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Targeting fibrosis: mechanisms and clinical trials
Manyu Zhao1, Liqun Wang1, Mengzhu Wang1, Shijie Zhou2, Ying Lu2, Huijie Cui1, Alexandra C. Racanelli3,4, Ling Zhang5,
Tinghong Ye 2, Bisen Ding 6, Ben Zhang1, Jinliang Yang2✉ and Yuqin Yao 1,2✉

Fibrosis is characterized by the excessive extracellular matrix deposition due to dysregulated wound and connective tissue repair
response. Multiple organs can develop fibrosis, including the liver, kidney, heart, and lung. Fibrosis such as liver cirrhosis, idiopathic
pulmonary fibrosis, and cystic fibrosis caused substantial disease burden. Persistent abnormal activation of myofibroblasts
mediated by various signals, such as transforming growth factor, platelet-derived growth factor, and fibroblast growh factor, has
been recongized as a major event in the occurrence and progression of fibrosis. Although the mechanisms driving organ-specific
fibrosis have not been fully elucidated, drugs targeting these identified aberrant signals have achieved potent anti-fibrotic efficacy
in clinical trials. In this review, we briefly introduce the aetiology and epidemiology of several fibrosis diseases, including liver
fibrosis, kidney fibrosis, cardiac fibrosis, and pulmonary fibrosis. Then, we summarise the abnormal cells (epithelial cells, endothelial
cells, immune cells, and fibroblasts) and their interactions in fibrosis. In addition, we also focus on the aberrant signaling pathways
and therapeutic targets that regulate myofibroblast activation, extracellular matrix cross-linking, metabolism, and inflammation in
fibrosis. Finally, we discuss the anti-fibrotic drugs based on their targets and clinical trials. This review provides reference for further
research on fibrosis mechanism, drug development, and clinical trials.
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INTRODUCTION
Fibrosis is an important cause of global morbidity and mortality.
Common diseases associated with fibrosis include hepatitis virus,
nonalcoholic fatty liver disease (NAFLD), chronic kidney diseases,
idiopathic pulmonary fibrosis (IPF), pneumonconiosis, and cystic
fibrosis. The annual combined incidence of major fibrosis-related
diseases is approximately 4968 per 100,000 person-years, causing
huge disease burden1. Fibrosis-related diseases accounted for a
large proportion of global disability-adjusted life-years (DALYs) in
20192. Therefore, fibrosis is increasingly recognized as a major
health challenge.
The normal wound healing process and the pathogenesis of

fibrotic diseases share many mechanisms in common3. Various
factors, such as infectious agents, alcohol, environmental particles,
and gene mutation, can cause damage to normal tissue structures,
triggering a wound-healing response4. The tissue repair response
often starts with inflammation. Activated inflammation contri-
butes to the upregulation of inflammatory mediators and
promotes the migration of neutrophils, eosinophils, and macro-
phages to the injured site to clear debris and necrotic areas.
Fibroblasts and other mesenchymel cells are then thansformed to
myofibroblasts via the upregulation of fibrotic cytokines such as
fibroblast growth factors (FGFs) and platelet-derived growth factor
(PDGFs), which secrete extracellular matrix (ECM) components5. In
normal wound healing response, activated myofibroblasts would
be cleared from wound site via apoptosis after injury repair6,7.
However, in fibrotic process, myofibroblasts fail to undergo

apoptosis and are continuously activated, eventually leading to
excessive ECM deposition8. The progressive accumulation of ECM
leads to increased stiffness of injured tissue and hinders oxygen
diffusion9, and further promotes cell damage. In addition,
dysfunction of other parenchymal cells and dysregulated cell-
cell interaction caused by injury are also the important causes of
fibrosis, such as vascular proliferation induced by abnormal
function of vascular endothelial cells10. The fibrotic process can
occur in many organs, with fibrosis of liver, lung, kidney, and heart
accounting for a large proportion of all fibrotic diseases1,11. The
different characteristics of tissue structure and microenvironment
between these organs lead to differences in the fibrotic process
(Fig. 1). Despite increasing in-depth research on fibrosis, the
mechanisms have not been fully explained, thus hindering the
advancement of targeted drug research for fibrosis.
In this review, we briefly introduce the aetiology and

epidemiology of several fibrosis-related diseases, including liver
fibrosis, renal fibrosis, heart fibrosis, lung fibrosis, cystic fibrosis,
and myelofibrosis. We then focus on the abnormal cells, aberrant
signaling pathways, and anti-fibrotic drugs in fibrosis, providing
reference for the mechanism and drugs research of fibrosis.

AETIOLOGY AND EPIDEMIOLOGY
Liver fibrosis
Liver fibrosis, as a pathophysiological result of chronic liver injury,
is the leading cause of mortality from chronic liver diseases (CLDs)
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worldwide. CLDs mainly include chronic infection with hepatitis
virus, NAFLD, alcoholic liver diseases, and autoimmune liver
diseases12,13. CLDs could progress to advanced liver fibrosis and
eventually to cirrhosis14, which is the 11th cause of global death15.
Hepatitis B virus (HBV), hepatitis C virus (HCV), and alcohol are the
most common causes of DALYs from cirrhosis16. Alcoholic-related
liver cirrhosis and other chronic liver diseases resulted in 332,300
all-age deaths and 9,785,400 years of life lost (YLLs) in 201717. The
prevalence of NAFLD is around 25% worldwide18, and its advance
can progress to nonalcoholic steatohepatitis (NASH)19. NASH-
related cirrhosis caused 118,000 all-age deaths and 3,285,500 YLLs
in 201717.

Renal fibrosis
Renal fibrosis is caused by the damage to normal renal tubules,
which eventually leads to glomerulosclerosis, tubulointerstitial
fibrosis, and angiosclerosis20. Renal fibrosis is not a direct
clinical diagnosis but a progressive and irreversible pathological
feature of all chronic kidney diseases (CKDs)21,22. In 2017, CKDs
caused 35.8 million DALYs, nearly a third of which were diabetic
nephropathy23.

Cardiac fibrosis
Cardiac fibrosis manifests as either reactive interstitial fibrosis
and replacement fibrosis24. Reactive interstitial fibrosis refers to
the expansion of interstitial and perivascular spaces without
significant loss of cardiomyocytes and fundamental changes in
muscle bundle structure25. Replacement fibrosis replaces dead

cardiomyocytes with extracellular matrix tissue and fibroblasts,
disrupting the continuous pattern of muscle bundles but
maintaining tissue integrity26. Replacement fibrosis mainly
occurs in response to ischaemia, ischaemia/reperfusion, inflam-
mation, and toxic injury. Cardiac fibrosis is a common
pathophysiological manifestation of most cardiovascular dis-
eases, which are the leading cause of death, morbidity, and
disability in most contries27,28.

Lung fibrosis
The causes of chronic respiratory diseases are varied, including
allergens, chemicals, radiation, microbial agents, and environ-
mental particles29. Lung fibrosis is the main clinical outcome of
most chronic respiratory diseases, such as pneumoconiosis and
IPF30. IPF is the most common interstitial lung fibrosis with
unknown aetiology31,32. The prevalence of IPF varies widely
across regions, ranging from 0.33 to 2.51 in Europe, 0.57 to 4.51
in Asia-Pacific countries, and 2.40 to 2.98 in North America33. IPF
mainly occurs in elderly individuals, with high mortality and
morbidity34,35. Pneumoconiosis is a major occupational diseases
caused by the prolonged inhalation of inorganic particles at
work36–38. In 2017, all-age deaths of pneumoconiosis was 21,600
and 426,900 YLLs17.

Cystic fibrosis
Cystic fibrosis is an autosomal recessive disorder mainly caused by
mutations in the cystic fibrosis transmembrane conductance
regulatory protein (CFTR) gene39. Compared with the high

Fig. 1 The aetiology of fibrosis in different tissues or organs
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incidence rate of cystic fibrosis in Caucasians, cystic fibrosis was
much less common in Asia, and the incidence rate varied from
1:10,000 to 1:40,750 among countries40–42.

Myelofibrosis
Myelofibrosis, a myeloproliferative tumour with collagen deposi-
tion in bone marrow and splenomegaly, has low morbidity and
shortened life expectancy43–45. Aberrant activity of the Janus
kinase (JAK) /signal transducer and activator of transcription
(STAT) pathway contributes to myelofibrosis43,46.

ABNORMAL CELLS INVOLVED IN FIBROSIS
Fibrosis is the result of the interaction between a variety of cells.
Cell maps of fibrosis such as IPF, liver fibrosis, renal fibrosis, and
systemic sclerosis have been well studied via single-cell sequen-
cing47–50. These studies confirmed the key role of epithelial cells,
endotheliocytes, immunocytes, and fibroblasts in fibrosis, and
identified some new cell types involved in the pathological
progress. This section will review the major cell types in fibrotic
diseases.

