM domain interactions is that the affinities of SAM domains
are higher than those of DIX domain-mediated interactions.74

Physiological regulation of LLPS
Any factor that influences the properties of the condensate
component affects the condensate structure, dissolution, viscoe-
lasticity, and other physicochemical features that influence their
functions,12,38 such as protein concentration, posttranslational
modifications (PTMs) or environmental elements, providing a
vigorous mechanism for the regulation of cells.79

Biophysical parameters. The concentrations of biomolecular
components are essential factors in condensate formation and
dissolution. Expanding the volume of nucleoli by placing them
into a hypotonic solution can cause reversible solubilization of
PML bodies and nucleoli as the matrix is diluted.80 A variety of
pathways influence the concentration, such as influencing
biosynthesis, degradation, transportation, and localization.38

Because of the importance of thermodynamics, for some of the
molecules that reach their dissolution limit, even a slight
disturbance to physical parameters, such as a concentration or
temperature chance, can induce rapid phase changes. For
instance, a change of 1 °C may lead to BUgZ, DDX4, or FUS
droplets condensing or dissolving.9 The prion-like domains of
these proteins can sense pressure regulated by the environment,
which in turn influences the solubility and phase behavior of the
protein.81 For example, TDP43 and FUS cluster to SGs under
physiological stress conditions such as heat and oxidative
stress.82,83

Other biophysical elements, such as the salt concentration in
the milieu66 and the addition of PEG3000 and glycerol, can also
effectively regulate LLPS.66

Posttranslational modifications. Emerging evidence suggests that
PTMs, which include phosphorylation, acetylation, arginine (Arg)-
methylation, and SUMOylation, play pivotal roles in regulating
phase separation.84,85 The downstream reactions of cells to
various stimuli are often influenced by PTM-triggered signaling.86

PTMs induce a wide range of effects on the structural properties of
intrinsically disordered proteins and potentially drive complete
state changes among different states, such as intrinsically
disordered states, folded states, dispersed monomeric, and
phase-separated states.87 In LLPS, PTMs can alter the physico-
chemical characteristics of the regulated amino acids in scaffold
proteins, such as by changing their valency, electric charge, or
volume.35 PTMs can also influence the interactive conditions to
affect phase separation, such as by directly diminishing or
enhancing the multivalent interactions between macromolecules,
recruiting certain macromolecules into the condensate or exclud-
ing macromolecules from the condensate.84 For instance, the Arg

residues of RGG/RG motifs in FUS are largely modified by the
deposition of asymmetric dimethyl groups by protein arginine
methyltransferase (PRMT) 1 or 8,88–90 which in turn decreases the
LLPS rate of FUS and enhances condensate dynamics.91 An
overabundance of Arg methylation mediated by PRMT1 increases
the rate of cytosolic FUS and SG partitioning in response to
oxidative stress.82 Additionally, Arg methylation reduces hnRNPA2
phase separation and destabilizes the Ddx4 droplets by diminish-
ing Arg-aromatic(pi) interactions.50,92

In addition, another PTM called SUMOylation involves the
covalent attachment of small ubiquitin-like modifiers (SUMOs) that
modulate cellular processes in the nucleus.93 Lys residues in
disordered regions have been found to be the preferred target of
SUMOylation, different from other common Lys PTMs.94 SUMOyla-
tion in PMLs contributes significantly to the formation of the PML
nuclear body, whereas de-SUMOylation can lead to a constituent
protein being released and nuclear bodies being separated during
mitosis.50,95 In addition, death domain-associated protein (DAXX)
possesses highly conserved SUMO-interacting motifs,96 which are
needed for DAXX linkage with SUMOylated PML oncogenic
domains, and its expression is upregulated in multiple cancers.97

DAXX can bind to SUMOylated SMAD4 and suppress SMAD4-
mediated transcription.27 SMAD4 is activated downstream of the
cellular effects of TGF-β, which induces apoptosis and prevents
proliferation, and the loss of SMAD4 expression potentiates
tumorigenesis,93,98 which suggests the potential significance of
DAXX in carcinogenesis. In addition, SUMOylation of SERBP1 is
thought to be a trigger for glioblastoma multiform progression
because aberrant SUMOylation pathways may result in cancer
progression.99

Furthermore, it has been demonstrated that in response to DNA
damage, the N-terminus of FUS is phosphorylated by DNA-
dependent protein kinase (DNA-PK), and this phosphorylation
leads to FUS translocation from the nucleus to the cytoplasm. The
translocation is mediated by the phosphorylation of serine or
threonine residues on the N-terminus of FUS by DNA-PK, but the
exact mechanism remains uncertain.100 Additionally, Ding et al.
revealed that the phosphorylation of Ser61 occurs specifically at
the Ser61 site of FUS, which can effectively disrupt the intra- and
intermolecular interactions that maintain pathological aggrega-
tion in cells.101 Therefore, we believe that diverse PTMs can be an
effective approach for regulating the process of phase separation
and possibly affect oncogenic processes.

ATP and phase separation. The role of ATP in LLPS has thus far
been subject to considerable uncertainty. First, ATP prevents RNA/
proteosome assembly while maintaining protein solubility.102,103 A
high concentration of ATP inhibits the tendency of IDRs in
granular components to assemble into stable amyloid fibrils.104,105

Brangwynne et al. also found that the liquid-like properties in the
spherical state of the nucleolus depend on ATP, which suggests
that the nonspherical nucleolar profile may indicate changes in
metabolism.106 However, a range of evidence confirms that ATP
promotes the formation of nuclear condensates.107 Therefore, the
exact role played by ATP in LLPS remains difficult to discern, but
we look forward to more ideas from future researchers.

