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Molecular characteristics, immune evasion, and impact of
SARS-CoV-2 variants
Cong Sun1, Chu Xie1, Guo-Long Bu1, Lan-Yi Zhong1 and Mu-Sheng Zeng1,2✉

The persistent COVID-19 pandemic since 2020 has brought an enormous public health burden to the global society and is accompanied
by various evolution of the virus genome. The consistently emerging SARS-CoV-2 variants harboring critical mutations impact the
molecular characteristics of viral proteins and display heterogeneous behaviors in immune evasion, transmissibility, and the clinical
manifestation during infection, which differ each strain and endow them with distinguished features during populational spread. Several
SARS-CoV-2 variants, identified as Variants of Concern (VOC) by the World Health Organization, challenged global efforts on COVID-19
control due to the rapid worldwide spread and enhanced immune evasion from current antibodies and vaccines. Moreover, the recent
Omicron variant even exacerbated the global anxiety in the continuous pandemic. Its significant evasion from current medical treatment
and disease control even highlights the necessity of combinatory investigation of the mutational pattern and influence of the mutations
on viral dynamics against populational immunity, which would greatly facilitate drug and vaccine development and benefit the global
public health policymaking. Hence in this review, we summarized the molecular characteristics, immune evasion, and impacts of the SARS-
CoV-2 variants and focused on the parallel comparison of different variants in mutational profile, transmissibility and tropism alteration,
treatment effectiveness, and clinical manifestations, in order to provide a comprehensive landscape for SARS-CoV-2 variant research.
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INTRODUCTION
The COVID-19 pandemic has lasted for over 2 years and caused over 6
million death cases.1 A wide variety of SARS-CoV-2 variants emerged
during its persistence and displayed evolving adaptation to global
populational immunity,2–5 leading to rapid worldwide spread and
heterogenous escape from available therapeutic drugs and vac-
cines.6–9 The mutations harbored in the genome of SARS-CoV-2
variants have a significant impact on viral protein structures, function,
and immunogenicity, which was strongly associated with the
immunological response and clinical outcome in humans.10–13

This review systematically describes the evolutionary and molecular
characteristics of SARS-CoV-2 variants and summarizes the mutational
impact on the critical viral proteins. Then it comprehensively describes
the landscape of immune evasion of various critical variants from the
currently approved antibody, small antiviral molecules, and vaccines.
Lastly, it describes the epidemiological profile of SARS-CoV-2 variants
and overview the different critical strains’ changes in infectivity, host
tropism, and clinical manifestation and outcome. Detailed datasets for
the parameterized depiction of the difference between SARS-CoV-2
variants in molecular characteristics, immune evasion, and clinical
impact are also provided.

MOLECULAR CHARACTERISTICS OF SEQUENCE AND THE
ENCODED PROTEINS OF SARS-COV-2 VARIANTS
The genomic evolution of SARS-CoV-2
Since the emergency of SARS-CoV-2,14–17 its viral genome has been
under constant and rapid mutation to adapt host system.18,19 Like
other RNA virus,20–25 a high mutation rate benefits the emergence of

novel variants with a significant change in viral phenotypes.20,26

Therefore, the global scientific community endeavors to construct
systematic tracking systems of SARS-CoV-2 mutations and identified
the clade with a genetically close relationship.27

The phylogenetic classification is widely used as a fundamental
method for emergent SARS-CoV-2 strain classification in the clade-
nomenclature system (terming the major strain as clade code such
as GR) by Global Initiative of Sharing All Influenza Data (GISAID)28

or NextStrain29 or Pango lineage system (terming the major strain
as letter and number with point interval such as B.1.1.7) by Pango
Network30 (Fig. 1a). However, with the rapid increase in submitted
sequence to the genomic database and wider observation of
sequential distribution in the infected population, a more compact
naming system for the critical variants was demanded to guide
global anti-virus policy. Therefore World Health Organization
(WHO) proposed using the Greek alphabet to name the critical
SARS-CoV-2 clades or Pango lineages and raised the concept of
Variant of Concern (VOCs) and Variants of Interest (VOIs) as a
larger dynamic classification.17 Our review used the WHO naming
system to indicate the strains in representing both sequence
identity and their impact on disease control.
Early 2020 has witnessed the emergence of the first widely

reported spike mutation of SARS-CoV-2, D614G.31–36 In December
2020, the Alpha variant (B.1.1.7) harboring another critical mutation
N501Y37,38 in spike protein, initially expanded in the southeast of
England, soon became the first globally distributed VOC (Fig. 1b).39–41

Later the Beta variant (B.1.351) was found in South Africa and
manifested a rapid domestic distribution to an over 80% preva-
lence.42,43 One month later, the Gamma variant (P.1) was reported in
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Brazil, and the travelers arriving in Japan from Brazil.44,45 Delta variant
(B.1.617.2) was first detected in India in May 2021 and rapidly became
the dominant variant worldwide by late 2021, while some sub-clade
of Delta variant displayed a unique penchant in epidemic areas, such
as Clade 20I (Delta) in some parts of Asia.41,46,47 Delta-dominant
epidemic lasted quite long in the world until Omicron (B.1.1.529) in
November 2021, which was first reported in South Africa,48,49 and
soon in Chinese Hong Kong.50 Since its discovery, Omicron rapidly
displaced Delta and became the major variant worldwide.48,51–54 By
the time of 31 March 2022, only variants Alpha (B.1.1.7), Beta (B.1.351),
Gamma (P.1), Delta (B.1.617.2), and Omicron (B.1.1.529) were labeled
as Variant of Concern (VOCs), within which only Delta and Omicron
were recognized as currently circulating VOCs.50,55–61

As the SARS-CoV-2 RNA genome encoded a set of structural and
non-structural proteins (Fig. 1c),62–65 the mutations in these
proteins lead to various molecular alterations in protein char-
acteristics, shaping the difference between variant to variant.66

SARS-CoV-2 spike protein
The SARS-CoV-2 spike protein, as the major structural protein, is
embedded in the SARS-CoV-2 viral membrane in homo-trimeric
form and recognizes human ACE2 as a receptor for viral
entry.65,67–70 It consists of two subunits, S1 and S2, cleaved by
host furin.65,71–76 The distal S1 subunit contains two important
regions, RBD (receptor binding domain) and NTD (N-terminal
domain),77 and the RBD acts as the binding region for ACE2,77–79

