
LETTER OPEN

Multi-omics characterization and therapeutic liability of
ferroptosis in melanoma

Signal Transduction and Targeted Therapy           (2022) 7:268 ; https://doi.org/10.1038/s41392-022-01067-y

Dear Editor,
Ferroptosis, an iron-dependent form of programmed cell death

driven by excessive lipid peroxidation,1 has emerged as a
promising and effective strategy for triggering cancer cell death.2,3

Insufficient understanding of the role of ferroptosis in melanoma
progression and the tumor microenvironment (TME) has limited
the development of ferroptosis-targeted therapy and combina-
tions with other therapeutic strategies.
Here, we constructed a ferroptosis score (FPS) model to quantify

the ferroptosis status of melanoma patients based on 32
ferroptosis-related genes (FRGs) screened from the FerrDB4

database that were associated with patient outcomes and could
accurately differentiate patient status (Supplementary Figs. 1, 2;
see Methods). The univariate Cox hazard analysis demonstrated
that FPS was the most significant OS protective factor compared
with 50 cancer hallmark gene sets (Fig. 1a), and patients with high
FPS had better overall survival (Supplementary Fig. 2g). Multi-
variate Cox regression analysis demonstrated that FPS is an
independent predictor by considering the confounding factors
(e.g., age, gender, and tumor stage; Supplementary Fig. 2h). The
reliability of the FPS as a prognostic factor was validated in four
independent melanoma cohorts with 416 patients (Supplemen-
tary Fig. 3).
To identify the molecular features related to ferroptosis in

melanoma, we applied a propensity score matching (PSM)
algorithm to appropriately control clinical confounders (e.g.,
tumor purity, stage) and calculated the molecular difference
between high-FPS and low-FPS groups (Fig. 1b, Supplementary
Fig. 1e; see Methods). We identified ferroptosis-associated features
in four molecular levels, including 1338 mRNAs, 205 significant
miRNAs, 193 methylation sites, and 49 proteins (Fig. 1c;
Supplementary Table 5), suggesting that ferroptosis in melanoma
may affect multiple molecular levels. Then we performed GSEA
analysis between high and low FPS group in mRNA and
methylation levels, respectively. The results showed immune-
related pathways (e.g., inflammatory response, interferon gamma
response) were enriched in patients with high-FPS, while those
related to oxidation phosphorylation and MYC targets v2 were
enriched in patients with low-FPS (Fig. 1d, bottom panel;
Supplementary Table 6). Ferroptosis associated methylation
features showed opposite direction of function enrichment
comparing to ferroptosis associated mRNA features (Fig. 1d, up
panel; Supplementary Table 6), suggesting ferroptosis-associated
mRNA expression patterns were partially due to alterations in DNA
methylation level. Next, we observed that a high FPS was strongly
correlated with sensitivity to ROS inducers (PD-DI; Piperlongu-
mine; Supplementary Fig. 5) and ferroptosis inducers (Erastin; RSL;
ML162; ML210; Supplementary Fig. 5), suggesting the robustness
of the FPS model for defining ferroptosis status. Furthermore, we
found multiple ferroptosis associated clinically actionable genes
targeted by Food and Drug Administration (FDA)-approved drugs

were altered at the mRNA level (Fig. 1e). For example, PDCD1LG2
(PD1 ligand) was highly expressed in patients with high-FPS
(Fig. 1e), suggesting that PD1 inhibitors, such as nivolumab and
pembrolizumab, could have better efficacy in high-FPS tumors.
Ferroptosis was found to be associated with the tumor immune

response according to multi-omics analysis (Fig. 1d, Supplemen-
tary Fig. 4). We further explored ferroptosis status alterations at a
single-cell resolution to better characterize intra-tumor hetero-
geneity. Employing graph-based principal component clustering
combined with marker-based annotations, we classified cells from
GSE115978 into 10 clusters (Fig. 1f; Supplementary Fig. 6a). We
found that the FPS was generally lowest in malignant cells,
followed by fibroblasts, and the highest FPS was observed in
immune cells (Fig. 1g,h) and confirmed this in another indepen-
dent melanoma scRNA-seq dataset (GSE72056; Supplementary
Fig. 6b–e). To investigate the regulation of ferroptosis in the TME
at two-dimensional spatial level, we classified a spatial transcrip-
tome melanoma dataset from a previous study5 into macrophage,
stromal, melanoma, and T/B cell enrichment regions (Fig. 1i;
Supplementary Fig. 7) and found the heterogeneity of the FPS in
these four regions. The FPS was higher in the border region with
high infiltration of macrophages than in the tumor center and the
FPS was higher in the region with T/B cell enrichment than in the
stromal regions (Fig. 1j,k). These suggest the heterogeneity of
ferroptosis status among different cell populations at single-cell
and spatial levels. In particular, there was a predominant
difference in the FPS between malignant cells and immune cells,
thus inducing ferroptosis in tumor cells may be a potential
treatment strategy.
To investigate the power of the FPS to predict ICB therapy