Chaperones and phase separation. Molecular chaperones are
essential components of the quality control system in cells to
sustain protein homeostasis (proteostasis) and thus avoid aberrant
folding and aggregation.108 A wide spectrum of molecular
chaperones has been proven to undergo LLPS, including heat
shock protein 27 (Hsp27), class I and II Hsp40, Hsp70, and Hsp90,
and most of chaperones have been found to be incorporated into
SGs.109,110 Liu et al. demonstrated that small Hsp27 prevents LLPS
of FUS protein by interfering with intra- and intermolecular
transient interactions of the low-complexity domain in FUS.
However, the phosphorylation of Hsp27 induced by cellular stress
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conditions, including sodium arsenite, heat shock, or oxidative
stress, reduces its inhibitory function.110 Analogously, in neuron
terminals, transportin also functions as a chaperone of FUS
proteins, inhibiting the phase separation process and SG
partitioning.111

In patients with fibrolamellar carcinoma, loss of myristylation
and gain of Hsp70 binding by oncogenic DnaJB1-PKAcat are
responsible for abolishing RIα LLPS. The DnaJB1-PKAcat fusion
oncogene has been detected in nearly all fibrolamellar carcinoma
patients, and the inhibition of RIα LLPS results in disruption of
cAMP compartmentation and deregulation of the cAMP/PKA
signaling pathway, which consequently leads to tumorigenesis.112

Therefore, the above-described example illustrates the importance
of normal phase separation to the organism and the pathogenic
potentiality of molecular chaperones in the regulation of LLPS.

Functions of biomolecular condensates
LLPS is involved in multiple biological processes in cells, such as
chromatin architecture, DNA damage repair, transcriptional
regulation, intracellular signaling, and protein degradation.113

These activities take place throughout all types of cells, and
abnormalities in these processes are central events in the study of
tumor biology. Therefore, we reasoned that LLPS might contribute
to tumor pathogenesis and tumor progression.

LLPS in chromatin organization. LLPS of chromatin-associated
factors can promote the organization of the chromatin structure
to regulate transcription.14,114,115 Gibson et al. found that
reconstituted chromatin undergoes LLPS both in vitro and in
cells.4 Recent studies suggest that heterochromatin protein 1
(HP1) can form liquid-like droplets via phase separation.14,116

Heterochromatin is a tightly packaged chromatin structure that is
an important component of eukaryotic genome sequences and is
pivotal for the normal organization of chromosomes, genome
integrity, DNA replication,117 transposon silencing and gene
expression.118 A prominent characteristic of heterochromatin is
trimethylation of Lys 9 on histone H2 (H3K9me2) and H3K9me3.119

Some findings have revealed that LLPS specifically takes place at
transcriptionally active regions of DNA with lower chromatin
density. Shin et al. revealed that phase-separated liquid con-
densates are preferentially formed at chromatic regions with low
density and mechanically push out nontargeted chromatin. Thus,
distant targeted genomic loci can be mechanically pulled together
and restructured through the fusion of droplets.114 The causative
linkage between LLPS and chromatin compression has been
demonstrated in an increasing number of studies.120 DNA
demethylation in heterochromatin has been linked to chromo-
some translocations in different types of cancer, such as breast,
lymphoid, and endothelial tract cancer.121,122 Additionally,
reduced hypermethylation of heterochromatin has been highly
correlated with human cancer progression and metastasis.123,124

LLPS in DNA damage repair. The DDR is responsible for
safeguarding genomic integrity and stability, whereas defects in
the DDR may result in oncogenic mutations.125 In response to
DNA damage, LLPS supports the process of various DDR mediators
forming repair compartments in two different ways (Fig. 2).126

Upon DNA damage, MRE11–RAD50–NBS1 complexes can recog-
nize and bind to the exposed DNA damage sites and recruit
damage-induced lncRNAs (dilncRNAs). dilncRNAs then attract the
tumor suppressor P53-binding protein 1 (53BP1) to the DDR site
and promote the formation of DNA damage repair foci via LLPS
(Fig. 2 left).127 This method of repairing DNA double-strand breaks
is very common in cancer cells and results in the avoidance of
apoptosis.128

The earliest cellular response to DNA lesions in another pathway
starts with the nucleation of PAR with multiple intrinsically
disordered proteins, including FUS, at DDR sites.127,129 FUS is

precisely directed to DNA damage sites by long and branched PAR
chain formation.130 After the PAR signal terminates, 53BP1 gains
access to the DNA damage sites, forms liquid-like compartments
and facilitates subsequent signaling and repair (Fig. 2 right).131

LLPS in transcriptional regulation. As a critical step in gene
expression, dysregulated gene transcription can initiate the
uncontrolled proliferation of cancer cells.132 Interestingly, emer-
ging evidence demonstrates that LLPS plays an important role in
the progression of transcription and RNA processing.133,134 For
example, the C-terminal domain (CTD) of the RPB1 subunit of
human RNA polymerase (Pol) II is composed of a highly repetitive,
unstructured protein domain of low complexity.135 The FUS, Ewing
sarcoma (EWS), and TAF15 genes can form a liquid-like phase-
separated state, directly bind the CTD of RNA Pol II and activate
transcription.51,136 Furthermore, recent evidence demonstrates
that transcription factors (TFs), RNA Pol II, chromatin regulators
and various coactivators aggregate into condensates (called
SEs)137 via phase separation at those highly transcribed genes.138

In addition, strong evidence demonstrates that the transcrip-
tional coactivator Yes-associated protein (YAP)139 and the
transcriptional effector PDZ-binding motif (TAZ)140 compartmen-
talize the transcriptional cofactors and coactivators to facilitate the
expression of target genes by LLPS.62 In lung cancer, the YAP-
generated condensates can further form YAP/TEAD/SRC-1 com-
partments by interacting with SRC-1 and extensively improve YAP
transcription (as shown in Fig. 3e).141 It is well known that YAP and
TAZ are downstream effectors of the Hippo pathway—a tumor
suppressor signaling pathway that is important for biological
activities such as immune regulation, epithelial homeostasis, and
tissue regeneration.142 Therefore, aberrant YAP/TAZ-mediated
transcriptional condensates may contribute to cancer-related
pathophysiology.
Furthermore, intracellular phase-separated liquid-like structures

regulate the localization and processing of mRNA.143,144 For
example, AKAP95, a nuclear protein that participates in RNA
splicing, generates liquid-like phase-separated condensates
in vitro and in cells.145 AKAP95 is frequently overexpressed in
human breast cancer, and the liquid condensates possess the
abilities to support tumorigenesis with proper liquidity and
dynamicity,145 which indicates that modifying the properties of
biomolecular condensates can potentially target LLPS and provide
useful ideas for cancer therapy. The mechanisms of RNA
distribution and processing in cells are important for subsequent
protein localization and function, which implicates the multistep
nature of gene expression regulation.146