Fig. 1 SARS-CoV-2 evolution, prevalence, and genome architecture. a Phylogenetic analysis of sequence divergence of SARS-CoV-2 circulating
variants based on clade classification in February 2022. The WHO labeling of clades is marked besides. b Sequential frequency of major clades
of SARS-CoV-2 variants from April 2021 to February 2022. c Linear genome architecture of encoded viral protein and structural overview of
SARS-CoV-2. The phylogenetic analysis and sequential frequency data come from the Nextstrain GISAID database (https://nextstrain.org/ncov/
gisaid/global), and figures in related (a, b) are generated under the CC-BY 4.0 permission. BioRender is used to generate the structure diagram
of SARS-CoV-2 virus in Fig. 1c
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making it the most critical target affecting virus-host interaction
and vulnerable site to antibody neutralization80–84(Fig. 2a).
Currently, most neutralizing antibodies or vaccines are developed
to target the RBD to block or inhibit viral infection.80,84–93

Furthermore, the binding with ACE2 of RBD requires conforma-
tional adaptation, and an easier transition from “closed” to “open”
conformation of spike protein benefits the viral infection.32,94–96

Therefore, mutations in the spike protein of SARS-CoV-2 variants
could significantly influence the structure of the spike protein
conformation and further the interaction with ACE2 or neutraliz-
ing antibodies32,95,97–100 (Figs. 2b and 3).

Impact on ACE2 binding. In vitro binding experiments have
shown that SARS-CoV-2 bound to human ACE2 with an affinity of
about 10 nM, which was 10–20-folds higher than SARS-
CoV,79,87,101,102 which is a potential reason for the higher infection
rate of SARS-CoV-2.103 The residues of RBD directly participated in
ACE2 binding79 are K417, Y449, Y453, N487, Y489, G496, T500,
G502, Y505, L455, F456, F486, Q493, N501, Q498, and the
mutations at or beside these sites may directly impact the
interaction with ACE2.103 The N501Y is one of the most common
mutations at spike protein and could be found in Alpha, Beta,
Gamma, and Omicron. Various studies have demonstrated that

Fig. 2 Mutations and their effect on SARS-CoV-2 spike protein. a Structural overview of SARS-CoV-2 spike protein and its subdomain RBD and
NTD. Mutations from variants were marked beside the colored surface. b Patterns of mutational impact on the spike protein. Mutations affect
the spike affinity to ACE2 and neutralizing antibodies (nAbs) and influence the spike protein conformations. BioRender is used to generate the
structural presentation and cartoon models. Pymol is used to generate the surface model of RBD or NTD region. 6VSB, 7CM4, and 6M0J
structures are retrieved from PDB database
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this mutation enhances the binding with human ACE2 through
the extra introduction of π-π packing between RBD Y501 and
ACE2 Y41.103,104 Likewise, mutation E484K from Beta and Gamma
variant or L452R and T478K from Delta variant was also reported
to increase the affinity with ACE2 by mutational scanning or
computational analysis.105–108 However, not all the mutations at
RBD from variants benefited ACE2 binding. Studies showed that
mutation at K417 from Beta and Gamma variants could impair the
RBD binding with ACE2.103–105 More mutations from Omicron
were yet to be studied on their impact on ACE2 binding affinity,
despite some of them being quite far from the interface with
ACE2.53,55,58,109,110 SARS-CoV-2 evolved to adapt to the host,
leading to widespread circulation among animals while still
retaining its ability to efficiently utilize human ACE2 for entry,
thus allowing for transmission of the virus back into humans.99,111

Impact on antibody binding. The spike protein could elicit a
protective antibody against viral infection through the key regions
mediating viral entry and fusion. Therefore, there were early
explorations of using anti-SARS-CoV spike antibodies to neutralize
SARS-CoV-2 due to the high sequence similarity.81,87 Unfortu-
nately, none of them (m396, S230, 80R, CR3014) manifested
obviously neutralization activity against SARS-CoV-2 infec-
tion,67,87,102,112 and these results provided primary evidence of
antibody escape caused by the amino acid substitution in
antigen.79,101 As more antibodies targeting SARS-CoV-2 spike or
RBD were isolated or developed, many of them with potent
neutralizing capability and clinical perspective were reported and
investigated in-depth with biological and structural experi-
ments.79,106,113–120

For mutations located on RBD, a structural study revealed that
K417 mutation from Beta, Gamma, and Omicron reduced antibody
binding to spike protein of C682, C614, and C653,121,122 E484K
from Beta and Gamma diminished binding of C602, C627, C628,
C653, C643 and C6710,105,121,123,124 and N501Y from Alpha, Beta,
Gamma and Omicron diminished binding of C613, C628, C663,
and C670.121 It was also revealed that L452R from Delta variant
reduced DH1041 binding to spike protein.124–126 Another muta-
tional analysis evaluating the overall mutation sets from SARS-
CoV-2 variants based on computational analysis and in vitro
experiment also indicated that currently approved antibodies,

including REGN-10933 (Casirivimab), REGN-10987 (Imdevimab),
and CT-P59 (Regdanvimab) displayed decreased affinity with spike
proteins from all VOCs.60,127

For mutations not located on RBD, L18F in Gamma, T19R in
Delta and Omicron, D80A in Beta, G142-/D, and Y144- in Omicron
reduced S2L28, S2X28, S2M28, S2X333 and 4A8 (PDB:7C2L)
binding to spike protein.115,128 The deletion of amino acid
residues 241~243 in NTD of the Beta variant nearly abolished
the binding of 4A8, an antibody targeting the NTD domain.107,115

Impact on protein conformation, yield, and stability. The con-
formation of spike protein also determined the efficacy of ACE2
binding, as the spike protein had two conformations, “open” and
“close,” in the representation of the sub-structural arrangement of
RBD as “up” or “down”. Only spike protein with at least one RBD in
“up” conformation could be bound by ACE2.94 Therefore, the
mutational impact on the spike conformation would also influence
the spike protein binding with ACE2. Some studies revealed that
N501Y and D614G could facilitate the transition of spike protein from
“closed” to “open“.31,32,34,95,100,129 Furthermore, mutations at H655
and P681 were reported to increase the cleavage efficiency of spike
protein at furin site to promote viral-cell membrane fusion.104,130–133

As for the NTD domain, it was reported that H69del/V70del in the
Omicron and Alpha variant resulted in the contraction of NTD and
lead to a tighter NTD configuration.114–116

Moreover, the stability and yield of spike protein upon the viral
membrane would also influence the overall infectivity, as associated
with the availability of spike protein for viral entry.34,36 A series of
mutations were associated with the instability of spike protein,55,57,134

while one study made a parallel analysis of the RBD productivity
under various mutations and found that most prevalent mutations
would facilitate the yield of RBD.103 These results provided another
perspective to analyze the mutational impact on the spike protein.