Epithelial cells
Epithelial cells, including basal cells, secretory cells, club cells, ciliated
cells, and goblet cells, are essential cells to maintain tissue
homeostasis in many organs51. In fibrotic process, chronic injury
resulted in the apoptosis of epithelial cells, thus destroying the
epithelial structure, promoting dysfunctional repair and pathogenic
activation of fibroblasts52. Moreover, the epithelial-mesenchymal
transition (EMT) is recognized as an important source of myofibro-
blasts. EMT under pathological conditions can lead to the reduction
of normal epithelial cells, destroy the normal structure of the tissue,
and promote the production of collagen fibers53.
Studies have showed that epithelial cells, such as alveolar

epithelial cells, goblet cells, ciliated cells, and club cells, are crucial
for the development of lung fibrosis54,55. Alveolar epithelial cells,
including alveolar type 1 epithelial (AT1) and AT2 cells, are one of
the main epithelial cells in lung tissue and maintain the integrity
of the alveolar wall. When the injury leads to the death of
AT1 cells, AT2 cells proliferate and differentiate into AT1 cells, so
that the normal structural of the alveoli is maintained56. A new
epithelial cell subset Axin2+ AT2 cells with both progenitor and
epithelial properties was found in lung and regulate alveolar
regeneration57,58. AT2-transdifferentiated plastic keratin 5 basal
cells were co-located with pathological transforming growth
factor (TGF) -β1hi collagen triple helix repeat containing 1
(CTHRC1)hi fibroblasts and have a synergistic effect in the progress
of fibrosis59.
A new group of epithelial cells with high expression of CFTR,

named ionocytes, was found in airway epithelium60. One of the
most important functions of CFTR is to regulate chloride
channels61. Therefore, the mutations of CFTR gene of epithelial
cells results in chloride channel defects in airway epithelium,
initiating the occurrence of cystic fibrosis62. Moreover, the lack of
CFTR in airway increased Na+ channel activity and Na+

hyperabsorption, suggesting that CFTR might be involved in
Na+ transport61. The functional change of epithelial cells in the
pancreas and liver is also affected by CFTR mutation63. In the
normal liver, CFTR cooperates with the chloride channel at the top
of cholangiocytes to provide a driving force for bile hydration64.
Impaired CFTR function lead to mucosal hyperplasia and
obstruction of the bile duct. Subsequent bile salt accumulation
contributed to hepatocyte damage, inflammation, and fibrosis in
the portal vein64,65.

Endothelial cell
Endothelial cells are main components of blood vessels. Damage
to endothelial cells cause abnormal substances exchange between

blood and tissues, resulting in metabolic disorders. Furthermore,
in fibrotic tissues, abnormal angiogenesis may be induced due to
the massive proliferation of fibroblasts requiring more blood
nutrients. Studies showed that endothelial cells of different fibrotic
tissues may also have specific functions. Two new endothelial cell
subtypes, plasmalemma vesicle associated protein (PLVAP)+

endothelial cells and atypical chemokine receptor 1 (ACKR1)+

endothelial cells, were found in liver tissues of patients with liver
cirrhosis and could promote the migration of leukocyte48. In lung
tissues, five endothelial cell groups were identified by single-cell
sequencing, including capillary endothelial cells A and B, venous
endothelial cells, and arterial endothelial cells. The fifth kind of
endothelial cells recognized by high expression of Collagen 15a1
(COL15A1) gene, located in the bronchioles and fibrous foci, was
involved in the production of extracellular matrix47.

Immune cells
Abnormality of immune system might be an early event of
fibrosis66. Immunocytes, such as T lymphocytes, macrophages,
dendritic cells, granulocytes, and mast cells, are involved in the
fibrosis progress49,67–70. These activated immune cells highly
express factors that regulate inflammation and fibrosis, promot-
ing the activation of fibroblasts. T lymphocytes, including
CD4+T cells, CD8+T cells, and CD8+effector cells, were increased
in IPF patients71. The interferon-γ signal transduction in T
lymphocytes in IPF was significantly changed71, while interleukin
(IL) -6 signal in T lymphocytes was mainly up-regulated in
patients with systemic sclerosis67. In liver tissues, the expression
of cytotoxic T cells increased and the inactivation of CD4+ T cells
could induce fibrosis72.
Macrophages are key cells that mediate inflammation and

fibrosis in fibrotic diseases. Seven macrophage subsets were
identified in the tissues of patients with liver cirrhosis, including
Kupffer cells (resident macrophages in liver) and CD9+ triggering
receptor expressed on myeloid cells 2 (TREM2)+ macrophages.
Pseudo-time sequence analysis showed that TREM2+CD9+ macro-
phages were derived from monocytes and increased collagen
expression in hepatic stellate cells (HSCs)48. In the lung fibrosis, 18
types of immune cells were found, and the phenotypes of tissue
resident macrophages, fibrogenic macrophages and inflammatory
macrophages were identified47,54. Resident macrophages in lung
are mainly alveolar macrophages (AMs). AMs adheres closely to
alveolar epithelium and are exposed to the outside environ-
ment73. Inhalable particles and other factors directly led to the
death of AMs74. Activated AMs secreted inflammatory mediators
to activate the inflammatory response, and elevated pro-fibrotic
factors expression to promote lung fibrosis75,76. The sialic acid
binding Ig-like lectin F (SiglecF)+ C-X3-C motif chemokine receptor
1 (CX3CR1)+ macrophages were also identified in pulmonary
fibrosis mouse model, which were adjacent to fibroblasts and
promoted fibrosis by releasing PDGFs to drive the proliferation
and activation of fibroblasts77.

Fibroblasts
Differentiation of fibroblasts to myofibroblasts with secretory,
contractile, and extracellular matrix-producing properties is a key
cellular event in many fibrotic conditions. Single-cell sequencing
has demonstrated that myofibroblasts have different gene
expression profiles with dynamic changes in fibrosis of different
organs78,79. In lung tissue, the differentiation pathways of
fibroblasts differ between normal and fibrotic pathological states.
Mesenchymal progenitor cells differentiate into lipofibroblasts and
COL14A1+ matrix fibroblasts, and the latter then differentiate into
myofibroblasts and COL13A1+ matrix fibroblasts. In lung fibrosis,
mesenchymal progenitors differentiate into lipofibroblasts,
PDGFRβhi subtypes, COL14A1+ matrix fibroblasts, myofibroblasts,
and COL13A1+ matrix fibroblasts80. The dominant cell type of
fibroblasts in liver are HSCs, which are characterized by their
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star-like morphology. The differentiation of HSCs may undergo
four processes: loss of quiescent properties, promoting inflamma-
tion, migration, and ECM production50.
Increasing number and activation of myofibroblasts induced by

immune cells, EMT, and endothelial-mesenchymal transition
(EndMT) are considered major contributors to the process of
fibrogenesis81,82. Inhibiting the proliferation and activation of
myofibroblasts has been a critical issue for the treatment of most
fibrosis. However, in the fibrotic process, myofibroblast cells could
obtain apoptosis resistance during differentiation83, which hinders
the implementation of programmed death mechanisms8. There-
fore, the therapeutic method for reducing the number of
myofibroblasts has limited efficacy. Moreover, the hyper-
activation of myofibroblasts is usually a compensatory result of
the death of parenchymal cells such as epithelial cells, cardio-
myocytes, and endotheliocytes. Therefore, it might be a more
effective treatment method to decrease the death or modulate
the activity of parenchymal cells and other related cells, so as to
indirectly inhibit myofibroblast activation.
In liver fibrosis, the interaction mechanism of HSCs with other

cells is complex. Maintenance of liver sinusoidal endothelial cells
(LSECs) differentiation leads to HSCs quiescence and fibrosis
regression in normal liver84,85. However, in fibrotic process,
apoptotic hepatocytes increase the inflammatory response and
activate macrophages86. Extracellular events from Kupffer cells
(liver-resident macrophages), hepatocytes, B lymphocytes, and T
lymphocytes further modulate the activation of HSCs87,88. NK cells
could kill activated HSCs via regulating retinoic acid-induced 1/
natural killer group 2D (NKG2D) -dependent and TNF-related
apoptosis-inducing ligands89,90. Chronic liver injury leads to
continuous HSCs activation, which promotes ECM accumulation
and tissue structure remodeling, and then results in progressive
liver fibrosis91 (Fig. 2).

In the lung, acute injury of alveolar epithelial cells can cause the
reduction of epithelial cells, the destruction of alveolar structure,
and the release of pro-inflammatory mediators, thus activating
immune cells. These activated inflammatory cells and injured
epithelial cells increase the upregulation of cytokines, including
TNF-α, IL-1β, IL-6, and TGF-β92–94. After the initial inflammatory
events, pulmonary fibroblasts are activated into myofibroblasts by
upregulating fibrotic cytokines such as PDGFs, FGFs, and vascular
endothelial growth factor (VEGFs)95–98. The transition of epithelial
cells by the EMT process could also increase the population of
myofibroblasts. Chronic activated myofibroblasts produce ECM
components (collagens, fibronectin, proteoglycan), leading to lung
fibrosis12,22,99 (Fig. 3).

IMPORTANT SIGNALING PATHWAYS IN FIBROSIS
An overwhelming number of mediators have been implicated in
fibrosis, regulating myofibroblast activation, metabolism, inflam-
mation, and ECM cross-linking. This part mainly focus on the
important signaling pathways involved in fibrotic diseases based
on the research intensity and drug efficacy of drug targets in
clinical trials.

Growth factors and associated signaling pathways
The growth factors and associated signaling pathways have been
reported to promote fibrosis by regulating fibroblasts activation,
epithelial cells apoptosis, EMT, and EndMT. Growth factors mainly
include TGF-βs, PDGFs, FGFs, and connective tissue growth factor
(CTGF). Pathways, such as phosphatidylinositol 3-kinase (PI3K) /
protein kinase B (AKT), JAK/STAT, and WNT/β-catenin, are the
common downstream signals of these growth factors involved in
fibrosis. The interactions between these signaling pathways in
fibrosis are depicted in Fig. 4.