LLPS and intracellular signaling. Various signaling transduction
pathways have been implicated in the regulation of cell
proliferation, differentiation, metabolism, angiogenesis, apoptosis
and senescence.147,148 Emerging evidence suggests the impor-
tance of phase separation in orchestrating signaling pathways
through the compartmentalization of significant factors.149 For
example, when TCR phosphorylation is triggered, the downstream
signaling proteins also form liquid-like clusters spontaneously via
LLPS, which results in the promotion of signal outputs.15

Furthermore, the cellular enzyme cyclic GMP-AMP synthase
(cGAS) functions as a direct DNA sensor and produces the
secondary messenger cyclic GMP-AMP (cGAMP), which has an
innate immune function (Fig. 4).150 Interactions with DNA induce
phase separation of cGAS and promote the production of cGAMP,
which interacts with the receptor stimulator of interferon genes
(STING), activates downstream type I interferon and NF-κB
signaling151 and facilitates innate immunity.150 Therefore, normal
and properly regulated LLPS is essential for the human body to
maintain normal immune signaling pathways, and if the LLPS
process is aberrantly changed, it is likely to cause pathological
consequences, such as cancer.
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LLPS and autophagy. Phase separation is also involved in
autophagy.20 Autophagosome formation involves the process of
LLPS at specific sites, and LLPS can positively regulate autophagy
activity through different mechanisms.152 Specifically, phase
separation plays a role in modulating TORC1 activity.153 TORC1
is a Ser/Thr kinase complex that regulates multiple cellular
processes and cellular metabolism in response to nutrient
availability in the milieu.154 The inhibition of TORC1 signaling
can induce autophagy, and dysregulated TORC1 and autophagy
have been demonstrated to be correlated with tumorigenesis.155

Mechanistically, LLPS of yeast Pbp1 in combination with a cellular
redox state can lead to TORC1 downregulation and consequently
promote autophagy.155 In addition, LLPS plays a role in forming
aminopeptidase Ape1 condensates, which are trafficked by
double-membrane-bound Cvt vesicles and thereby enable selec-
tive engulfment.156

Furthermore, biomolecular condensates can control protein
quality by not undergoing autophagic degradation.157 For
example, stress-sensitive proteins in the nucleus misfold under
pressure and then aggregate into the nucleolus after being in a
nucleoplasmic dispersion state. After combining with nucleolar
proteins through LLPS, these misfolded proteins are protected
from irreversible aggregation,158 which facilitates refolding during
recovery from stress.

In summary, LLPS is important to a variety of cellular processes,
as explained herein. Therefore, we will discuss the possible
oncogenic effects of various aberrant LLPS and the states of LLPS
processes in tumor cells of different cancer patients.

ABERRANT LLPS IN CANCER
As described previously, biomolecular condensates are involved in
the control and regulation of various cellular biological processes,
and the constituent macromolecules of biomolecular condensates
are affected by genetic abnormalities in various cancers, which
suggests that condensates are significant for unraveling the
carcinogenesis process and prompting new advancements in
cancer therapy. Malignant cells acquire genomic mutations that
influence various biological processes mediated by LLPS during
tumorigenesis, including chromatin changes, transcription, DNA
damage repair, and tumor suppression. These mutations may
result in aberrant cellular activity, such as driving unlimited
proliferation and replicative immortality, angiogenesis, cancer cell
evasion from growth suppressors, resistance to death, invasion
and metastasis.3,132 Furthermore, recent studies have demon-
strated that aberrant LLPS can influence epigenetic regulation,
which is also associated with the onset and progression of
cancers. Therefore, we suspect that LLPS may provide a useful

Fig. 3 The roles of phase separation in various cancers. (By Figdraw.). a In stem-like breast cancer cell model, the histone deacetylase HDAC7
binds near the transcriptional start site and to SEs of various oncogenes. b YTHDC1 undergoes LLPS via binding with m6A-mRNA, and the
number of resulting nuclear condensates (nYACs) is greatly increased in acute myeloid leukemia (AML) cells. c In multiple myeloma (MM) cells,
the 3’ IgH super-enhancer (SE) inserts near the MYC locus, driving the upregulation of MYC expression. d Mutant FERM domain of NF2 form
phase-separated condensates with IRF3 and abrogates the antitumor immunity initiated by STING. e In lung cancer, the liquid-like YAP/TEAD/
SRC-1 compartments in nucleus can broadly upregulate YAP transcription. f Glycogen accumulation and phase separation lead to the
formation of Laforin-Mst1/2 complex, thus activate oncogenic YAP signaling
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framework for understanding the emergence and progression of
diverse cancers and for ultimately finding appropriate treatments.

The deregulation of LLPS in chromatin organization contributes to
tumorigenesis
A high frequency of mutations in genes encoding the elements
modulating chromatin architectures has been found in numerous
cancers.159–161 Genetic alterations of the components of phase-
separated droplets regulating chromatin organization have also
been found in recent studies.162 For instance, the chromatin
remodeling complex BRG1/BRM-associated factor (BAF) is
recruited by the EWS-FLI1 chimeric protein to activate oncogenic
gene expression in Ewing sarcoma.163 The BAF complex mediates
chromatin remodeling in an ATP-dependent manner, and cells
with mutated BAF subunits show damaged chromatin structures
and are unable to express multiple genes.164 The IDRs in EWSR1
effectively mediate strong interactions with FLI1 and form liquid-
like compartments, which is significant for the tumorigenicity of
Ewing sarcoma,163,165 and the genes encoding BAF complex
subunits are also frequently mutated in different cancers.166 To
develop therapeutic agents for Ewing sarcoma, Martin et al.
extensively summarized various agents and factors affecting EWS-
FLI1 activity, such as hypoxia, miRNAs, and antibodies against the
IGF-1/IGF-1R pathway.165