SARS-CoV-2 structural proteins beyond spike
Except from the spike, there are other three structural proteins:
Envelop (E), Membrane (M), and nucleocapsid (N), encoded by
ORF4, ORF5, and ORF9.135–138 E and M majorly participate in virion
assembly,136,139 while N forms the viral capsid structure associated
with viral RNA and facilitates genome packaging. Despite not
participating in the initiation of viral infection, these proteins had

Fig. 3 Heatmap of the mutation site and the mutational impact of SARS-CoV-2 VOCs on the spike protein characteristics. The mutations of
VOCs vary from strain to strain and could exert multiple impacts on the protein characteristics of spike protein, including the ACE2 binding,
antibody affinity, protein conformation, stability, and productivity. Quantitative results were recorded on the influence of ACE2 affinity and
RBD production, and qualitative results were recorded on antibody affinity, conformational change, and protein stability. Details for each
mutation can be found in Supplementary Table 1
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a significant role in viral replication, assembly, and release. Their
mutations could also influence viral activity.137,140–143

Compared with E or M, much more mutations in N protein were
observed,56,144,145 and Omicron had the most abundant muta-
tions, including P13L, E31del, R32del, S33del, and S413R as unique
mutations, and 203K (Alpha, Gamma, Delta, and Omicron), and
G204R (Alpha, Gamma, and Omicron) as common mutations. And
it’s also reported that R203K/G204R in N protein increased viral
RNA binding ability.146–149

Hence, more evidence was required to reveal the mutational
impact on the E, M, or N protein of the SARS-CoV-2 variants.149

SARS-CoV-2 non-structural proteins
Nearly two-thirds of the genome coded ORF1a/ORF1ab can be
translated into polyprotein pp1a and pp1ab. The translation of
ORF1ab is realized by −1 frameshift at C13468, allowing
continued translation instead of termination. The translated
product pp1a/pp1ab could be proteolytically cleaved into non-
structural proteins (Nsps) with different functions by viral
proteases.20,141,150,151

Among the Nsps, Nsp3, Nsp5, and Nsp12 received the most
attention for both biological investigation and drug development, as
Nsp3 and Nsp5 were viral protease PLpro (Papain-like protease)152,153

and Mpro/3CLpro (Main protease/3 chymotrypsin-like protease)154,155

mediating polyprotein cleavage and Nsp12 was the RNA-dependent
RNA polymerase along with co-factor Nsp7/8 mediating genome
replication and transcription.156,157 Therefore, mutations in these key
viral proteins may further impact viral survival (Fig. 4). Nsp3 is now
reported with the highest variation rate among the non-structural
proteins and is closely related to the overall genome variation.
Besides, great mutation diversity among the VOCs was observed since
no shared mutation in Nsp3 was found among them. In comparison,
relatively few mutations were found in the Nsp5 and Nsp12 (Nsp5:
K90R-Beta, Nsp5: P132H-Omicron, Nsp12: P314L-All, Nsp12:G662S-
Delta), and hence these two Nsps were recognized as relatively static
in circulating variants. A mutational analysis using computational
modeling is recently reported to reveal the influence of mutations in
Nsps on protein stability and flexibility showed little mutation from
VOCs with a significant impact on the Nsps, especially Nsp3, Nsp5,
and Nsp12. Such as mutation P314L at Nsp12 was reported to
decrease the protein stability.27,45,61,134,158–163

In summary, the evolution of SARS-CoV-2 endowed each clade
with a distinct pattern of mutations. These mutations exerted
various impacts on viral molecular characteristics. Current studies
focused on investigating the mutational impact on spike protein
due to its critical role in receptor binding and antibody evasion. It
was broadly found that the mutations could alter the protein
characteristics to benefit from ACE2 binding and diminish the
binding with neutralization antibodies. In comparison, relatively
less attention was paid to the mutational impact on other
structural and non-structural proteins. Although sequential
analysis has revealed mutations on these proteins from SARS-
CoV-2 variants, little effort was given to the in-depth study of their
influence on the protein structure and function and potential
resistance to targeted drugs.141,153

Immune evasion of SARS-CoV-2 variants from current therapeutic
agents
Neutralizing antibodies. The preliminary step for viral entry was
the spike protein binding to the host cell receptor ACE2 (Fig. 5).
Neutralizing antibodies (nAbs) targeting the spike protein,
especially the RBD domain directly located at the interface with
ACE2, can neutralize viral infection by blocking receptor recogni-
tion.164 Moreover, nAbs could also mediate antibody-dependent
cellular cytotoxicity (ADCC) to eliminate infected host cells
expressing the spike protein.165–168 Thus, many neutralizing
antibodies against spike protein were developed as potential
therapeutic agents against acute SARS-CoV-2 viral infection.169–171

Fig. 4 Heatmap of the mutation site and the mutational impact of
SARS-CoV-2 variants on the non-structural proteins. The mutation
site and its wild type and mutant residue in ORF sequence and
detailed non-structural protein sequence among all variants are
displayed. Each mutation is marked in a different color in the
representation of the occurrence in VOCs and color-scale in
reflection of the impact on protein stability and flexibility. Details
for each mutation can be found in Supplementary Table 1
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According to the binding epitopes, SARS-CoV-2 nAbs can be
classified as RBD-targeted nAbs, NTD-targeted nAbs and other
protein-targeted nAbs172–177 and RBD-targeted nAbs accounted for
the most widely-accepted antibody type entering the clinical trials
for preventing SARS-CoV-2 infection.178–181 Currently, nine neutraliz-
ing monoclonal antibodies and their combinatorial cocktail,
Bamlanivimab (LY-CoV555),182 Etesevimab (LY-CoV016),183 Casirivi-
mab (REGN10933), Imdevimab (REGN10987)184,185 Cilgavimab
(AZD1061/COV2-2130), Tixagevimab (AZD8895/COV2-2196),186

Sotrovimab (VIR-7831),187 Regdanvimab (CT-P59)188,189 and Bebt-
elovimab (LY-CoV1404)183 targeting SARS-COV-2 spike protein were
issued with emergency use authorization (EUA) by FDA for
treatment of mild to moderate SARS-CoV-2 infected individuals.
These authorized antibodies all displayed potent neutralizing
capability against the ancestral strain of SARS-CoV-2.5,164,190,191

With the emergence of SARS-CoV-2 variants, many studies
investigated the altered efficacy against viral infection of these
antibodies.4,192–198 The development of approaches in studying
antibody’s molecular and structural characteristics has provided

preliminary insight into the changes of binding dynamics of spike-
antibody and the following potential impact on antibody neutraliza-
tion efficacy as described above.197–200 With multiple critical
mutations destabilizing the antibody interaction with spike or RBD,
in vitro experiments also revealed the worrying performance of
current antibodies against the SARS-CoV-2 variants.201,202