Fig. 2 The activation of HSCs regulated by other cells in liver fibrosis. Extracellular components from injured hepatocytes, Kupffer cells,
macrophages, NK cells, T and B lymphocytes modulate HSCs activation via various cytokines. LSECs inhibit or promote the activation of HSCs
in different conditions. NK cells kill activated HSCs in IFNγ and TRAIL-dependent ways. TRAIL, TNF-related apoptosis-inducing ligand
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TGF-β signaling pathway
TGF-β activation: TGF-βs are the key cytokines in most fibrosis.
There are three isoforms of TGF-βs, namely, TGF-β1, TGF-β2, and
TGF-β3. The pro-TGF-β monomer synthesized in ribosome, folds
in the lumen of the endoplasmic reticulum (ER) and dimerizes via
a disulfide linkage. Then, the latency-associated peptide (LAP)
binds to mature TGF-β and attaches to latent TGF-β binding
protein (LTBP)100. This TGF-β/LAP/LTBP complex binds to the
ECM in the extracellular space and inactivates TGF-β101. The
complex can be cleaved by various proteases to release active
TGF-β102. Activated TGF-βs bind to TGFβR2 and TGFβR1100. Upon
ligand binding, phosphorylated TGFβR2 then phosphorylates
and activates TGFβR1. Factors, such as epidermal growth factor
(EGF), IL-1, and TNF-α promote TGF‑β expression in different
types of cells103,104. Moreover, the precursors of TGF-β contain
an arginine-glycine-aspartate (RGD) motif, which can be
recognized by integrin αv/β6105,106, suggesting that the activa-
tion of TGF-β gene could be regulated by integrin αv/β6. Partial
inhibition of TGF-β with an integrin αv/β6 antibody effectively
prevented pulmonary fibrosis in mice without aggravating
inflammation107,108.

Canonical and non-canonical signaling: TGF-βs can regulate
fibrosis via both canonical and non-canonical signaling pathways.
Smad proteins are the canonical intracellular effector of TGF-β/
TGFβR. Activated TGFβR1 subsequently induces phosphorylation
of Smad2 and Smad3, which interact with Smad4 and enter the
nucleus to activate the expression of target genes102. Smad7 is a
negative regulator of TGF‑β/Smad signaling109 (Fig. 5). TGF-β
could also activate non-canonical (non-Smad) signaling pathways,
such as PI3K/AKT, mitogen-activated protein kinase (MAPK)
pathways, and JAK/ STAT110. Macrophages, epithelial cells, and
fibroblasts were the main sources of TGF-β in fibrosis111,112. TGF-β
promotes fibrosis through diverse mechanisms, including activa-
tion of resident fibroblasts, promotion of cell apoptosis, and
induction of EMT.

Fibroblast activation induced by TGF-β: Activated TGF-β1/
Smad3 signaling pathway promoted the recruitment of fibroblasts
to injury sites and mediated fibroblast-to-myofibroblast differ-
entiation, thus stimulating the secretion of ECM compo-
nents113–115. Reactive oxygen species (ROS) has been reported
to mediate TGF-β-induced activation of fibroblasts. NADPH
oxidase (Nox) enzymes are important mediators of electron
transport from NADPH to oxygen to form ROS116. Once produced,
ROS could induce the activation of TGF-β1. Nox4 is a member of
Nox enzyme family and its expression could be induced by TGF-β
in a variety of cells117. TGF-β1 treatment increased the level of
Nox4 and alpha-smooth muscle actin (α-SMA), a myofibroblast
marker, in primary human cardiac fibroblasts, whereas depletion
of Nox4 decreased TGF-β1-stimulated α-SMA expression, indicat-
ing that ROS mediated TGF-β1-induced activation of cardiac
fibroblasts to myofibroblasts118. Recent studies have suggested
that TGF-β1-driven activation of fibroblasts might involve meta-
bolic reprogramming in fibroblasts and enhancement of glycolytic
pathways119.

Cell apoptosis induced by TGF-β: TGF-β1-induced apoptosis is
important in various fibrosis and the mechanisms might differ
between different cell types. ROS plays a key role in endothelial
cell apoptosis induced by TGF-β. TGF-β1 caused ROS-dependent
p38 activation, while p38 inhibition decrased TGF-β1-induced
apoptosis120. TGF-β1 could also induce apoptosis of mesangial
cells in kidney via p53 phosphorylation and Bcl-2 Associated
protein X (Bax) up-regulation121.

EMT regulated by TGF-β: In fibrosis, the most common type of
EMT is the type 2 EMT process. Type 2 EMT, mainly caused by
inflammation, is closely related to tissue damage repair response
and increases myofibroblasts population122. TGF-β is a crucial
mediator in regulating type 2 EMT process in fibrosis and its
interaction with various signals regulates the occurrence of EMT.
Oxidative stress induced by TGF-β is an important event in the

Fig. 3 The interactions among cells involved in lung fibrosis. Injured alveolar epithelial cells activate macrophages, neutrophils, and
eosinophils, resulting in the secretion of cytokines, such as TGF-β, IL-1β, and TNF-α. These cytokines mediate the differentiation of fibroblasts
into myofibroblasts and the epithelial-mesenchymal transition, which result in the ECM deposition at the injury site
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EMT process. TGF-β increased the level of ROS by upregulating the
expression of Nox4, and then activated ERK and mTOR signaling
molecules to promote EMT and fibrosis123. PI3K/AKT signals also
mediated TGF-β-induced EMT124.

PDGFs/PDGFRs. PDGFs are stimulators of cell division that are
required for cell growth and proliferation. They are disulfide-bonded
homodimers and heterodimers composed of five different polypep-
tide chains (subunits), termed AA, AB, BB, CC, and DD125. PDGF
ligands bind to PDGFRαα, PDGFRαβ and PDGFRββ126. PDGF-A and
-C subunits mainly bind to the α chain, B subunit to both α and β
chains, and D subunit to the β chain only127. Upon ligand binding,
PDGFRs phosphorylate and activate downstream signals (RAS/MAPK,
PI3K/AKT, and JAK/STAT pathways)128.
PDGFs are increased in fibrosis. Macrophages, endothelial cells,

and fibroblasts have been identified as the main sources of
PDGFs129–132. Both PDGF-B and PDGF-D were potent factors for
HSCs proliferation and migration, therefore potentiating extracellular
matrix deposition in liver fibrogenesis133,134, which could be
mediated by PGDFRβ135. However, deficiency of PDGF-C failed to
inhibit liver fibrosis or functional liver impairment136, but alleviated
kidney fibrotic changes in experimental murine kidney fibrosis137. In
addition to kidney and liver, studies demonstrated that PDGFs
contributed to the formation of heart and lung fibrosis via
stimulating activation of fibroblasts138–140.

FGFs/FGFRs. There are 18 members of the FGF superfamily,
which are divided into 6 groups according to sequence homology
and differences in biological properties: aFGF and bFGF; INT2, KGF,
FGF10, and FGF22; FGF4, FGF5, and FGF6; FGF8, FGF17, and FGF18;
FGF9, FGF16, and FGF20; FGF19, FGF21, and FGF23141. FGF
receptors (FGFR1-FGFR4) are mainly composed of a transmem-
brane domain, a cytoplasmic tyrosine kinase domain, and an

extracellular immunoglobulin domain (D1-D3)142. FGFs induce the
dimerization, activation, and autophosphorylation of FGFRs and
activate the RAS-extracellular signal-regulated kinase (ERK), PI3K-
AKT, and JAK/STAT pathways143–145. The role of FGFs family in liver
fibrosis is not clear. FGF19 deficiency protected mice from liver
fibrosis progress in animal models146. However, direct stimulation
of FGF19 decreased pro-fibrotic and pro-inflammatory cytokines
expression on HSCs147. FGF21 has attracted much attention due to
its important role in liver lipid metabolism148,149. FGF21 acts in an
endocrine, paracrine, and autocrine-like manner via FGFR1-3/
β-Klotho (KLB)150. FGF21-knockout mice decreased β oxidation
and increased the level of free fatty acids in mice fed methionine-
and choline-deficient (MCD) diets, promoting lipotoxicity and
steatosis151. Increasing expression of FGF21 inhibited inflamma-
tion in NASH, and synergistically alleviated obesity and insulin
resistance151,152. For pulmonary fibrosis, the FGF family is a
therapeutic target that promotes fibroblast proliferation and
migration but inhibits myofibroblast differentiation153–156. Inhibi-
tion of FGF/FGFR signaling has achieved reduction of pulmonary
fibrosis in IPF157.

VEGFs/VEGFRs. The VEGF family has 6 members: VEGF-A, -B, -C,
-D, -E, and placental growth factor (PIGF)158. VEGFs, which are
similar to PDGF family proteins in structure, regulates vasculogen-
esis, angiogenesis and immunity159. VEGF-A is widely studied in
regulating angiogenesis during homeostasis and disease160. VEGF-
A exerts its biological functions by binding to VEGFR1 and
VEGFR2160. VEGF-A were decreased in IPF patients, and lung-
specific overexpression of VEGF-A attenuated the lung injury and
fibrosis in lung fibrosis mouse model161. However, studies have
shown the important role of VEGF in promoting pulmonary
fibrosis162,163. The selective splicing of exons contributes to the
existence of various subtypes of VEGF-A, including VEGF-A121,

Fig. 4 Interactions between growth factors-associated signaling pathways and a summary of related target drugs. PDGFs binding to PDGFRs
activates the JAK/STAT, PI3K/AKT, and RAS/ERK signals. FGFs binding to FGFRs activates PI3K/AKT and RAS/ERK signals. CTGF binding to FGFR2
(promoting FGF2 and FGF4 binding to FGFR2) activates RAS/ERK signaling, and CTGF binding to LRP6 activates WNT/β-catenin signaling.
Drugs targeting these signaling pathways are listed. EMT: epithelial-mesenchymal transition
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VEGF-A165, VEGF-A189, and VEGF-A206, among which VEGF-A165 is
the most abundant isoform in normal tissues164,165. Most studies
on the role of VEGF-A in fibrosis have not clearly identified the
subtype of VEGF-A, and the dual role of VEGF-A in fibrosis might
be related to its different subtypes166.