SEs drive oncogenic transcription
Abnormal gene transcription driven by mutations in the genetic
and epigenetic landscape contributes to the initiation of
uncontrollable growth and proliferation of cancer cells.132

Different from normal transcriptional pathway (Fig. 5a), the

activation of prominent oncogenes and other genes related to
tumor pathogenesis is possibly induced through SEs, which
comprise several hundred clusters of enhancer elements, TFs and
enhancer-related modifications that regulate gene transcription
important to different cell types (Fig. 5b, c).137,167 These genes are
particularly sensitive to the disruption of oncogenic signaling
pathways.168 Emerging evidence suggests that TFs containing
IDRs, transcription coactivators and RNA pol II form phase-
separated condensates at SEs169 and that the protein and nucleic
acid components of SEs are subject to phosphorylation; SEs bind
proteins based on their phosphorylation status.137

Researchers have discovered that Epstein–Barr virus (EBV)
nuclear antigen 2 (EBNA2) and its coactivator EBNALP undergo
LLPS mediated by their IDRs at active SEs by interacting with
numerous TFs, which promotes their own transcription.170 EBV is
one of the most significant human tumor viruses and is correlated
with various cancers, including nasopharyngeal carcinoma, gastric
cancers, and Hodgkin lymphoma.171–175 Malignant cells may
acquire SEs via diverse mechanisms, including genomic rearran-
gements, focal amplifications of SEs commonly associated with
other genes, and highly asymmetric loading of oncogenic
TFs.176–178 SE acquisition through these mechanisms is related
to a large number of oncogenes that are being currently
studied.176,179,180 Notably, the protein products of these genes
are important for controlling the identity, growth and proliferation
of cells.167

Recently reported lines of evidence indicate that the IDRs of
signaling factors in the Wnt/β-catenin pathway are components of
condensates that form at SEs in a Wnt-inducible manner.181

Moreover, as the pivotal component of the Wnt pathway,

Fig. 4 Phase separation of enzyme cyclic GMP-AMP synthase (cGAS) contributes to innate immunity. The cellular enzyme cGAS directly
induces phase separation via binding with DNA and produces cGAMP. cGAMP interacts with STING and activates downstream innate
immunity
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β-catenin contributes to the hyperactivation of Wnt signaling via
abnormal phase separation induced by IDR-IDR interactions at
SEs;182,183 this hyperactivation of Wnt signaling is one of the early
events in the carcinogenesis of diverse cancers. For instance,
almost all colorectal cancers (CRCs) exhibit a hyperactivated Wnt
pathway,184,185 and the suppression of Wnt signaling can
significantly restrict CRC initiation and extend survival.186 How-
ever, in the absence of Wnt ligands, the multiprotein destruction
complex suppresses Wnt signaling and requires the activation of
downregulated pathways.187 The destruction complex comprises
the tumor suppressor APC, the scaffold AXIN, and two kinases—
GSK3 and CK1. Recent studies have demonstrated that AXIN and
APC undergo LLPS, which is critical for their function in inhibiting
the Wnt/β-catenin pathway.187,188 Hyperactivation of the Wnt
pathway caused by APC mutations is prevalent in a large portion
of human CRCs, and these mutants play a pivotal role in the
initiation of tumorigenesis by influencing cell differentiation and
facilitating rapid proliferation.189,190 The above-described exam-
ples strongly demonstrate that the regulation of Wnt signaling
pathway hyperactivation can be performed in two directions:
inhibiting the phase separation induced by Wnt signaling or
promoting the LLPS of the destruction complex.
The TF MYC, which has potent cell growth- and proliferation-

promoting metabolic activities, is unleashed by genetic and
epigenetic dysregulation in cancer.191 Mutations or translocations
of overactivated enhancers adjacent to the MYC gene are
correlated with the pathogenesis of malignancy.192 In numerous
cancer cells, excessively large SEs have been observed in the gene

desert near the MYC gene but are rarely found in their healthy
counterparts.167 For instance, in multiple myeloma (MM), malig-
nant cells often contain a translocation in which the 3′ IgH SE is
inserted near the MYC locus, which drives upregulation of MYC
expression167,193 (Fig. 3c). In another example, the SE-enriched
transcriptional coactivators BRD4 and MED1 are phase-separated
into condensates at SEs, which leads to an effectively compart-
mentalized and assembled transcriptional apparatus.134 Indeed,
some evidence suggests that BRD4 might mediate transcriptional
addiction to the MYC oncogene.132 The intervention of MM tumor
cell proliferation with the BET-bromodomain inhibitor JQ1 causes
a specific reduction in BRD4 at SEs, which results in disruption of
MYC transcription elongation.193,194 Moreover, BRD4 knockdown
can induce cell apoptosis and inhibit the growth of MYCN (a
member of the MYC family)-amplified neuroblastomas.195 Zhang
et al. showed that the focal amplification of SEs in the 3’ direction
relative to MYC in lung adenocarcinoma and endometrial cancer
are physically connected to the MYC promoter and are correlated
with MYC gene overexpression.178 SEs not only activate the
transcription of protein-coding genes but also regulate the
transcription and maturation of noncoding genes, such as
miRNAs196 and lncRNAs.197 Studies have also observed reduced
activity of SEs in certain tumor cells. That is, SEs activated in the
process of cell carcinogenesis are often related to cancer-
promoting miRNAs, whereas inactivated SEs mainly regulate the
production of cancer-suppressing miRNAs.196

In summary, we realize that SEs can be novel biomarkers useful
for the discovery of cancer-specific pathology, and these findings

Fig. 5 Components and processes in normal transcription and SE-mediated transcriptional addiction of genes in cancer. a The normal
transcription of a gene involves proper interactions among the promoter, RNA pol 2, coactivators, TFs and enhancers. b The SE condensates
form a liquid-like complex via LLPS and may result in the transcriptional addiction of certain genes. c Detailed illustration of the IDR-IDR
interaction that promotes SE formation
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contribute to a deeper understanding of cancer biology, diagnosis,
and therapy.167