Considering that in vitro neutralization for the same therapeutic
agent might differ under different circumstances, including virus
types, cell culture types, and reference virus isolation, we listed the
pseudovirus or authentic virus half-maximal inhibitory concentration
(IC50) values of the mentioned authorized antibodies in range by
reference to collective information from Stanford University
Coronavirus Antiviral & Resistance Database and the contained
corresponding studies on each antibody (Fig. 6).203–205

Most antibodies or cocktail pairs maintained the neutralizing
efficacy against Alpha, Beta, Gamma, and Delta variants.5,117,206 Only
Bamlanvimab showed great vulnerability toward all the VOCs, and
the combination use of Etesevimab could barely improve the
efficacy against specific strains.5 However, in terms of the Omicron

Fig. 5 Overview of SARS-CoV-2 infection and replication and the mechanism for anti-SARS-CoV-2 therapeutic agents. Step1: spike protein of
SARS-CoV-2 binds to the host ACE2 to initiate viral attachment and endocytosis. The vaccine-induced antibody, neutralizing antibody, and
ACE2-mimic protein could block this step. Step2: spike protein was cleaved by host TMPRSS2 to mediate spike protein conformation and viral
fusion with the host membrane in an acidic endosomal environment. Small molecules such as Arbidol acted in this step. Step3: the released
viral RNA genome is translated into polyproteins, and the translated product undergoes proteolysis by viral protein PLpro and 3CLpro to
generate mature non-structural proteins and initiate viral replication. Protease inhibitors such as Nirmatrelvir target this step. Step4: the
assembly of RNA-dependent RNA polymerase (RdRp) complex would start viral genome replication and transcription for structural proteins.
RdRp inhibitors such as Remdesivir target this step. Step5: the transcripts for structural proteins would be translated further into the
cytoplasm for N protein and in the endoplasmic reticulum for S, M, and E proteins. Step6: replicated RNA genome binds with N proteins to
form nucleocapsid, and it would further assemble with other structural proteins in the membrane envelope. Immune modulators such as
interferon act in this step. Step7: the assembled and enveloped virion is transported to the cell membrane and released. BioRender was used
to generate this figure
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strain, a significant reduction of neutralizing titer (>100 folds
decrease) against both pseudovirus and authentic virus of all
antibodies can be observed.5 In 2021, the use of Bamlanivimab
alone was withdrawn from the authorization list due to its limited
capability to block Beta and Gamma infection.207 Interestingly, the
EUA of Bamlanivimab and Etesevimab in combination was later
revised for post-exposure prophylaxis (prevention) because of their
neutralizing potency against Delta, but the antibody cocktail
received withdrawal again against Omicron for lack of effectiveness
both in vitro and in vivo by November 2021.208

It should be noticed that an antibody pair, Cilgavimab+Tixage-
vimab (Evusheld) could maintain its efficacy against VOCs.
Cilgavimab+ Tixagevimab showed a 5-folds to 12-folds decrease
at a minimal neutralization against authentic Omicron, while the
independent use in neutralizing assay displayed even significantly
diminished efficacy (IC50 > 10,000/10,000 ng/mL in pseudovirus
assay and >10,000/5000 ng/mL in authentic virus assay).193

In comparison, although individual use of Sotrovimab showed
great vulnerability to the evasion of the Omicron variant,5

Sotrovimab even showed potency in controlling in vivo viral
infection by ADCC and antibody-dependent cellular phagocytosis
and cross-neutralizing capability against other sabecoronovirus,165

providing a possible mechanism for its use.
The alarming evasion of VOCs from currently approved antibodies

urged novel antibody discovery or development. Recently Bebt-
elovimab (LY-CoV1404), a novel antibody with the latest approval for
clinical use, displayed outstanding performance (IC50= 0.003 μg/ml)
in neutralizing Omicron pseudovirus and authentic virus, shedding
light on the development of effective antibody therapy against
Omicron variant.122,205,209 Besides NTD domain targeting, RBD-NTD
dual-targeting or multi-spike variants-targeting antibodies were
under development, and early findings showed their potential
advantage in neutralizing more mutated variants such as Omicron
previously reported antibody-based on screening the binding

affinity with wild-type RBD or spike.210–214 Moreover, cocktail usage
such as Cilgavimab+Tixagevimab provided a potential strategy of
rationally using currently available antibodies to avoid the significant
deficiency in neutralizing specific VOCs during individual applica-
tion.188,215 Nevertheless, antibody-based therapy still confronts a
huge challenge from the current Omicron pandemic. A new strategy
to optimize the discovery and development of novel antibodies in
adaptation to the mutational impact on neutralizing efficacy of
emerging SARS-CoV-2 variants is urgently demanded, and systema-
tic surveillance of antibody efficacy.

Vaccines. Currently, prophylactic vaccines remain the mainstay
preventing SARS-COV 2 infection.216 According to the WHO
COVID-19 vaccine tracker and landscape, there are currently 153
candidate vaccines under clinical development and 196 candidate
vaccines under preclinical development worldwide,217 among
which 19 vaccines have been authorized or fully approved in
various countries, and some have been incorporated into national
vaccination programs and widely applied.218 At present, author-
ized vaccines using three major platforms, mRNA, adenovirus, and
inactivated virus, account for over 95% of vaccination doses
around the world, including the two mRNA vaccines BNT162b2
(Pfizer/BioNTech) and mRNA-1273 (Moderna), one adenovirus
vaccine AZD-1222 (AstraZeneca) and two inactivated vaccines
BBIBP-CorV and CoronaVac (Sinovac).219–221 Approved vaccines
have shown substantial efficacy in both in vitro neutralization and
populational scale against the ancestral strain of SARS-CoV-2,222

but emerging evidence indicated significant immune escape of
VOCs from the vaccine-induced protection.59,117,223–225

Neutralizing antibodies induced by the antigen underlie the
vaccine protection against SARS-COV 2 infection, and the
neutralizing titer of serum from vaccinated people is a key
indicator for evaluating vaccine effectiveness, making in vitro
neutralization analysis a convenient but important method for