CTGF signaling pathway. CTGF is a secreted peptide and has
been considered as a novel PDGF-related growth factor regulating
the proliferation and chemotaxis of fibroblasts167. CTGF can
combine with other molecules to promote their pro-fibrotic
effects, thereby promoting fibrosis. The binding of CTGF with
FGFR2 enhanced the binding of FGFR to FGF2 and FGF4, thus
activating ERK signaling and promoting proliferation168. Additional
studies have shown that CTGF could bind to TGF-β1169 and was
required for the pro-fibrotic activity of TGF-β1170,171. TGF-
β-induced endogenous CTGF leads to transcriptional repression
of Smad7 via inducing the transcription factor TIEG-1, and by this
mechanism, CTGF blocks the inhibitory effect of Smad7, resulting
in persistent activation of TGF-β signaling172.

PI3K/AKT. PI3Ks can be activated by receptor-coupled tyrosine
kinase activity, small RAS-related GTPases, and heterotrimeric

G proteins173. The common downstream of receptor-mediated
PI3K activation is AKT, which can phosphorylate many substrates
related to cell proliferation, autophagy, and motility173. Activated
PI3K/AKT negatively regulates the activity of mammalian target of
rapamycin (mTOR)174. The PI3K/AKT/mTOR is a pivotal signaling
involved in cell proliferation and differentiation175, and was
activated in fibrotic foci176,177. The activated PI3K/AKT participated
in the TGF-β-induced myofibroblasts activation178. PI3K/AKT could
also regulate angiogenesis by increasing VEGF/VEGFR signaling179

and enhanced VEGFA/VEGFR2 signaling in liver fibrosis and
angiogenesis180,181.

JAK/STAT. The JAKs has four members, JAK1, 2, 3, and TYK2182.
Upon ligand binding, JAKs are activated and subsequently
phosphorylate downstream signaling molecules, such as STAT,
which in turn migrates to the nucleus regulating targeted gene
expression183,184. STAT has seven subtypes: STAT1, 2, 3, 4, 5 A, 5B,
and 6185,186. JAK signal-mediated transduction depends on the
activation of PI3K/AKT/mTOR signaling187,188. Inhibition of PI3K/
AKT/mTOR enhanced the effect of JAK2 inhibitors on primary
human myeloproliferative neoplasm cells189. JAK/STAT could also
be regulated by PDGFs. JAK2 and STAT3 was upregulated in left
atrial and left ventricular fibroblasts treated with PDGF-AB190.
Inhibition of JAK2 and STAT3 reversed PDGF-AB-induced collagen
production in fibroblasts, suggesting that JAK2/STAT3 signaling
was involved in PDGF-AB-induced fibrosis190. Furthermore, the
activation of JAK/STAT signaling is required for TGF-β-mediated
CTGF production in primary mouse HSCs191. JAK/STAT signals
together with TGF-β1/Smad signals promote the EMT process in
liver fibrosis192.

WNT/β-catenin. β-catenin is a transcription factor and its expres-
sion is mainly regulated by WNT proteins193,194. WNT/β-catenin
activate and synergize with TGF-β1 to mediate the activation of
myofibroblasts in lung fibrosis195,196. WNT/β-catenin signal was
upregulated in TGF-β stimulated human lung fibroblasts197,198.
Blocking β-catenin induced by TGF-β in vivo and in vitro can
alleviate BLM-induced lung fibrosis199. In liver fibrosis, WNT/
β-catenin also regulated the vimentin, collagen 1, and fibronectin
in HSCs induced by TGF-β200. Apart from TGF-β, WNT/β-catenin
can be regulated by CTGF via binding to the WNT coreceptor LDL
receptor-related protein 6 (LRP6)201.

Apoptosis signal-regulating kinase 1 (ASK1) signaling pathway.
ASK1 is involved in regulating glucose metabolism and maintain-
ing energy homeostasis, which could activate the p38/cJun NH2-
terminal kinase (JNK) signaling pathway202. Activation of the JNK
signaling cascade suppressed the PPARα and FGF21 pathways203.
Inhibition of ASK1 reduced insulin resistance, hepatic steatosis,
inflammation, and fibrosis204,205.

Regulation of ECM cross-linking
Lysyl oxidases (LOXs) catalyses the conversion of lysine molecules
to highly reactive aldehydes and enhances ECM (primarily
collagen and elastin) cross-linking206,207. LOX family includes lysyl
oxidase (LOX) and four lysyl oxidase-like proteins (LOXL1-4)208–210.
The interaction of LOXs with TGF-βmediates the pro-fibrotic effect
of LOXs in fibrosis. LOXL1 was required for TGF-β1 induced HSCs
activation in liver fibrosis211. LOXL1 deficiency protected against
TGF-β1-activated fibrosis and decreased the expression of fibrotic
genes in vivo212. Silencing LOXL2 decreased mouse lung fibroblast
proliferation and the levels of collagen 1α1 (COL1A1) via inhibition
of TGF-β1/Smad2/3213.

Regulation of metabolism and inflammation
Alterations in metabolism can regulate the activation of
inflammation-related pathways in epithelial cells, immune cells,
and fibroblasts. The interactions between metabolism- and

Fig. 5 Overview of canonical TGF-β/Smad signaling pathway.
Various cytokines stimulate the transcipiton of TGF-β, such as
PDGFs, TGF-βs, TNF-α, IL-1β, and EGF. Pro-TGF-β is synthesized in the
ribosome and endoplasmic reticulum. After dimeration, LAP binds
to mature TGF-β and attaches to LTBP, entering the intercellular
space through exocytosis. Actived TGF-β is released by proteases,
and binds to TGFβR2 and TGFβR1. Phosphorylated TGFβR2
phosphorylates TGFβR1. TGFβR1 subsequently triggers the phos-
phorylation of Smad2/3, which interact with Smad4 and enter the
nucleus to activate the expression of target genes. Smad7 is a
negative regulator of TGF-β/Smad signaling. LAP, latency-associated
peptide; LTBP, latent TGF-β binding protein
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inflammation-related pathways modulate myofibroblasts activa-
tion. Signaling molecules that regulate metabolism may provide
an interesting avenue for slowing the progression of fibrosis.
As most of these signaling pathways regulating metabolism
and inflammation are essential for NASH develpoment, the
interactions between these signaling pathways in NASH are
shown in Fig. 6.

Peroxisome proliferator-activated receptors (PPARs) signaling path-
way. PPARs are the nuclear receptors dependent on ligand
binding214 and activate targeted genes related to lipid and
glucose metabolism and adipogenesis215,216. There are three
PPARs: PPARα, PPARγ, and PPARβ (also called δ)217,218. PPARα is
most expressed in brown adipose tissue and liver219. The
correlation of PPARs with liver fibrosis, especially NASH, is well-
elaborated. PPARα is important for fatty acid metabolism220.
Increased oxidative stress and hepatocyte apoptosis with higher
NASH scores were observed in Pparα-null mice fed a high-fat
diet221. Treatment with PPARα ligands attenuated liver fibrosis in
rat thioacetamide models of liver cirrhosis222. Fasting-induced
PPARα−/− mice showed low levels of FGF21, whereas FGF21
reduced hepatic triglycerides and cholesterol esters only in WT
mice, suggesting that the effect of FGF21 on lipid metabolism
might be partially dependent on PPARα223.
The function of PPARγ in NASH is more dependent on its role in

inflammation. PPARγ activation inhibited inflammatory responses
by inactivating nuclear factor-κB (NF-κB) signaling224 and reducing
TNF-α and IL-1β expression in monocytes and macrophages225.
Dual activation of PPARγ and PPARα has a favourable effect in
ameliorating NASH by reducing inflammation, steatosis, and
fibrosis226,227. PPAR-α and PPAR-γ activators have achieved
efficacy in cardiac fibrosis228, renal fibrosis229 and pulmonary
fibrosis230 animal models.
PPARβ/δ is mainly expressed in hepatocytes, Kupffer cells, and

HSCs in liver231,232. PPARβ/δ-null mice exhibited aggravated
hepatoxicity in carbon tetrachloride (CCl4)-treated mice233.

However, the contraditory effects of PPARβ/δ agonists on HSCs
proliferation and liver fibrosis hindered PPARβ/δ agonists from
entering clinical trials234–236, which might be due to discrepancies
in the ligands, dosage, and in vivo pharmacological properties of
compounds.

Farnesoid X receptor (FXR) signaling pathway. FXR, as a nuclear
receptor mainly located in enterohepatic tissues, can be activated
by bile acids and regulate lipid and glucose metabolism237–239.
FXR forms a heterodimer with the 9-cis-retinoic acid receptor and
binds to farnesoid X response elements (FXREs), thus regulating
target gene expression240. The roles of FXR vary in different
organs. FXR expression was upregulated in lung fibrosis, and
inhibition of FXR inhibited the bile acid-induced EMT and
activation of lung fibroblasts241. However, FXR was reported to
exert anti-fibrotic effect on kidney fibrosis and liver fibrosis.
Treatment with FXR-activating ligand ameliorated triglyceride
accumulation, improved proteinuria, and decreased ECM deposi-
tion in kidney disease experimental models242. FXR activation also
protected hepatocytes from liver injury by inhibiting the activation
of the NACHT, LRR, and PYD domain-containing protein 3 (NLRP3)
inflammasome243. The interaction of FXR with other molecules is
involved in bile acids circulation and plays an important role in
NASH244. PPARα activation was required for the mRNA expression
of FXR in the liver of fasted mice245. FXR directly regulated the
expression of FGF19, thereby regulating hepatic protein and
glycogen metabolism246,247. FXR/FGF19 axis increased
FGF21 secretion248,249. FXR might also directly activate the
expression of FGF21 by interacting with the FXRE in the 5’-
flanking region of the FGF21 gene248.