The deregulated LLPS of tumor suppressors contributes to
tumorigenesis
One of the hallmark capabilities of cancer is the evasion of tumor
suppressors to limit cell growth and proliferation.3 Tumorigenesis
is actively inhibited by a spectrum of tumor suppressors, including
p53, TGF-β, RB1 and PTEN, which regulate tumor immunology and
immune integrity.198

p53. Among these suppressors, p53 appears to be extremely
crucial because it responds to multiple stress signals by
coordinating distinct cellular activities, such as permanent and
impermanent cell cycle arrest, apoptosis and cell senescence,
which are all correlated with tumor suppression.199–203 p53 is a
cellular stress sensor that suppresses tumorigenesis via transcrip-
tional activation,204 and 53BP1 helps to stabilize and enhance p53
gene expression.199

However, p53 is mutated in more than 50% of all human
cancers205 and is functionally inactivated by mutational, viral, or
cellular patterns in most types of cancer.206 A large proportion of
mutant p53 species are highly overexpressed in cancer cells, and
some p53 mutations exert negative dominance effects through
coaggregation, hetero-oligomerization, and prion-like aggregation
with mutant or normal p53 protein. Tumor-associated stress is
identified as a strong inducer of p53 aggregation in cell
lines.207–212 Patients harboring these mutants may have poor
clinical outcomes,212 which makes these proteins promising
therapeutic targets. Increasing studies have attempted to develop
methods to inhibit the activity of mutant p53s or to re-establish
some wild-type functions that are very promising for cancer
therapy.213

SPOP. The tumor suppressor gene SPOP has gained much
attention recently because of its mutation in various cancers.214

SPOP forms phase-separated, membraneless clusters in nuclear
speckles, and these droplets play central roles in suppressing the
tumorigenesis of multiple human malignancies, such as gastric,
liver, and prostate cancers.46,128 The SPOP droplets function as
CRL3 substrate adapters that attract oncogenic substrates for
ubiquitination and subsequent proteasomal degradation by a
ligase.128 Both SPOP self-association and SPOP interactions with
substrates can enhance LLPS.215–217 When the SPOP substrate
protein DAXX is coexpressed with SPOP, another type of liquid-like
droplet—SPOP/DAXX bodies—can be formed via LLPS, leading to
the ubiquitination of DAXX and thus reducing the DAXX level.218

DAXX maintains the survival of cancer cells by downregulating the
transcription of various tumor suppressors, including the TF p5397

and SMAD4.93 DAXX degradation by SPOP effectively induces
cancer cell apoptosis and degrades potential therapeutic
targets.219–221 Moreover, mutations of SPOP are frequently
observed in solid tumors, such as breast,222 endometrial,223

gastric224 and prostate cancers,224,225 and are associated with
early events in tumorigenesis.218,226 The consequences of
oncogenic mutations in SPOP activities include DAXX recruitment
and LLPS disruption, which largely prevents the formation of
SPOP/DAXX bodies and thus results in the accumulation of a large
number of DAXX proteins.

TGF-β. Another tumor suppressor protein, TGF-β, induces growth
arrest of cancer cells and repression of the c-MYC proto-oncogene
at the early phase.227 However, in later stages of malignancy, TGF-
β initiates cell invasion and modulates the microenvironment to
benefit cancer cell growth.228 The interaction of the TGF-β/SMAD
and Wnt pathways plays a crucial role in cellular biology, and the
opposite function of TGF-β and Wnt is significant for the joint
regulation of bone genesis and resorption.229 During bone

metastasis, the TGF-β pathway maintains disseminated tumor cell
dormancy in bone or osteolytic outgrowth.229,230 Recently,
Esposito et al. demonstrated that TGF-β induces phase separation
of the bone metastasis-promoting protein DACT1, which represses
the Wnt signaling pathway by sequestering the Wnt pathway
activator casein kinase 2. Eliminating the IDRs in the DACT1
protein effectively abolishes its capability to generate liquid-like
condensates and the effect of suppression on Wnt signaling.229

These findings elucidate the mechanism of cancer bone
metastasis and encourage future research toward the inhibition
of DACT1 condensate formation.

Aberrant LLPS interferes with antitumor signaling pathways
As mentioned before, appropriately regulated LLPS can function
as a significant hub to promote signal outputs to modulate cellular
activities. However, aberrant LLPS is triggered via oncogenic
mutations and consequently disturbs the signaling pathways.
Merlin (NF2/schwannomin), another tumor suppressor protein,

integrates and regulates intracellular signaling pathways (includ-
ing the Hippo signaling pathway) and the extracellular matrix and
promotes innate immunity against cancer.25,231 However, genetic
inactivation and mutations of NF2 can be found in a wide range of
malignancies, including CRC, schwannomas, type 2 neurofibro-
matosis, and skin tumors.232 Recently, Meng et al. demonstrated
that a mutant FERM domain of NF2 potently suppresses the cGAS-
STING signaling pathway by forming phase-separated conden-
sates with IRF3 and impedes the antitumor immunity initiated by
STING (Fig. 3d).25 Clinically, NF2-IRF3 condensates can be observed
in surgically resected samples from bilateral vestibular schwanno-
mas.233 Therefore, at least in NF2-related malignancies, we can
attempt to inhibit the formation of intracellular membraneless
structures composed of NF2 to restore the antitumor immunity of
the Hippo pathway and cGAS-STING pathway.
In addition, we used to believe that LLPS can only occur in

proteins and nucleic acids, but intriguingly, recent studies have
shown that other molecules can also generate biomolecular
condensates through LLPS and exhibit their own cancer-causing
effects. Liu et al. found that the accumulation of glycogen is
frequently detected in tumor cells to support increased glucose
consumption for tumor growth. The accumulated glycogen can
undergo LLPS, leading to the formation of the Laforin-Mst1/2
complex in liver tumors, as shown in Fig. 3f. The Mst1/2 (two Hpo
homologs) kinases are significant components of the Hippo
pathway in regulating immune systems and cell proliferation via a
tumor suppression mechanism.234 However, the membraneless
Laforin-Mst1/2 complex robustly sequesters the Hippo kinases
Mst1/2 and abolishes their repression of oncogenic YAP signaling.
Thus, the elimination of glycogen storage can potentially abrogate
liver growth and cancer initiation.235