Fig. 6 The summary of neutralization capability of approved antibodies against in vitro pseudovirus and authentic virus infection from SARS-
CoV-2 variants. The ranges of reported neutralization capability against each VOC are listed. The lower-limit concentration IC50 are indicated in
a red-to-blue color scale to represent the minimal neutralizing capability of each antibody reported. A bluer color indicates a reported
stronger evasion of VOCs from antibody neutralization than ancestral strain. The detailed antibody neutralization concentration from each
study could be referred in Supplementary Table 2
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monitoring vaccine-elicited humoral immunity against SARS-COV
2 variants.226,227 Nevertheless, due to the diversity in serum
condition, experimental procedures, and statistical calculation for
serum neutralization titer, current studies reported a wide range of
50% neutralization titer (NT50) of serum against each VOC strain.
Therefore, we listed the reduction fold in NT50 of pseudovirus or
authentic virus neutralization against each variant of the
mentioned authorized vaccines in average and the range
compared to the ancestral strain by reference to collective
information from Stanford University Coronavirus Antiviral &
Resistance Database (https://covdb.stanford.edu/) and the con-
tained corresponding studies on each vaccine228 (Fig. 7).
In summary, sera from people receiving programmed or even

booster vaccines showed a generally declined neutralization titers
against different SARS-COV 2 VOCs compared with neutralization
titers against the ancestral strain. For programmed vaccination,
Alpha,229–231 Gamma,232–234 and Delta235–237 variants manifested
relatively mild escape from neutralization (mostly ≤ 5 folds
reduction), followed by the Beta variant232,238,239 (mostly 5–10
folds reduction). The most prominent reduction in the Omicron
variant (mostly 10 folds reduction) was observed.60,193,235,240 This
phenomenon was consistent with the evasion of therapeutic
antibodies by Beta and Omicron variants discussed above, and
neutralization assay results obtained from authentic virus and
pseudovirus were generally parallel. The booster dose for each
vaccine appeared to increase the neutralizing capacity of vaccine
sera against VOCs by large, but the Omicron variants still
presented obvious evasion from vaccine sera, with 8, 4.7, and
9.3-folds decrease for BNT162b2,193,235,241–243 mRNA-
1273,235,242,244 and BBIBP-CorV,118,245,246 in the pseudovirus-
based assay, and 12.3, 9.1 and 16.3-folds decrease respectively
for BNT162b2,4,60,242,247,248 mRNA-1273,242,247,248 and AZD1222 in
the authentic virus-based assay.60

Further insight into the Omicron variant evasion from
neutralization showed an even remarkable decrease in vaccine
protection over time. In a study, sera were obtained from 17

people in the second week, third month, and the sixth-month post
BNT162b2 programmed immunization, and their neutralization
against SARS-COV 2 wild type or Omicron variant was measured
by authentic virus neutralization assay.249 It was found that the
proportion of samples with neutralizing titer below the limit of
detection against Omicron variants increased from 23.5% (2nd
week) to 41.2% (3rd month) and 64.7% (6th month), suggesting
that programmed vaccination of BNT162b could not elicit durable
protection against the Omicron variant, and strengthening the
necessity of booster vaccination.
SARS-CoV-2 VOCs, especially the Omicron variant, seriously

affect vaccine-induced immunity from sera neutralization. Booster
seems to be an ideal strategy for handling the immune evasion of
the Delta variant but still partially compromises the Omicron
variant. More importantly, as we have witnessed the continuing
decrease in neutralizing efficacy post programmed vaccination, it
deserves further observation on how well the neutralization titer
post-booster could be maintained, and the time durability of
elicited neutralizing antibodies could be another decisive factor
influencing the final protective efficacy of vaccines.

Viral inhibitor drugs. Compared to the antibody, the viral inhibitor
for SARS-CoV-2 focused more on the host factor facilitating viral
infection and SARS-CoV-2 non-structural proteins.205,250–253 These
proteins played a critical role during viral replication and maintained
relatively sequential stability compared to the spike.253–258 Two
mainstay strategies are adopted in developing antiviral drugs
against COVID-19, including novel design of virus-targeted drugs
and repurposing of currently available drugs with potential antiviral
activity.175,259,260 However, it often took decades to develop novel
drugs due to drug management authorities’ comprehensive
pharmacological and biosafety evaluation. Hence, broad-spectrum
drugs with prior validation against other pathogens such as viruses
(SARS-CoV, MERS-CoV, HIV, EboV) and parasites (Malaria Plasmo-
dium) received more attention for evaluation of their potential use
in the ongoing pandemic, and these repurposed drug candidates

Fig. 7 The summary of reduction folds of neutralization titers of elicited antibody by approved vaccines against in vitro pseudovirus and
authentic virus infection from SARS-CoV-2 variants. The average and ranges of reduction folds of neutralization titers against each VOC
compared to ancestral strain are listed. The average folds are indicated in a red-to-blue color scale to represent the average neutralizing
capability of each vaccine against variants. A bluer color indicates a stronger evasion of VOCs from neutralization of vaccine-elicited
antibodies in comparison to the ancestral strain. The detailed neutralization titer reduction from each study could be referred in
Supplementary Table 3
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are prone to large-scale manufacturing and delivery once sufficient
evidence was acquired examining their effectiveness against SARS-
CoV-2.261–265 Currently, various viral inhibitors are under clinical trial,
and some have entered clinical use.260,266–269

The emergence of SARS-CoV-2 variants and broad reports of their
evasion from neutralization by nAbs and vaccines lift the expecta-
tion of an anti-SARS-CoV-2 viral inhibitor.270 More and more
experimental and clinical studies revealed the unique advantage
of viral inhibitors in controlling the viral infection of VOCs due to the
conservative drug target.258,271–273

The antiviral effects of small molecule inhibitors are determined
by 50% and 90% effective concentration (EC50 and EC90) values.
Here, we listed EC50 of small molecules in ranges with the reported
value from corresponding studies on each molecule (Fig. 8).274

Broad-spectrum antiviral inhibitors: Various viruses, including influ-
enza virus, SARS-CoV, and MERS-CoV, employ TMPRSS2 to cleavage
the fusion protein to mediate viral-host membrane fusion. Thus,
TMPRSS2 inhibitors have become a promising target for inhibiting
virus infection.275–277 Camostat and Nafamostat mesylate are oral
TMPRSS2 inhibitors, and both enter phase III clinical trials with
previously reported applications on SARS-CoV and MERS-CoV
infection.278 Furthermore, Nafamostat was reported superior to
Camostat in specificity and effectiveness.261,279 Research reported
that these two drugs could effectively block the virus infection of
ancestral SARS-CoV-2.261,275,276 Moreover, another novel small
molecule compound targeting TMPRSS2, N-0385, exerted equivalent
potency against four VOCs, Alpha, Beta, Gamma, and Delta variants,
with EC50 ranging from 2.1 to 13.9 nM from SARS-CoV-2 nucleocapsid
staining assay, and 2.6–26.5 nM from dsRNA staining assay.251,280