Toll-like receptor 4 (TLR4) signaling pathway. TLR4, a member of
the TLR family, functions as a crucial regulator in the immune
system and inflammatory response. Fibroblast-specific deletion of
TLR4 protected from mice lung and skin fibrosis250. In liver fibrosis,
HSCs are the main effector cells of TLR4. TLR4 could sensitize HSCs

Fig. 6 Molecular signaling pathways of NASH and a summary of related target drugs. FFA, free fatty acid; TG, triglycerides
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to TGF-β stimulation and promote the activation of Kupffer cells,
regulating hepatitis and liver fibrosis251. Activation of the TLR4/NF-
κB signaling pathway induced hepatic inflammation252,253. How-
ever, TLR4 is an important receptor for AT2 proliferation and
deletion of TLR4 in surfactant-protein-C-positive AT2 cells leads to
impaired renewal capacity, severe fibrosis and mortality in IPF254.

GIP/GIPR and GLP-1/GLP-1R. Gastric inhibitory polypeptide (GIP)
and glucagon-like peptide-1 (GLP-1) are the two major incretin
hormones produced by the intestine that regulate insulin and
glucagon secretion and food ingestion255. GIP is secreted by K
cells in the upper part of the small intestine, while GLP-1 is mainly
released by intestinal endocrine cells256–258. GIP exerts biological
functions via binding to its receptor GIPR259,260 and was related to
the activation of macrophages261,262. GLP-1 is expressed in various
cells and binds to GLP-1R263. GLP-1 could downregulate collagen
expression and TGF-β1 expression via regulating FGF21 in NASH
mouse models264,265 and activating AMP-activated protein kinase
(AMPK) in diabetic lung fibrosis266. Combined treatment with GLP-
1R and GIPR agonists improved NASH steatosis, lobular inflamma-
tion, hepatocyte ballooning, and fibrosis267.

ANTI-FIBROTIC DRUGS AND CLINICAL TRIALS
Numerous small molecules or compounds are currently in clinical
trials for fibrosis. Published clinical data on these compounds were
listed in Table 1, and we categorized these drugs by targets and
then ranked each target drug by clinical trial grade (marketed, phase
3, phase 2, and phase 1). Accordingly, antifibrotic drugs that have
published clinical data and are in Phase 2, Phase 3 clinical trials or
marketed are summarized in this part based on the ranking results.

Anti-fibrotic drugs targeting TGF-β
Most anti-TGF-β therapeutic drugs fall into five groups268,269: (1)
nucleic acid drugs that blocking TGF-β synthesis. (2) TGF-β receptor
kinases inhibitors, which block ATP binding to TGFβR, thus inhibiting
Smad2 and Smad3 activation. (3) monoclonal antibodies preventing
TGF-β from binding to its receptors. (4) high-affinity ligand traps
prevent TGF-β from binding to its receptor. These inhibitors contain
TβRII extracellular domains that could prevent TGF-β1 and TGF-β3
binding to TβRII receptors. (5) Some antibodies or molecules
inhibiting the TGF-β activation, for example, drugs targeting αv/β
integrins. Anti-fibrotic drugs targeting TGF-β now in clinical trials are
mainly used in two diseases, IPF and myelofibrosis. Selected drugs
targeting TGF-βs are described in detail.

Pirfenidone
Pirfenidone (PFD) is one of two FDA-approved drugs for IPF270,
which inhibits both the synthesis and activition of TGF-βs271. The
action mechanism of PFD in IPF has not been fully elaborated.
Studies showed that PFD could inhibit the fibroblasts activation,
reducing the synthesis of type 1 and type 3 collagen and the
deposition of ECM272–275. Clinical trials demonstrated that PFD
reduced lung function decline, decreased mortality, and improved
overall survival of IPF patients276–280. Anorexia, rash, and gastro-
intestinal disorders are reported to be common side effects of
PFD281. Based on the effect of PFD on improving inflammation
and fibrosis in IPF, clinical studies on PFD for other types of
pulmonary fibrosis are in progress. HEC-585 is a pyrimidine
compound that is structurally related to PFD. Two phase I clinical
trials were carried out to evaluate the safety, tolerability, and
pharmacokinetics of HEC-585 in healthy subjects (NCT04512170
and NCT03092102).

Hydronidone
Hydronidone is a derivative of PFD with potential therapeutic
efficacy for hepatic fibrosis282. The results of an open-label,
randomized, dose-escalating study showed that hydronidone was

well tolerated and effectively absorbed in healthy Chinese subjects
(ChiCTR-ONC-12002899)282. Currently, a phase III study on the
efficacy of hydronidone in HBV-induced liver fibrosis is in progress.

Luspatercept
Luspatercept is a recombinant fusion protein that binds TGF-β
ligands to reduce Smad2/3 signaling. Luspatercept has been
evaluated in myelofibrosis-associated anemia with 33 patients
received concomitant ruxolitinib. Among transfusion-independent
patients, 2 patients who did not receive ruxolitinib (10%) and 3
patients who received ruxolitinib (21%) experienced an increase of
hemoglobin about 1.5 g/dL over 12 weeks. In the transfusion
dependent cohort, 2 patients who did not receive ruxolitinib and 6
patients who received ruxolitinib were transfusion independent
for at least 12 weeks283

AVID-200
AVID-200 contains soluble, dimerized, Fc-linked TβRII ectodomains
and can be a high-affinity ligand trap preventing TGF-β from
binding to its receptor. Treatment of myelofibrosis mononuclear
cells with AVID-200 increased numbers of progenitor cells with
wild type JAK2 but not mutated JAK2V617F284. Phase 1 clinical
study in 12 myelofibrosis patients with ruxolitinib resistant
showed that eight patients with grade 3/4 adverse reactions did
not have dose-limiting toxicity and had improved platelet counts,
with an average increase of 48%283.

Anti-fibrotic drugs targeting RTKs
Nintedanib. Nintedanib is a receptor tyrosine kinase inhibitor
(RTKs: FGFRs, VEGFRs, and PDGFRs) that targets growth factor
pathways, including FGFRs, VEGFRs, and PDGFRs285. In BLM-
treated and silica-induced fibrosis mouse models, nintedanib
reduced lung inflammation and fibrosis by decreasing total
collagen, inflammatory chemokines, and pro-fibrotic factors both
in therapeutic and preventive regimens157,286. Clinical trials have
shown that nintedanib decreased the decline in FVC287 and
reduced disease progression in IPF patients288–291. Nintedanib had
acceptable safety and tolerability292,293, of which nausea and
diarrhoea were the common side effects in the treatment of IPF294.
The combination of PFD and nintedanib might produce synergis-
tic effects and provide new prospects for the treatment of IPF277.
However, both nintedanib and PFD have some problems such as
high liver toxicity, high dosage, and photoallergic reaction, thus
their long-term drug tolerance needs to be further determined.

ZSP1603. ZSP1603 (also known as WXFL-152), identified from a
series of 4-hydroxyquinoline derivatives, targets VEGFR2, FGFRs,
and PDGFRβ295. Our previous study showed the ability of ZSP1603
to reduce pulmonary injury, inflammation, and fibrosis in BLM-
treated mice and rats296. ZSP1603 could inhibit the proliferation of
primary human pulmonary fibroblasts (pHPFs) by blocking the
PDGFRβ/ERK signaling pathway and decrease the differentiation
of pHPFs by reducing TGF-β1, tissue inhibitor of metalloproteinase
-1, and COL1A1296. The clinical study of ZSP1603 is expected to
provide a new choice for IPF therapy.

Anti-fibrotic drugs targeting CTGF
Pamrevlumab. Pamrevlumab is a recombinant antibody that
targets CTGF and inactivates its downstream inflammatory signals170.
In a phase II, randomized, double-blind, placebo-controlled PRAISE
trial involving 7 countries, pamrevlumab decreased the decline in
FVC and inhibited the disease progression of IPF (NCT01890265)297.
More therapeutic effects of pamrevlumab is expected to be
investigated in phase III clinical trials (NCT04419558).

Anti-fibrotic drugs targeting PI3K
PI3K/AKT palys an important role in fibrotic processes and
represents a critical target for the development of novel anti-
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Table 1. Drug targets and NCT number of clinical trials

Target Drug Name Conditions Highest
Status (phase)