Furthermore, a nonreceptor protein tyrosine phosphatase
encoded by PTPN11, SHP2, plays an essential role in MAPK signal
transduction and organism development.236 Disease-associated
mutant SHP2 can undergo LLPS and recruit condensates, leading
to RAS-MAPK signaling hyperactivation and dysregulation, which
is crucial in tumorigenesis events.237,238 Researchers have
hypothesized that the robust hyperactivation of mutant SHP2
compared with wild-type SHP2 is due to conformational transition.
SHP2 allosteric inhibitors effectively inhibit the phase separation
of SHP2 mutants and abrogate the capabilities gained by mutated
SHP2 droplets, which strongly supports this opinion.237

LLPS of RNA and RBPs in tumorigenesis
In RNA-containing condensates, RBPs often recognize their RNA
targets in a specific manner,239 and LLPS of RNA with RBPs is
facilitated by the distinct properties of the RNA,240 such as its
identity, length, structure, modifications and expression level.
Paraspeckle, a cancer-related biomolecular condensate discovered
within the past 20 years,241 is a nuclear body constructed via a
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specific lncRNA—NEAT1_2 RNA—that docks at transcription
starting sites of active genes.72 A capture hybridization analysis
of RNA target experiments demonstrated that NEAT1 RNA is
crosslinked to the transcription start sites of active genes in a
breast cancer cell line, but the evidence is insufficient to prove
that LLPS drives NEAT_2 RNA activity because the probes do not
target NEAT1_2 specifically.242 In addition, the NEAT1 gene,
including the region that encodes NEAT1_2, has been found to
be mutated in biopsied samples collected from liver cancer
patients,243 and hypoxia can trigger the upregulated transcription
of NEAT1_2 via hypoxia-inducible factors, which results in a critical
upsurge of paraspeckles in breast cancer cell lines.244 However,
under certain conditions, paraspeckles appear to play tumor-
suppressive roles.245

Moreover, a study conducted in 2021 showed that the
phosphatidic acid-binding lncRNA small nucleolar RNA host gene
9 (SNHG9) facilitates LLPS of LATS1—one of the key kinases of the
Hippo pathway—to promote oncogenic YAP signaling.246 Clini-
cally, SNHG9 expression was positively correlated with YAP and Ki-
67 expression and breast cancer progression.246 The role played
by RNA in tumorigenesis has been extensively explored by
researchers, and we believe that LLPS is an important complement
in the causal relationship between multiple RNAs and
tumorigenesis.

Epigenetic dysregulation mediated by LLPS in cancer
Many studies in the field of cancer have concentrated on
determinants of genetic alterations that inhibit or facilitate the
acquisition of cancer phenotypes. However, a growing body of
evidence suggests that destroying certain epigenetic processes
can also exert a major impact on cancer development.247,248

Epigenetic modifications refer to changes through which cells
exhibit a distinct profile of gene expression in identical DNA
sequences without irreversibly changing the genetic informa-
tion.249 Among epigenetic modifications involved in regulatory
functions, histone modifications, DNA or RNA methylation,
chromosome condensation,116,250 and lncRNA molecule expres-
sion251 have been reported to play significant roles in the genesis,
progression and metastasis of cancers.252

Recent evidence also suggests that EBNA2 undergoes LLPS that
reorganizes the host chromatin topology. The N-terminus of
EBNA2 mediates the reorganization of chromatin topology via
LLPS to induce accessible chromatin domains (ACDs). The CTD of
EBNA2 is significant in the epigenetic regulation of host gene
expression by recruiting histone acetylase p300 to ACDs, which
then mediates the acetylation of certain regions in histone
H3K27.253,254 Moreover, a study performed in 2019 revealed that
histone modifications are essential for maintaining cancer stem
cells in human breast cancer. In this study, researchers formed a
stem-like breast cancer cell model and observed that the histone
deacetylase HDAC7 binds near the transcriptional start site and to
SEs of various oncogenes (Fig. 3a) and results in the activation of
SE-associated oncogenes.255

The most common internal modification of mRNAs, m6A, is
significantly correlated with gene expression in various cancers.256

Recent studies have shown that mRNA modification by multiple
m6A modifications can function as a multivalent scaffold, promote
distinct binding with cytosolic YTHDF proteins and facilitate the
LLPS process, which results in the formation of various RNP
granules, including P bodies and SGs.68,257 P bodies are
responsible for RNA decay and storage, and different components
of P bodies play different roles in tumorigenesis.258 Emerging
evidence also demonstrates that abnormalities in the expression
and/or activity of SG components contribute to drug resistance
and the tumorigenesis of diverse cancers, including CRC,259

pancreatic cancer,260 and leukemia.261 Furthermore, YTHDC1 in
the nucleus can undergo LLPS by binding with m6A-mRNA (Fig.
3b), and the number of resulting nuclear condensates (nYACs) is

greatly increased in acute myeloid leukemia cells.262 nYACs
protect leukemia-promoting mRNAs from degradation263 and
maintain cells in an undifferentiated state, which is significant for
cell survival and leukemia maintenance.262

Therefore, deregulated epigenetic changes may result in tumor
cell adaptation and resistance to anticancer therapy, which remain
profound challenges to therapeutic intervention,264 and targeting
the mechanisms of LLPS is a new direction that may lead to
elegant strategies for overcoming the complicated situations in
cancer therapy.