Chloroquine is a widely used antimalaria and anti-autoimmune
drug by modulating endosomal pH and disturbing the Clathrin-
dependent endocytosis to inhibit pathogen entry into the host
cell, for which it manifested broadly anti-pathogen activity.281

Chloroquine was first reported to be active against SARS-CoV-2
in vitro in early 2020, which promoted clinical trials and
authorization.264,274,282,283 Later, it faded out of the list of antiviral
agents against SARS-CoV-2 with disproved inhibiting infection at
the cellular level and protection in clinical practice.284–286 Mpro/
3CLpro and PLpro play essential roles in transforming viral
polyprotein into an active form in SARS-COV-2 replication.287–289

Therefore, drugs targeting the two proteins may significantly
reduce the viral replication in the host cell.290–293

Lopinavir was the firstly-reported 3CLpro inhibitor for SARS-
CoV-2, repurposed from inhibiting human immunodeficiency
virus 1 (HIV-1).294 It has entered Phase III/IV clinical trials
(ClinicalTrials.gov number, NCT04738045, NCT04328285,
NCT04364022) with preclinical support (estimated EC50
26.63 μM in vivo).271 However, Lopinavir-Ritonavir provided no
benefit for severe Covid-19 patients and few studies investigate
variants susceptibility to the drug.295 Later, Nirmatrelvir was
raised by Pfizer as a novel 3CLpro inhibitor for SARS-CoV-2. The
FDA approved the Paxlovid comprising Nirmatrelvir and another
molecule Ritonavir, to postpone drug metabolism in vivo, with
Emergency Use Authorization (EUA) in December 2021.296,297

Comprehensive studies were performed to investigate its
efficacy against SARS-CoV-2 VOCs. Results indicated that
Nirmatrelvir-maintained effective (EC50 0.08–0.18 μM—WT and
0.09–0.21 μM—Omicron) against various VOCs, including Omi-
cron. This can be explained by the conserved bind pattern

Fig. 8 The summary of neutralization capability of small molecule drugs against in vitro authentic virus infection from SARS-CoV-2 variants.
The ranges of neutralization capability of small molecule drugs targeting both viral and non-viral targets against VOCs are listed. The lower-
limit concentration EC50 are indicated in a red-to-blue color scale to represent the minimal neutralizing capability of each antibody reported. A
bluer color indicates a stronger evasion of VOCs from neutralization of small molecule drug in comparison to ancestral strain. The detailed
small molecule neutralization capability from each study could be referred in Supplementary Table 4
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between P132H 3CLpro in complex with Nirmatrelvir under
structural simulation.258,272,298,299 GRL-0617 was reported to be
a novel drug targeting the PLpro of SARS-CoV-2. Despite the
status as a preclinical study, the relatively high efficacy against
ancestral strain infection in vitro (EC50 1.9–2.5 μM—WT) may
suggest its bright future for further investigation.300–302 Studies
also pointed out that combinatorial use of 3CLpro and Mpro
inhibitors could significantly inhibit SARS-CoV-2 variants, broad-
ening the use of drugs targeting these two proteins.303,304

RdRp inhibitor: RNA-dependent RNA polymerase (RdRp) is
employed by RNA viruses, including SARS-CoV-2, to replicate the
viral genome and translate the protein, and such critical functions
make it a great target for drug design.253,305 Several RdRp inhibitors,
repurposed from another pathogen usage, were approved or entered
clinical trial as SARS-CoV-2 inhibitors, such as Remdesvir, GS-441524,
Molnupiravir, EIDD-1931, and Favipiravir.306

Remdesivir, an adenosine analog created by Gilead as an Ebola
virus inhibitor, was the first to show that it could bind SARS-CoV-2
RdRp and disrupt RNA replication, acting as a translocation barrier.
Remdesivir was the first drug approved by FDA for COVID-19 in
pediatric and adult hospitalized patients in May 2020.262 A parallel
study manifested even stronger antiviral activity against all VOCs
than Nirmatrelvir (EC50 0.05–0.06 μM—WT and 0.04–0.06 μM—
Omicron).272 Although in vitro experiments have suggested that it
displays great resistance to VOCs’ mutation,272 a recent meta-
analysis revealed that the medication has no effect on COVID-19
protection, and WHO announced a conditional recommendation
against remdesivir’s use in hospitalized patients.266,307 These
controversial results raised questions about whether Remdesivir
was clinically effective in inhibiting SARS-CoV-2 emergent variants
and whether the RdRp-targeted drugs were an ideal strategy to
overcome the evasion of variants from therapeutic agents.272 The
active metabolite of Remdesivir, GS-441524, entered the Phase I
clinical trial. It was once used to inhibit the Feline infectious
peritonitis virus (FIPV), a coronavirus, targeting the viral
RdRp.308,309 GS-441524 was also effective for inhibiting all VOCs,
with almost unaffected efficacy for the Omicron variant (EC50 0.15-
2.08 μM—WT and 0.42-0.57 μM—Omicron).272 Whereas EIDD-1931
and its active form Molnupiravir (EIDD-2801) is also a nucleoside
analog developed by Drug Innovation Ventures from Emory
University, also targeting the SARS-CoV-2 RdRp.310,311 Molnupiravir
has been approved by FDA for clinical use as the first oral drug
treating SARS-CoV-2, and it displayed broad efficacy against
multiple RNA viruses.270,294,312 Studies found that it could
effectively inhibit the infection of both SARS-CoV-2 ancestral
strain and Omicron variant in vitro (EC50 3.57–4.15 μM—WT and
1.86–1.95 μM—Omicron).5,263

The viral inhibitor developed for SARS-CoV-2 mostly manifested
maintained efficacy against the VOCs, significantly different from
the performance of currently approved antibodies or vac-
cines.258,272,313 Although non-viral specific drugs such as Camostat
could theoretically avoid the mutational impact of SARS-CoV-2
variants due to the independence of viral target,313–316 their
general antiviral capability against authentic virus infection in vitro
were relatively inferior to the viral-specific drugs such as
Nirmatrelvir.258 However, more evidence has shown that non-
structural proteins were also under the pressure of viral
mutations.25,159 Despite the outstanding efficacy of currently
approved 3CLpro inhibitors like Paxlovid and RdRp inhibitors like
Molnupiravir against the Omicron variant, more attention should
be paid to the future possible strain with significant mutations
located on these viral proteins affecting the drug efficacy.