NCT Status Sample size

TGF-β/TGFβR TGF-βs Pirfendione IPF Marketed NCT00662038 Completed 1058

p38 MAPK,
TGFβ1, FGFR1

Hydronidone Liver fibrosis III NCT05115942 Recruiting 248

TGFβR1 HEC-585 IPF II NCT05060822 Recruiting 270

αV/β1, αV/β6 PLN-74809 IPF II NCT04396756 Recruiting 112

αV/β6, TGF-β BG00011 IPF II NCT03573505 Terminated 109

αV/β1, αV/β3, αV/β6 IDL-2965 IPF I NCT03949530 Terminated 6

TGF-β1 TRK-250 IPF I NCT03727802 Completed 34

TGF-βs Luspatercept Myelofibrosis III NCT04717414 Recruiting 309

TGF-β, BMPRII Sotatercept Myelofibrosis II NCT01712308 Completed 63

TGF-β1 and TGF-β3 AVID200 Myelofibrosis I NCT03895112 Active, not
recruiting

22

FGF FGF21 BIO89-100 NASH II NCT04048135 Active, not
recruiting

101

FGF21 Efruxifermin NASH II NCT03976401 Completed 110

FGF21 Pegbelfermin NASH II NCT02413372 Completed 184

FGF19 Aldafermin NASH II NCT03912532 Completed 171

RTKs PDGFRs, FGFRs, VEGFRs Nintedanib IPF Marketed NCT02598193 Completed 89

PDGFRα, β, FGFR1-4,
and VEGFR1-3

ZSP1603 IPF II NCT05119972 Recruiting 36

β-Klotho/FGFR1c
receptor complex

MK-3655 NASH II NCT04583423 Recruiting 328

CTGF CTGF Pamrevlumab IPF III NCT03955146 Recruiting 340

PI3K PI3Kδ Parsaclisib Myelofibrosis III NCT04551053 Recruiting 212

PI3K/mTOR Omipalisib IPF I NCT01725139 Completed 17

PI3K/mTOR HEC-68498 IPF I NCT03502902 Completed 55

PI3K p110α/β/δ/γ Buparlisib Myelofibrosis I NCT01730248 Terminated 63

PI3Kδ, CK1-epsilon Umbralisib Myelofibrosis I NCT02493530 Active, not
recruiting

60

JAK JAK1/2 Ruxolitinib Myelofibrosis Marketed NCT02386800 Recruiting 356

JAK2, FLT3 Fedratinib Myelofibrosis III NCT03755518 Active, not
recruiting

110

JAK1/2, TBK1, ACVR1/
ALK2

Momelotinib Myelofibrosis III NCT04173494 Active, not
recruiting

195

JAK2, FLT3, IRAK1 Pacritinib Myelofibrosis III NCT03165734 Recruiting 348

JAK1/2/3 Jaktinib Myelofibrosis III NCT04617028 Recruiting 105

JAK1 Itacitinib Myelofibrosis II NCT04640025 Recruiting 100

JAK2 Ilginatinib Myelofibrosis II NCT01423851 Completed 77

WNT/β-catenin WNT SM04646 IPF II NCT03591926 Withdrawn 0

β-catenin PRI-724 liver cirrhosis II NCT03620474 Completed 27

ASK, MAPK ASK1, MAPKKK5 Selonsertib NASH III NCT03053050 Terminated 808

JNK1, MAPK8 CC-90001 NASH II NCT04048876 Terminated 56

MAP3K19 MG-S-2525 IPF I NCT03650075 Completed 81

LOXL LOXL2, LTD4 receptor,
PDE3 /4

Epeleuton NAFLD II NCT02941549 Completed 96

LOXL2, LTD4 receptor,
PDE3 /4

Tipelukast IPF II NCT02503657 Completed 15

LOXL2 PAT-1251 Myelofibrosis II NCT04054245 Withdrawn 0

LOXL2 PXS-5382A IPF, NASH I NCT04183517 Completed 18

PPAR PPAR α/δ Elafibranor NASH III NCT02704403 Terminated 2157

PPAR α/γ Saroglitazar NASH III NCT04193982 Recruiting 250

PPAR α/δ/γ Lanifibranor NASH III NCT04849728 Recruiting 2000

PPAR α Pemafibrate NASH II NCT03350165 Completed 118

PPARα/δ ZSP0678 NASH I NCT04137055 Completed 104
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Table 1. continued

Target Drug Name Conditions Highest
Status (phase)

NCT Status Sample size

FXR FXR Obeticholic Acid NASH III NCT02548351 Active, not
recruiting

2480

FXR Cilofexor Liver
fibrosis, NASH

II NCT02854605 Completed 140

FXR Nidufexor NASH II NCT02913105 Terminated 122

FXR TERN-101 NASH II NCT04328077 Completed 101

FXR Vonafexor NASH II NCT03812029 Completed 120

FXR EDP-305 NASH II NCT04378010 Recruiting 336

FXR Tropifexor NASH II NCT04147195 Terminated 41

TLR TLR4 JKB-121 NASH II NCT02442687 Completed 65

TLR4 JKB-122 NASH II NCT04255069 Active, not
recruiting

300

GLP/GIP GLP-1 receptor Semaglutide NASH III NCT04822181 Recruiting 1200

GLP-1/GIP receptor Tirzepatide NASH II NCT04166773 Recruiting 196

GLP-1/Glucagon
receptor

Cotadutide NASH II NCT05364931 Active, not
recruiting

1860

GLP-1/GIP/Glucagon HM-15211 NASH II NCT04505436 Recruiting 217

CFTR CFTR Elexacaftor Cystic fibrosis III NCT03525444 Completed 405

CFTR Ivacaftor Cystic fibrosis III NCT01707290 Completed 125

CFTR GLPG1837 Cystic fibrosis II NCT02707562 Completed 26

CFTR FDL169 Cystic fibrosis II NCT02767297 Completed 46

CFTR Olacaftor Cystic fibrosis II NCT02951182 Completed 74

CFTR VX-152 Cystic fibrosis II NCT02951195 Completed 80

CFTR MRT5005 Cystic fibrosis II NCT03375047 Recruiting 40

CFTR GLPG2737 Cystic fibrosis II NCT03474042 Completed 22

CFTR Nesolicaftor Cystic fibrosis II NCT03591094 Completed 40

CFTR VX-121 Cystic fibrosis II NCT03912233 Completed 87

CFTR ABBV-3067 Cystic fibrosis II NCT03969888 Active, not
recruiting

189

CFTR ELX-02 Cystic fibrosis II NCT04135495 Recruiting 16

CFTR Eluforsen Cystic fibrosis II NCT02532764 Completed 70

CFTR Dirocaftor Cystic fibrosis II NCT03251092 Completed 179

CFTR FDL176 Cystic fibrosis I NCT03173573 Completed 109

CFTR Posenacaftor Cystic fibrosis I NCT03140527 Completed 171

CFTR GLPG2451 Cystic fibrosis I NCT02788721 Completed 31

HDAC HDAC Panobinostat Myelofibrosis Marketed NCT02386800 Recruiting 356

HDAC Pracinostat Myelofibrosis II NCT01200498 Completed 23

THRβ THRβ Resmetirom NASH III NCT03900429 Recruiting 2000

THRβ VK2809 NASH II NCT04173065 Recruiting 337

CCR CCR2/CCR5 Cenicriviroc NASH III NCT03028740 Terminated 1778

Galectin Galectin-3 Belapectin NASH III NCT04365868 Recruiting 1010

Galectin-3 GB1211 NASH II NCT04607655 withdrawn 0

Galectin-3 GB0139 IPF II NCT03832946 Active, not
recruiting

426

MPC MPC Azemiglitazone
potassium

NASH III NCT03970031 Active, not
recruiting

1800

MPC Deuterium-Stabilized
(R)-Pioglitazone

NASH II NCT04321343 Active, not
recruiting

123

SCD SCD-1 Aramchol NASH III NCT04104321 Recruiting 2000

ATX ATX Ziritaxestat IPF III NCT03711162 Terminated 526

FATP5 FATP5 Ursodiol Cystic Fibrosis II NCT00004315 Unkonwn 20

ACC ACC1/2 PF-05221304 NASH II NCT03248882 Completed 305

ACC Firsocostat NASH II NCT03449446 Completed 395
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Table 1. continued

Target Drug Name Conditions Highest
Status (phase)

NCT Status Sample size

PDE PDEs (mainly PDE2) ZSP1601 NASH II NCT04140123 Completed 37

LOXL2, LTD4 receptor,
PDE3 /4

Epeleuton NAFLD II NCT02941549 Completed 96

LOXL2, LTD4 receptor,
PDE3 /4

Tipelukast IPF II NCT02503657 Completed 15

PDE 3/4 Ensifentrine Cystic fibrosis II NCT02919995 Completed 10

AMPK AMPK PXL-770 NAFLD II NCT03763877 Completed 121

MMP MMP2, MMP9, VEGF-A ALS-L1023 NASH II NCT04342793 Unknown 60

A3AR A3AR Namodenoson NASH II NCT02927314 Completed 60

FASN FASN TVB-2640 NASH II NCT03938246 Completed 142

Bioidentical
testosterone

Bioidentical
testosterone

LPCN 1144 NASH II NCT04134091 Completed 56

Stem cell Stem cell HepaStem NASH II NCT03963921 Completed 23

HSP HSP 47 BMS-986263 NASH II NCT04267393 Recruiting 270

HSP 90 PU-H71 Myelofibrosis I NCT03935555 Recruiting 24

CD CD3 Foralumab NASH II NCT03291249 Withdrawn 0

CD123 Tagraxofusp Myelofibrosis II NCT02268253 Recruiting 130

ileal bile acid transport ileal bile acid transport Elobixibat NASH II NCT04006145 Completed 47

aldosterone receptor aldosterone receptor Apararenone NASH II NCT02923154 Completed 48

GPR GPR-35 RVT1601 IPF II NCT03864328 Terminated 108

GPR-84 GLPG-1205 IPF II NCT03725852 Completed 68

GPR-40, GPR-84 PBI-4050 IPF II NCT02538536 Completed 41

ROCK2 ROCK2 Belumosudil IPF II NCT02688647 Completed 76

BAFFR BAFFR Ianalumab IPF II NCT03287414 Terminated 30

LPA1 LPA1 BMS-986278 IPF II NCT04308681 Recruiting 360

Telomerase Telomerase Imetelstat Myelofibrosis III NCT04576156 Recruiting 320

KHK KHK PF-06835919 NASH II NCT03969719 Completed 164

calpain calpain 1, 2, and 9 BLD-2660 IPF II NCT04244825 Withdrawn 0

P selectin P selectin Crizanlizumab Myelofibrosis II NCT04097821 Recruiting 243

SMO SMO Sonidegib Myelofibrosis II NCT01787552 Completed 50

Bcl-2 Bcl-2 Navitoclax Myelofibrosis II NCT03222609 Active, not
recruiting

191

BET family BET family Pelabresib Myelofibrosis II NCT02158858 Recruiting 341

ENaC ENaC BI-1265162 Cystic fibrosis II NCT04059094 Terminated 52

ENaC P-1037 Cystic fibrosis II NCT02343445 Completed 142

ENaC QBW276 Cystic fibrosis II NCT02566044 Completed 16

ENaC IONIS-ENaCRx Cystic fibrosis I NCT03647228 Completed 98

ENaC AZD5634 Cystic fibrosis I NCT02950805 Completed 9

ENaC BI 443651 Cystic fibrosis I NCT02976519 Completed 64

ENaC Idelalisib Myelofibrosis I NCT02436135 Terminated 10

DNase I DNase I AIR DNase Cystic fibrosis II NCT02722122 Unkonwn 15

AA/DHA imbalance AA/DHA imbalance Fenretinide Cystic fibrosis II NCT03265288 Completed 166

Neutrophil elastase Neutrophil Elastase Lonodelestat Cystic fibrosis II NCT03748199 Completed 32

Neutrophil Elastase CHF 6333 Cystic fibrosis I NCT04010799 Completed 68

leukotriene B4 leukotriene B4 Acebilustat Cystic fibrosis II NCT02443688 Completed 200

CDK CDK1, CDK2/E, CDK2/A,
CDK5, 7, 9

Seliciclib Cystic fibrosis II NCT02649751 Terminated 49

CDK4/6 Ribociclib Myelofibrosis I NCT02370706 Completed 15

LSD LSD1 Bomedemstat bis-
tosylate

Myelofibrosis II NCT03136185 Completed 89

MDM2 MDM2 KRT-232 Myelofibrosis III NCT03662126 Recruiting 385

PLK1 PLK1 Rigosertib Myelofibrosis II NCT02730884 Terminated 3

IL-1α IL-1α Bermekimab(MABp1) Systemic
Sclerosis

II NCT04045743 Active, not
recruiting
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fibrotic strategies. PI3K/AKT inhibitors are currently in clinical
evaluation in IPF and myelofibrosis.