LLPS as a strategy for the alternative lengthening of telomeres
Telomeres are nucleoprotein structures formed by a repetitive
nucleotide sequence (TTAGGG)n that constitutes a “cap structure”
at the end of a chromosome, which results in the preservation of
genome stability.265–267 Telomeres are parts of constitutive
heterochromatic regions and are enriched with di- and trimethy-
lated heterochromatin histones,268 namely, H3K9me3 and
H4K20me3, and characterized by HP1 binding.269,270 During
eukaryotic cell replication, telomeres continuously shorten, which
ultimately leads to cell senescence and apoptosis. In tumorigen-
esis, tumor cells almost universally acquire telomere DNA
maintenance mechanisms (TMMs) that prevent activation of the
DDR, which results in counteracting telomere shortening. Two
types of TMMs have been recently well characterized: telomerase
and alternative lengthening of telomeres (ALTs). In fact, most
human tumors exhibit telomerase-based TMM. However, after the
development of drugs targeting telomerase, some cancer cells can
still escape death, highlighting the less frequently engaged ALT
pathway.267,271,272 The hallmark of an ALT-related cancer is
excessive telomere clustering in PML bodies, which are known
as ALT-associated PML bodies (APBs) and are observed as large
bright telomere foci.273 In response to DNA damage, liquid-like
APB formation can be triggered via poly (SUMO)-poly SUMO
interaction motif-mediated LLPS (Fig. 6).274 The mechanism of
telomere lengthening has been shown to be correlated with
mitotic DNA synthesis in APB-like foci,275,276 and a large quantity
of aggregated telomeres at these foci can facilitate mitotic DNA
synthesis-mediated ALT.277 Some evidence supports the notion
that the telomere length is positively associated with the risk of
malignancy, such as melanoma, B-cell lymphoma and chronic
lymphocytic leukemia.278–280

PROSPECTS OF APPLYING LLPS IN CANCER TREATMENT
Because LLPS can affect tumorigenesis through different path-
ways, practical strategies for treating these cancer-associated
proteins and their upstream/downstream signaling remain to be
developed. For the formation mechanisms of biomolecular
condensates, we can sustain normal LLPS by controlling the
concentration of related proteins/nucleic acids, specifically dis-
rupting the phase separation process, partitioning of cancer drugs
in biomolecular condensates, and modifying LLPS by interfering
with PTMs, among other strategies.

Normalizing the protein concentration
Membrane-less condensates assembled from phase-separated
proteins are collections of molecules at high concentrations in
specific locations, which means that changes in the concentration
of relevant molecules can have an impact on the formation and
size of LLPS-formed droplets and thus control their function.134,281

Therefore, normalizing the protein contents by inducing up- or
downregulation of their expression might be a pivotal and valid
method for regulating phase separation.
To downregulate the expression of target proteins, an emerging

technology referred to as proteolytic targeting chimera (PROTAC)
technology can link target proteins to E3 ligases and thus induce
their precise degradation in the cell.282 PROTACs exploit the cell’s
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own protein destruction mechanism to clear specific target
proteins from cells. Lu et al. designed a heterobifunctional
PROTAC, ARV-825, which can lead to efficient and prolonged
degradation of BRD4 in BL cell lines by recruiting BRD4 to the E3
ubiquitin ligase cereblon (Fig. 7a)283 and thus downregulating the
expression of MYC.284 In addition, autophagy‐targeting chimera
technology is an advanced approach that selectively eliminates
target proteins via an autophagy‐dependent pathway.282,285

In contrast, to upregulate certain protein contents, preventing
their degradation may be a viable option, and in this context,
proteasome inhibitors and lysosomal inhibitors have been tested
in many trials.286,287 For example, chloroquine, an FDA-approved
drug that blocks autophagy primarily by impairing
autophagosome-lysosomal fusion, has been shown in clinical
trials to enhance the potential of combination anticancer
therapies by sensitizing tumor cells (Fig. 7b).287

However, considering the normal physiological function of the
target proteins in different signaling pathways, the specific up- or
downregulation of the expression of distinct proteins might be
harmful to normal biological activities. Therefore, we need to be
careful about the possible side effects when regulating protein
expression levels. Detailed clinical trials should be conducted to
anticipate side effects and prevent them as much as possible
before applying these treatments.

Induction/inhibition of posttranslational modifications to influence
LLPS
PTMs are vital modulators of condensation and affect the
properties of membraneless compartments; for example, phos-
phorylation and methylation of the C-terminal LCD in the fragile X
protein, which causes mental retardation, induces contradictory
influences on in vitro translation regulation: phosphorylation
promotes phase separation and leads to translation inhibition,288

and methylation decreases the propensity for LLPS.289 Under high
nutrient availability, LLPS mediated by the interaction between
the autophagy‐related proteins Atg13 and Atg17 is inhibited by
phosphorylation via activated TORC1 and then impairs pre‐
autophagosomal structure formation (Fig. 7c).290 PARylation is
another reversible PTM process that is mediated by the catalysis of
PAR polymerase (PARP).291 The inhibition of PARP1 prevents DNA

damage repair foci formation and jeopardizes the process of DDR
(Fig. 7d).130

Drug concentrations in biomolecular condensates
Interestingly, researchers have found that some antineoplastic
drugs can be selectively concentrated in specific condensates via
physicochemical interactions, which may exert curative effects or
induce drug resistance in cancer.292,293 For example, cisplatin is a
widely used antineoplastic agent that partitions selectively with a
partition coefficient of 600 in transcriptional condensates where
SE DNA can be platinated (Fig. 7e).294 This finding reveals the
potential of increasing drug target engagement by partitioning
the therapeutic components into condensates.
Tamoxifen is another antineoplastic drug that is important for

the treatment of estrogen receptor (ER)-positive breast cancer.
ERα selectively concentrates into MED1 condensates in an
estrogen-dependent manner and is evicted from the condensate
by tamoxifen, which also preferentially partitions into transcrip-
tional condensates and competes for binding to estrogen (Fig. 7f).
The overexpression of MED1 results in the volume expansion of
transcriptional condensates, which results in dilution of the
concentrations of tamoxifen in the condensates and counter-
action of the efficacy on ERα eviction from the condensate.294

Both of these examples provide strong evidence indicating that
specific compartmentalization and the concentration of small-
molecule cancer therapeutics in condensates can impact drug
pharmacodynamics and interventions on phase‐separated com-
plexes and may therefore be efficient for targeting undruggable
molecules.