Impacts of SARS-CoV-2 variants on pandemic control
The epidemiological landscape of variants. The persistent pan-
demic has witnessed the epidemiological change in virus spread
due to various factors, including the emergence of variants,

application of vaccines, and disease control policy implemented
by global society.317–319 Globally, over 450 million infection cases
and 6 million death cases were reported by the WHO (February
2022). Europe and the Americas accounted for the most confirmed
cases, followed by Asia, Oceania, and Africa. Each SARS-CoV-2 VOC
strain superseded the previous one to become the regionally or
globally dominant strain during the pandemic. All the VOCs
manifested diverse transmission dynamics, responses to vaccines,
and impacts on infection outcomes to the difference in molecular
profiles and immune escape as we have described. Hence, the
epidemiological characteristics of SARS-CoV-2 variants would
provide the preliminary impression for the investigator to analyze
their distinct behavior in the global spread and immune evasion.
We collected the data from Our World in Data320 and WHO

COVID-19 dashboard321 from January 2020 to February 2022
and aligned the time scale to comparatively overview the
influence of emerging SARS-CoV-2 VOCs (Fig. 9). The designat-
ing timepoint of each VOC was marked as a reference timeline
for evaluation. It was shown that the emergence of all VOCs
was closely correlated with an increased number of weekly
reported infected cases and death cases, which also explained
the meaning of “Variant of Concern”. In particular, the Omicron
variant manifested astonishing capability in causing emergent
infection, with a peak of over 20 million cases per week by the
end of February 2022. It was yet to cause more death cases per
week than Alpha, Beta Gamma, and Delta variants. Along with
the emergence of VOCs, the worldwide application of vaccines
also underwent steep expansion. It was shown that the early
emergence of variant Alpha and Beta was associated with the
initiation of global vaccination. Then, the emergence of the
Gamma and Delta variants urged a more rapid application of
vaccines around the world, and peak vaccination dose per day
(around 40 million doses) could be observed right after the
Delta variant was listed in the VOC. Despite that no emergent
VOC was announced from June to October 2021, the global
vaccination campaign maintained a relatively continuous trend
until the emergence of the Omicron variant. With reports on
the evasion of Delta, booster vaccination was started but still
not widely applied. However, the significant evasion of novel
SARS-CoV-2 variants from current antibodies and vaccines by
prospective experiments revealed the deficiency of pro-
grammed vaccination, and it can be observed that the
emergence of Omicron variants was highly associated with
the rapid application of booster vaccination, indicating a global
consensus on the necessity of improving vaccination efficacy
against emergent SARS-CoV-2 variants.
However, the documented infection and vaccination status

displayed a prominent imbalance between regions. Europe and
the Americas recorded the most infection and death cases but
received more doses for both programmed and booster
vaccination in the population. The proportions of people with
completed programmed vaccination in South America, North
America, and Europe were 69%, 61%, and 64%, but the
proportion of confirmed cases in the world of these regions
was around 50%, 8%, and 8% by the end of February 2022. In
comparison, new cases proportion (0.6%) and applied doses for
programmed vaccination (12%) in Africa were largely behind
the world level. Reasonable speculation about the low number
of infected cases and vaccination doses should include that the
backward economy and relatively low administrative ability in
Africa hinder a broad test for COVID-19 positive cases and wide
use of vaccination, which could make this region a black box
for actual viral transmission and affection to people’ health and
a potential reservoir for viral spread and evolution in the
human population. This could also be the case in other
countries lacking the broad COVID-19 testing capacity, as the
COVID-19 tests per one million people were reported to be low
in Asian countries like Afghanistan.
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Vaccine efficacy. The observed huge reduction in the neutralizing
efficacy of vaccine sera against SARS-CoV-2 variants raises the
concern of vaccine efficacy in preventing both infections and,
more importantly, severe diseases,322,323 for which clinical studies

were performed to evaluate the performance of vaccines in
protection from viral infection and virus-induced diseases. The
vaccine efficacy or effectiveness (VE) was used to describe the
proportionate reduction in cases with endpoint signs among the

Fig. 9 Epidemiological profile of SARS-CoV-2 infection and populational vaccination. a The global distribution of accumulated confirmed
COVID-19 cases was reported by the WHO COVID-19 dashboard in February 2022. b The aligned trend of global weekly cases per million
people, weekly death per million people, daily vaccination doses per million people, the proportion of programmed vaccination per 100
people, and proportion of booster vaccination per 100 people from January 2020 to February 2022. The timeline of emergent VOC by WHO
classification is marked, and the regional data curve is colored differently. c The regional proportion of emerging cases of COVID-19 in
February 2022. d The regional data of applied doses for programmed vaccination and booster vaccination. All the data comes from the
website Our World in Data (https://ourworldindata.org/coronavirus), WHO COVID-19 dashboard (https://covid19.who.int/), and the figures in
related are generated under the CC-BY 4.0 permission
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vaccinated group compared to an unvaccinated group. It is
calculated as follows:

VE ¼ 1� risk among vaccinated groups
risk among unvaccinated groups

� �
´ 100%

Three major endpoints were broadly used to evaluate vaccine
efficacy,324 documented infection, symptomatic infection, and
more severe hospitalization cases. The four vaccines, BNT162b2,
mRNA-1273, AZD1222, and CoronaVac, were all effective
against the ancestral strain of SARS-CoV-2, displaying high
efficacy in preventing both asymptomatic and symptomatic
infection325,326 but are now challenged by the emergence of
VOCs. Here, we summarized the VE of four widely applied
vaccines against SARS-CoV-2 VOCs and listed their performance
in preventing different outcomes after programmed vaccina-
tion and booster vaccination (Fig. 10). Unless specified as d/w/
m for the time post certain vaccination program, the VE
reported in the table was calculated from 14 days post-
vaccination until the study reached the research endpoint.

Programmed vaccination: The two mRNA vaccines, BNT162b2
and mRNA-1273, maintained equivalent protection efficacy
against Alpha327–331 Beta,221,330,332,333 Gamma,327,330,333,334

and Delta221,327,330,335–337 variants in all major endpoints, with
only a moderate decrease in protection against documented
Beta variant infection.338 For the adenovirus vaccine AZD1222,
VE for Beta variant symptomatic infection was found to drop
dramatically to 10.4% (95% CI: −76.8 to 54.8) in a prospective
study performed in South Africa among 2026 participants,328

while the protection against Alpha,330,339,340 Gamma,330,334

and Delta339,341–343 variant was mostly retained. This result was
consistent with the observed decline in neutralizing activity of
vaccine sera against the Beta variant as described above. For
CoronaVac, data was comparatively limited.344,345 One large
national cohort study in Chile, including about 2 million 6–16
years old participants, suggests that programmed vaccination
of CoronaVac remains effective against Delta variant, reducing
74.5% (95% CI, 73.8–75.2) of symptomatic infection and 91.0%
(95% CI, 87.8–93.4) of hospitalization.346 However, CoronaVac
VE against Gamma variant 14 days post the second dose was
estimated to be 46.8% (95% CI, 38.7–53.8) regarding sympto-
matic infection and 55.5% (95% CI, 46.5–62.9) regarding
hospitalization, suggesting that Gamma variant may dramati-
cally compromise CoronaVac-elicited immune protection.341