efficacy, we collected our in-house cohort of 62 melanoma
patients with anti-PD-1 treatment, including 33 responders and 29
non-responders (Supplementary Table 8; see Methods). Consis-
tently, anti-FRGs tended to be highly expressed in non-respon-
ders, while pro-FRGs were more likely to be highly expressed in
responders (Fig. 1l), and the responders showed significantly
higher FPS that non-responders (Wilcoxon test, P= 0.004; Fig. 1m).
Among these 62 patients, 22 out of 31 patients (71%) with high
FPS were responders to anti-PD-1 treatment, which is significantly
higher than the percentage of patients with low FPS (22/31 versus
11/31; chi-square test: P= 0.01; Fig. 1n). In addition, patients with
a higher FPS had longer progression free survival (PFS) (log-rank
test, P= 0.016; Fig. 1o). We validated FPS associated with
immunotherapy benefit in four independent melanoma bulk
RNA-seq cohorts, including TCGA-SKCM, PRJEB23709,
phs000452.v3, and GSE91061 (Supplementary Fig. 8). Further, in
the scRNA-seq melanoma cohort (GSE120575) treated with anti-
PD-1 therapy, we found patients with a higher FPS in both pre-
treatment and post-treatment benefited from immunotherapy
(Supplementary Fig. 9). In addition, we found FPS associated with
immune response in protein level. The protein levels of anti-FRGs
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and pro-FRGs showed distinguishing expression patterns in
responders and non-responders in anti-PD-1 treated cohort with
proteomics (Supplementary Fig. 10a, b). Multi-Cox analysis
revealed that protein-based FPS can be independent prediction
model to predict the immunotherapy efficacy (Supplementary Fig.

10c) and associated with benefit of anti-PD-1 therapy
(Fig. 1p–r). Taken together, these findings suggest the robustness
of the FPS model as a potential biomarker to predict immu-
notherapy response based on bulk, single-cell transcriptome, and
proteomic-level data.
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To explore the potential mechanism of ferroptosis in immu-
notherapy, we performed an association analysis between the FPS
and the immune response-related biomarkers. We observed a
significantly positive correlation between the FPS and the T cell-
inflamed gene expression profile (GEP; Fig. 1w; Supplementary Figs.
10d, 11a) and cytolytic activity (CYT; Fig. 1w; Supplementary Fig. 11b)
in 17 independent melanoma cohorts. In addition, B cell receptor
(BCR) richness (Fig. 1s), T cell receptor (TCR) richness (Fig. 1t), the
tumor-infiltrating lymphocyte (TIL) regional fraction (Fig. 1u), and the
PDL1 protein level (Fig. 1v), were significantly higher in the high-FPS
group than those in the low-FPS group. These results highlight that
ferroptosis may be associated with immunogenicity and that
patients with a high FPS may tend to bear “hot tumors”,
accompanied by a higher TCR/BCR clone richness, higher CYT score,
GEP level, and immune infiltration level and thus an activated
immune system; these features may explain, at least in part, the
survival advantage and the greater benefit of ICB treatment in the
high FPS group.
Our study provides a comprehensive multi-omics understand-

ing of the effects of ferroptosis on prognosis, the TME, and
multiple therapies, especially immunotherapy of melanoma, based
on bulk, single-cell, spatial transcriptome, and proteomics analyses
(Fig. 1). These findings highlight the potential for cancer therapy
that induce ferroptosis as single agents or in combination with
other targeted therapies and immunotherapies.
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identified four clusters corresponding to the original histopathological annotations. j Spatial heatmap shows the difference of FPS expression
among four clusters at the enhanced-resolution condition. k Comparison analysis between the four clusters highlighted spatial differences in
the enrichment of our FPS model. l Clinical features of in-house patient cohort treated with anti-PD1 and the relative expression level of pro-
FRGs and anti-FRGs. Each column represents an individual patient. m, p The difference in the FPS between R (responders) and NR (non-
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different responses to immunotherapy of in-house cohort n and proteomics cohort q. o, r Kaplan-Meier curves show progression free survival
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