Drugs directly interacting with biomolecular condensates
Similar to previous expectations, some evidence suggests that
certain drugs interact directly with condensates; that is, the
application of certain drugs can specifically prevent the formation
of condensates that contribute to disease pathology.294 Notably,
IDRs were preliminarily thought to be undruggable due to their
conformational heterogeneity and dynamicity.295 However, var-
ious recent studies have challenged the identification of different
strategies to bind IDRs. For instance, EPI‐001 is a small‐molecule
compound that attenuates the progression of castration-resistant

Fig. 6 LLPS is a strategy for the alternative lengthening of telomeres. (By Figdraw.). In ALT-related cancer, excessive telomere clustering in PML
bodies (ALT-associated PML bodies) can be triggered via poly (SUMO)-poly SUMO interaction motif-mediated LLPS
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prostate cancer by selectively binding to IDRs of the androgen
receptor (Fig. 7g).296 Moreover, researchers have also analogously
demonstrated that the anticancer adjuvant melatonin is capable
of inhibiting the intrinsically disordered N-terminal region of
prion-mediated phase separation in cancer, which results in the
amelioration of multidrug resistance.297

Elvitegravir (EVG) was originally developed to treat HIV infection
and can potently suppress cancer metastasis by directly targeting
the m6A methyltransferase METTL3.298 EVG can effectively target
the SRC-1/YAP/TEAD droplets to restrict cancer cell growth in a
YAP-dependent manner by specifically disrupting LLPS of SRC-1
(Fig. 7h).141 Recent research has also shown that allosteric
regulators may influence LLPS because allosteric sites in
intrinsically disordered proteins can be managed to enhance
signaling interactions between various mechanistic
components.299

In addition, interfering with RNA to influence LLPS can be a
potential regulatory method. For instance, the RNA helicase
DDX3X plays a role in mediating the maturation and disassembly
of SGs, and Dhh1 accelerates the aggregation of PBs by linking to

Pat1.300,301 Furthermore, the molecules that bind to proteins in
LLPS, including molecular chaperones and ligands, are important
regulatory components.183,302

CONCLUDING REMARKS AND FUTURE PERSPECTIVES
Recent studies have revealed the significance of coordinated
actions of biomolecular condensates in orchestrating diverse
cellular processes. The driving forces of LLPS are the multivalent
interactions between macromolecules accomplished via multiple
modular domains, IDRs, and nucleic acid chains. Cutting-edge
research on phase separation has successfully reconstituted
biomolecular condensates in vitro that simulate the biological
features and functions of biomolecular liquid-like droplets
in vivo.37 Although the IDRs lack a stable 3-dimensional structure,
which makes the drug discovery process more challenging, a
variety of websites can be used to predict the IDRs in diverse
proteins and provide increasingly comprehensive messages of
intrinsically disordered proteins.303–305 Small-molecule inhibitors
directly targeting IDRs have been discovered recently.306 For

Fig. 7 Future prospects of cancer treatment via regulating LLPS. a ARV-825, a novel PROTAC, efficiently degrades BRD4 protein in BL cell lines
by linking BRD4 to E3 ubiquitin ligase. b Chloroquine primarily blocks autophagy by impairing autophagosome-lysosomal fusion, thereby
upregulate target protein level. c Phosphorylation mediated by activated TORC1 significantly inhibits LLPS and impairs autophagosome
prestructure (PAS) formation. d Inhibition of PARylation prevents the formation of DNA damage repair foci. e Cisplatin preferentially
concentrates in biomolecule condensates, which can help improve drug efficacy. f Tamoxifen efficiently expels ERα from MED1 condensates
via specifically partitioning into these condensates. g The small-molecule compound EPI-001 selectively binds to the IDR of the androgen
receptor, thereby slowing the progression of castration-resistant prostate cancer. h EVG can directly target the SRC-1/YAP/TEAD droplets to
restrict cancer cell growth in a YAP-dependent manner
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instance, EPI-002 is the first drug tested in a clinical trial that
directly binds to the IDR of androgen and shows signs of efficacy
in castration-resistant prostate cancer patients.307 The analog of
EPI-002, EPI-7386, exhibits improved pharmacokinetics and meta-
bolic stability but has never been tested clinically.307

When normal LLPS is disrupted by genetic or epigenetic
mutations, aberrant biomolecular condensates may be involved in
tumorigenesis because of their role in dysregulated chromosome
organization, signal transduction, and transcriptional dysregula-
tion and consequently facilitate the development of cancer. Ming
et al. demonstrated that cancer cells might be more sensitive and
more addictive to LLPS, which suggests the therapeutic potential
of LLPS in cancer.308 The application of 1,6-hexanediol to
pancreatic cancer cells can significantly abrogate the LLPS process
and thereby downregulate the expression of the MYC
oncogene.308

Because LLPS is involved in many cancer mechanisms, various
studies have regulated the phase separation process by determin-
ing the concentration of related proteins/nucleic acids, directly
targeting components that undergo phase separation, or modify-
ing LLPS by interfering with PTMs. In addition, the specific
partitioning of antineoplastic drugs in subcellular condensates is
also important for drug efficacy because the concentrations of
active ingredients can be extremely high in these condensates.
According to this characteristic action, we can detect the
distribution of anticancer drugs in cells or by linking anticancer
drugs to molecules that can specifically aggregate in liquid
droplets such that they can directly act on the carcinogenic
targets in subcellular condensates.
However, despite the promise of a therapeutic target through

LLPS interference, it must be remembered that IDRs are widely
distributed in the human body. More than 30% of the regions in
the proteome are disordered,309 which suggests that we still face
enormous challenges in determining the specificity of drug action.
We encourage the development of more cell models and animal
models to explore the development of anticancer drugs that
modulate LLPS, and we hope that more clinical evidence will
confirm our conjecture. We believe that joint explorations
conducted by cancer researchers, cell biologists, and biophysicists
can uncover the mystery of cancer phase separation and can
identify more tumor treatment strategies related to phase
separation.
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