Parsaclisib. Parsaclisib is a potent PI3Kδ inhibitor and exerts
antitumour effects in models of B-cell malignancy298. Single-dose
parsaclisib alone or combination with itraconazole or rifampin
achieved safety and toleratility in healthy subjects299. Two clinical
trials in phase III studies (NCT04551066 and NCT04551053) were
launched to test the efficacy and safety of parsaclisib and
ruxolitinib in myelofibrosis.

Omipalisib. Omipalisib (GSK-2126458) is a dual inhibitor of PI3K/
mTOR. Omipalisib inhibited the proliferation of pHPFs and
decreased collagen accumulation induced by TGF-β1 in pHPFs176.
Omipalisib was well absorbed and reached the lung in a
randomized, placebo-controlled, double-blind phase I study in
subjects with IPF (NCT01725139)300. Diarrhoea was the most
commonly reported side effect of omipalisib300.

Anti-fibrotic drugs targeting JAKs
Since JAKs are essential for the occurrence and development of
myelofibrosis, JAK inhibitors have achieved improvements in
quality of life in patients with myelofibrosis. However, most drugs
targeting JAK/STAT did not seem to prevent myelofibrosis patients
from progressing to acute myeloid leukemia301.

Ruxolitinib. Ruxolitinib, a JAK1/JAK2 inhibitor, is approved by the
FDA for patients with intermediate- and high-risk myelofibrosis.
The effect of ruxolitinib in anemic myelofibrosis patients was
evaluated in a phase 2 study (NCT02966353), who received
ruxolitinib at 10 mg for the first 12 weeks, followed by escalating
doses to 25 mg. During the study, palpable spleen length was
reduced at least 50% in 70% patients receiving ruxolitinib, but
11.8% of patients needed platelet transfusion. The results also
showed that the platelet counts and hemoglobin level of patients
receiving increased dose were similar to those of patients who did
not receice a dose increase302.

Momelotinib. Momelotinib (also known as CYT387, a JAK1/2
inhibitor) showed favorable therapeutic effects on myelofibrosis in
preclinical trials by reducing multiple myeloma proliferation,
inducing apoptosis of JAK2-dependent haematopoietic cells, and
regulating inflammatory cytokines303. In a phase 3 study
(NCT02101268), 156 patients with myeloid fibrosis were assigned
to receive momelotinib (104) or standard care (52, 89% of whom
received ruxolitinib). Encountered with the standard intervention
group (6% of patients), 7% of patients in the momelotinib group
had at least a 35% reduction in spleen volume. 11% of patients
experienced peripheral neuropathy in the momelotinib group,
compared with none in the standard intervention group304.
Moreover, compared with ruxolitinib, the blood transfusion
requirements and drug dependence of momelotinib were
markedly reduced305.

Fedratinib. Fedratinib is a JAK2 inhibitor and has been used in
treatment for patients with myeloproliferative neoplasm-
associated myelofibrosis306. After 24 weeks, patients in the
400mg fedratinib group had a 47% spleen volume response rate
compared with 1% of patients with myelofibrosis in the placebo
group. In this study, the two most common adverse reactions in
patients taking fedratinib were anemia and diarrhea307.

Pacritinib. Pacritinib is an inhibitor of JAK2 and FMS-like
tyrosine kinase 3. Pacritinib has good tolerance and clinical
activity in myelofibrosis308,309. Twice daily pacritinib resulted in
a significant reduction in spleen volume and improvements in
the total symptom score over the best available therapy for
myelofibrosis310.

Itacitinib. Itacitinib (INCB039110), a selective JAK1 inhibitor, has
demonstrated favourable safety and anticancer effects311. Itaciti-
nib exerts its anti-inflammatory effects by reducing pro-
inflammatory cytokines and regulating the polarization of macro-
phages312. Administration of itacitinib at 200mg twice daily and
600mg once daily reduced the total symptom score in patients

Table 1. continued

Target Drug Name Conditions Highest
Status (phase)

NCT Status Sample size

HSD17B13 HSD17B13 ARO-HSD NASH I NCT04202354 Completed 50

MOTS-c MOTS-c CB4211 NAFLD I NCT03998514 Completed 88

IFN-γ IFN-γ Interferon gamma IPF I NCT00563212 Completed 12

Autotaxin Autotaxin BBT-877 IPF I NCT03830125 Completed 88

Glutathione dependent
PGD synthase

Glutathione dependent
PGD synthase

ZL-2102 IPF I NCT02397005 Unknown 120

Arginase Arginase CB-280 Cystic fibrosis I NCT04279769 Completed 32

GSNOR GSNOR N-6022 Cystic fibrosis I NCT01746784 Completed 66

Pim kinase inhibitor Pim-1, -2, -3 kinase TP-3654 Myelofibrosis II NCT04176198 Recruiting 60

PRMT PRMT5 PRT-543 Myelofibrosis I NCT03886831 Active, not
recruiting

227

AA/DHA ascorbic acid/ docosahexaenoic acid, ACC acetyl-coenzyme A carboxylase, ACVR1 activin A receptor type 1, ALK2 activin receptor-like kinase 2, ATX
autotoxin, A3AR A3 adenosine receptor, BET family bromodomain and extra-terminal domain family, BMPRII bone morphogenic protein receptor type II, CCR2
chemokine receptor 2, CCR5 chemokine receptor 5, CDK cyclin-dependent kinase, EnaC epithelial sodium channel, FASN fatty acid synthase, FATP5 fatty acid
transport protein 5, FLT3 FMS-like tyrosine kinase 3, GSNOR S-nitrosoglutathione reductase, HDAC histone deacetylase, HSD17B13 17-beta hydroxysteroid
dehydrogenase 13, HSP47 heat shock protein 47, IRAK1 Interleukin-1 receptor-associated kinases, KHK ketohexokinase, LSD1 lysine-specific demethylase 1, LTD4
leukotriene D4, MAPKKK5 MEK Kinase5, MDM2 mouse double minute 2, MMP matrix metallopeptidase, MOTS-c mitochondrial open reading frame of the 12S
rRNA-c, MPC mitochondrial pyruvate carrier, NASH non-alcoholic steatosis, PDE phosphodiesterase, PLK1 polo-like kinase 1, PRMT5 protein arginine
methyltransferase 5, TBK1 TANK-binding kinase 1, THRβ thyroid hormone receptor beta, SCD-1 stearoyl CoA desaturase-1, SMO Smoothened, SP-B surfactant
proteins B
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with myelofibrosis, and decreased the requirement of red blood
cell units transfused in patients who needed transfusions during
the 12 weeks prior to itacitinib treatment (NCT01633372)313.

Anti-fibrotic drugs targeting β-catenin
PRI-724. PRI-724 (also known as ICG-001) is a small molecule
drug that modulate β-catenin/CBP transcription314,315. Preclinical
studies demonstrated the efficacy of PRI-724 in decreasing ECM
deposition and hepatic inflammation in a mouse model of CCl4-
induced acute liver injury315 and a mouse model of HCV-
infection316. In a dose escalation phase I trial, PRI-724 was well-
tolerated in patients with HCV-induced cirrhosis at the dose of 10
or 40mg/m(2) daily for 12 weeks317. However, PRI-724 did not
effectively reduce liver fibrosis in patients with HCV- and HBV-
induced cirrhosis, either by sequential scoring or by measuring
proportional area of collagen for 12 weeks, but significantly
improved liver stiffness (NCT03620474)318.

Anti-fibrotic drugs targeting ASK-1
Selonsertib. Selonsertib (GS-4997), a small molecule inhibitor of
ASK1, showed efficacy in reducing collagen deposition, fibrosis
stage, steatosis, and inflammation in a phase 2 study319. However,
the phase III clinical trial (NCT03053050) of selonsertib was
terminated in NASH patients with bridging fibrosis or compen-
sated cirrhosis because its effect in alleviating fibrosis was not
obvious320.

Anti-fibrotic drugs targeting PPARs
Since PPARs are involved in glucose and lipid metabolism, PPARs
ligands are expected to be promising therapeutic agents for
NAFLD/NASH. However, PPARα ligands (Clofibrate and Fenofi-
brate) showed no effect in inflammation and fibrosis in NASH231.
PPARβ/δ agonist (GW501516) reduced inflammatory cells migra-
tion, insulin resistance and lipid levels, and increased ALT
concentration in NASH experimental model321, but GW501516
has been terminated due to safety concerns. PPARγ agonists
alleviated steatosis and inflammation yet with little effect fibrosis,
and long time of administration is a major concern231. The effect
of dual or pan agonists of PPARs in NASH are summarized below.

Elafibranor. The targets of elafibranor (GFT505) are PPARα and
PPARδ322. Our previous results showed that GFT505 could inhibit
steatosis, inflammation, and fibrosis in a NASH mouse model, and
reduce the expression of lipid metabolism-, inflammation-, and
fibrosis-related signaling molecules323. Treatment with 120 mg/d
elafibranor for 1 year reduced NASH progression and liver fibrosis
stage324. However, a phase III study of elafibranor in NASH
patients was terminated because it did not achieve the predicted
efficacy without safety issues (NCT02704403).

Saroglitazar. Saroglitazar is a novel dual PPARα/γ agonist that
regulates glucose metabolism and improve insulin resistance.
NAFLD/NASH patients were given placebo or 1 mg, 2 mg, or 4 mg
saroglitazar. After the week 16, the ALT changes in the group
taking 1mg, 2 mg and 4mg saroglitazine were -25.5%, 27.7%, and
-45.8%, respectively, while the ALT changes in the group taking
placebo were 3.4%. Administration of saroglitazar 4 mg decreased
adiponectin, insulin resistance, and triglycerides, and the avarage
body weight in patients taking 4mg saroglitazar increased by
1.5 kg compared with 0.3 kg in placebo group325.

Lanifibranor. Lanifibranor (IVA337) is a PPAR α/γ/δ triple activator
that can reduce immune cells infiltration and decreased steatosis
in NASH experimental models326. In a phase 2b study, NASH
patients without cirrhosis received placebo or 800mg or 1200mg
lanifibranor daily for 24 weeks (NCT03008070). Results showed
that most biomarkers of lipid, inflammation, and fibrosis were
improved in both dose groups of lanifibranor. However, compared

with patients receiving 800mg lanifibranor, those receiving 1200-
mg dose of lanifibranor had greater decrease in the SAF (the
steatosis, activity, fibrosis) score327.

Pemafibrate. Pemafibrate targeting PPARα modulator regulates
lipid and glucose metabolism. Preclinical studies have shown
that pemafibrate could improve insulin resistance, inhibit
hepatocyte ballooning degeneration, decrease the NAFLD score,
and reduce myeloid cell recruitment328,329. Liver stiffness and
ALT level were reduced in patients with high-risk NAFLD who
received 0.2 mg pemafibrate twice daily for 72 weeks in a phase
2 trial (NCT03350165)330.

Anti-fibrotic drugs targeting FXR
FXR has emerged as a promising therapeutic target for NAFLD/
NASH due to its diverse functions that modulate bile acid
metabolism, inflammation, and immune responses. FXR agonists
could be divided into steroidal and nonsterodial, and pruritus is
the most common side effect of these targeted drugs.

Obeticholic acid. Obeticholic acid, a steroidal FXR agonist, has
been shown to improve NASH symptoms. In a phase 3 trial
(NCT02548351), NASH patients were given placebo, or 10 mg or
25mg of obeticholic acid daily. Improvement in fibrosis was
achieved in 23% of patients in the obeticholic acid 25 mg group
compared with 18% of patients in the 10-mg obeticholic acid
group and 12% of patients in the placebo group. However, there
was no difference of NASH resolution endpoint between the three
groups (P= 0.13)331. Patients taking obeticholic acid usually stop
or reduce their dosage because of severe pruritus.

Cilofexor. Cilofexor (GS-9674) is a potent and selective FXR
nonsteroidal agonist which activates FXR in the intestine and does
not experience enterohepatic circulation. Twenty-four weeks of
cilofexor improved serum bile acids metabolism and decreased
hepatic steatosis in patients with NASH, but there was no
significant change in fibrosis (NCT02854605)332.

EDP-305. EDP-305 is an effective FXR agonist showing little cross
reaction with other nuclear receptors. EDP-305 inhibited HSCs
activation in vitro and reduced MCD-induced steatohepatitis and
liver fibrosis333. Liver fat and ALT level were reduced in NASH
patients receiving 2.5 mg of EDP-305 compared with placebo
group334. Pruritus was also one of the most common adverse
events of EDP-305334.

Tropifexor. Tropifexor is a non-steroidal FXR agonist and
significantly reduced steatohepatitis and fibrosis in NASH pre-
clinical model335. Tropifexor was well tolerated up to 3000 µg and
100 µg in the single- and multiple-ascending doses (SAD/MAD)
studies, respectively336, and is currently in phase 2 development
for NASH.

Anti-fibrotic drug targeting TLR4
JKB-121. JKB-121 is a nonselective opioid TLR4 antagonist that
has been proved to reduce LPS-induced liver inflammation in a
MCD-induced model of NAFLD and inhibit the activation of
HSCs337.

Anti-fibrotic drugs targeting GIP and GLP-1
FXR mainly negatively regulates liver gluconeogenesis, lipogen-
esis, and steatosis, while GIP and GLP-1 regulates glucose and lipid
metabolism by reducing appetite, regulating liver fat content and
inflammation. The dual receptor agonist of GIP and GLP-1 has
been considered as an important therapeutic target for NASH.

Tirzepatide. Tirzepatide (LY3298176), a dual GIP and GLP-1
receptor agonist, has been used to explore its efficacy in clinical
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trials for the treatment of NASH, obesity, and type 2 diabetes
mellitus (T2DM)338,339. Treatment with 10mg of tirzepatide
reduced NASH-related biomarkers, such as serum ALT and
aspartate aminotransferase (AST), in patients with T2DM
(NCT03131687)338. A phase III trial investigating tirzepatide in
NASH patients is currently in progress (NCT04166773).

Semaglutide. Semaglutide is a GLP-1 receptor agonist and has
been approved for T2DM therapy. In a 72-week phase 2 trial, NASH
patients with liver fibrosis of stage F1, F2, or F3 received placebo,
or semaglutide at 0.1 mg, 0.2 mg, or 0.4 mg. The percentage of
patients who achieved NASH improvement without worsening
fibrosis was 40%, 36% and 59% in the 0.1 mg semaglutide group,
0.2 mg semaglutide group and 0.4 mg semaglutide group,
respectively, and 17% in the placebo group. However, the
changes in fibrosis was not statistically significant in the 0.4 mg
semaglutide group (43% of the patients) and in the placebo group
(33% of the patients, P= 0.48)340.

Cotadutide. Cotadutide (MEDI0382) is a dual receptor agonist of
GIP and GLP-1 and has shown safety and tolerability341.
Cotadutide reduced hepatic lipid content, inflammation, steatosis,
and NAS score in a mouse model of NASH342.

Anti-fibrotic drugs targeting CFTR
Drugs that improve the structure and function of CFTR have good
therapeutic prospects in cystic fibrosis. At present, two kinds of
drugs with different action mechanisms but complementary
therapeutic effects have been developed, namely, CFTR potentia-
tors and CFTR correctors343. CFTR potentiators enhance the gating
of CFTR at the cell surface to mediate ion transport and are very
effective in treating gated mutations344. CFTR correctors modify
the processing and transportation of CFTR protein in cells, thus
increasing the number of functional CFTR on the cell surface345.

Ivacaftor and Tezacaftor. Ivacaftor (VX-770) is the first CFTR
potentiators approved by the FDA for cystic fibrosis patients with
the gated mutation. Tezacaftor is a CFTR corrector approved by
the FDA to be utilized in combination with ivacaftor. In a phase 2
clinical study, daily intake of 100 mg tezacaftor and 150mg
ivacaftor every 12 hours was effective in reducing chloride ion
concentration in the sweat of cystic fibrosis patients, while
increasing the percent predicted FEV1 (ppFEV1) value by 3.75%
(NCT01531673)346.

Lumacaftor. Lumacaftor (VX-809), a CFTR corrector, is usually
used in combination with ivacaftor for the treatment of cystic
fibrosis. Lumacaftor increased the trafficking of CFTR protein to
the extracellular membrane, while ivacaftor enabled the opening
of dysfunctional chloride channels347. In 6- to 11-year-old patients
with cystic fibrosis, sweat chloride concentration and CFQ-R RD
score were improved after lumacaftor/ivacaftor combination
therapy, but the FEV1 parameter was not changed
(NCT02514473)348. However, FEV1 increased in patients with
cystic fibrosis aged 12 years or older in a combination therapy
with lumacaftor and ivacaft (NCT01807949)349.

ABBV-2222. ABBV-2222 (GLPG2222) is a novel and potent CFTR
corrector350. Oral administration of ABBV-2222 once daily for
29 days in patients with homozygous or heterozygous of F508del
CFTR and a gating mutation reduced sweat chloride concentra-
tions in a dose-dependent manner without ppFEV1 improvements
(NCT03119649 and NCT03045523)351.

Eluforsen. Eluforsen is an antisense oligonucleotide targeting the
F508del mutation mRNA region to restore CFTR function352.
Inhalation of eluforsen by single or multiple doses (up to 50 mg)
demonstrated safety and tolerability353. In a phase 1b study, cystic

fibrosis patients with a FEV1 > 70% in four single ascending dose
cohorts and four MAD cohorts received eluforsen three times
weekly for 4 weeks. CFQ-R Respiratory Symptom Score was
improved in subjects of three groups in the MAD study353.

CONCLUSIONS
The high mortality and complex pathogenesis of fibrotic diseases
pose great challenges in clinical therapy. Various cells and
signaling pathways are involved in the progression of fibrosis.
Drugs targeting these abnormal pathways are constantly being
developed, and most of them demonstrate good anti-fibrotic
properties in clinical trials. However, the side effects of these drugs
often lead to drug discontinuation. Therefore, reducing adverse
effects is also a great challenge for drug development. In addition,
due to the complicated interaction of these signaling pathways in
fibrosis, multitarget drug regimens would be beneficial for fibrosis
therapy. In conclusion, this review provides reference for further
mechanism and drug study of fibrosis.
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