Vaccine protection against Omicron variant conferred by
complete vaccination of BNT162b2, mRNA-1273, and AZD1222,
significantly reduced. Programmed vaccination of AZD1222 was
found to offer no significant protection against Omicron

Fig. 10 The summary of vaccine efficacy (VE) against infection from SARS-CoV-2 variants after programmed or booster vaccination. Three
major outcomes are recorded, including documented infection, symptomatic infection, and hospitalization or more severe cases. Each
vaccine’s average VE and 95% confidential interval (CI) against variants are listed. The average VE value is indicated in a red-to-blue color scale
to represent the average protective efficacy against each outcome. A bluer color indicates worse protection from the outcome of vaccines.
Detailed efficacy data could be referred in Supplementary Table 5
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documented infection 14 days post-immunization in 2 recent
studies,347,348 and only very limited protection against Omicron
documented infection within 3 months post-immunization and VE
against Omicron symptomatic infection or severe cases after
vaccination was around 50% (2–4 weeks post) or 85%
(0–3 months).343 For the 2 mRNA vaccines, VE against Omicron
documented or symptomatic infection also decreased dramati-
cally within 2-4 weeks after the programmed vaccination, while VE
against hospitalization for Omicron maintained over 70% in the
same period. A study investigating the recent Omicron outbreak
in Hong Kong reported that programmed vaccination of
CoronaVac and BNT162b2 offered minimal protection against
mild/moderate disease but relatively robust protection (VE all over
70% in different age groups) against severe outcomes.345 In
general, current evidence suggests that programmed vaccine
protection, especially against documented or symptomatic infec-
tion, is substantially evaded by Omicron.

Booster vaccination: Since the clear reduction in VE of pro-
grammed vaccination was observed, a booster dose is now widely
accepted, especially in countries with a high programmed
vaccination implementation rate. VEs of booster vaccination listed
in the table are calculated in people receiving homologous
boosters compared to unvaccinated people. As discussed above,
vaccine protection declined over time. Reports showed that VEs of
2 doses of mRNA vaccines (BNT162b2 or mRNA-1273) against
documented Delta variant infection declined to less than 60%
over 6 months, and the booster dose reinforced the VE to over
70%.349 In a recent study, VE against symptomatic Delta or
Omicron infection was investigated, with booster vaccination
taken into consideration.343 It revealed that VEs with AZD1222,
BNT162b2, or mRNA-1273 against Omicron symptomatic infection
reached approximately 48.9%, 65.5%, or 75.1% within 2–4 weeks
post programmed vaccination but then continuously declined to a
half from the peak after the 15–19 weeks for AZD1222 and
10–14 weeks for the mRNA vaccines, while VE against sympto-
matic infection of all three vaccines barely existed 20 weeks post
programmed vaccination.
Furthermore, VEs of primary AZD1222 vaccination followed by

homologous or heterologous mRNA vaccine boost, and primary
mRNA vaccination followed by a homologous or heterologous mRNA
vaccine boost were investigated. Booster vaccination effectively
elevates VEs against Omicron symptomatic infection to an equivalent
or even higher level than VEs post programmed vaccination. The
importance of booster vaccination, especially for senior citizens, has
also been well addressed in the current Hong Kong outbreak of
Omicron, in which the third dose of BNT162b2 or CoronaVac
conferred a 71.9% (95% CI: 25.1–89.5) or 96.6% (95% CI: 85.7–99.2)
extra protection against severe or fatal COVID-19 to people over 80
years as compared with programmed vaccination.345

In general, despite the reduction in neutralizing titers of vaccine
sera against various VOCs, programmed vaccination displayed
great performance in protecting people from symptomatic and
severe infection of VOCs, except Omicron. All currently approved
vaccines in programmed doses did not manifest clear protection
from documented infection of the Omicron variant, and more
importantly, the efficacy would decrease over time. Application of
booster vaccination enhances vaccine efficacy regardless of the
booster vaccine type, reinforces the declined protection, and
protects against severe infection of the Omicron variant. Never-
theless, it remained a question of how durable the VE was after
booster vaccination. More importantly, booster vaccination did
not provide extra protection against documented infection of the
Omicron variant, which alarmed the global society about the
necessity of strict policy for controlling the virus transmission.

Virus transmission in human and animal populations. Multiple
studies have identified the increased affinity of SARS-CoV-2 spike

protein or RBD with receptor ACE2, leading to a possible higher
viral infectivity or faster transmission.36,68,73,350–352 The SARS-CoV-
2 fitness is a concept to depict the advantages of certain strains
during virus spreading and transmission, including stronger
binding to ACE2-expressing cells, higher fusion activity, more
rapid transmission between hosts, faster replication, and increased
viral loads in infected subjects.22,26,353–357 Moreover, as the ACE2
of other mammals share sequence similarity with human ACE2,
the mutations located on RBD that affect the binding with human
ACE2 could increase the affinity to ACE2 of other mammals and
increase their susceptibility to SARS-CoV-2.357–364

Human transmission: As multiple in vitro and in vivo research
have identified the viral fitness change under the influence of
certain mutations in the spike protein from different VOCs, the
transmission efficiency in the population could be altered. For
in vitro study, single mutation N501Y, D614G, L452R, and P681R
and set mutations from Alpha, Delta, and Omicron in spike protein
were found to increase the viral fitness, enhancing both
transmissibility and replication, indicating that except evasion
from neutralization, mutations of SARS-CoV-2 can bring in
advantage for viral transmission.56,206,365–370 Hence, populational
studies were also performed to investigate the transmission
dynamics of SARS-CoV-2 variants (Fig. 11).
In general, epidemiologists have studied the change in

transmissibility of each of the VOCs compared to the co-
circulating VOCs at their time. Alpha, Beta, Gamma, and Delta
variants, were reported with higher transmissibility of 43–90%,371

around 50%,43 170–240%,372 or 130–170%373 than their co-
circulating VOCs, respectively, and Omicron is estimated to be
even more transmissible compared with Delta variant, especially
in the vaccinated population.40,371,374–379 A recent study con-
ducted in Denmark analyzed the transmission of Delta and
Omicron variants among 11,937 households and found that
Omicron was 2.61 (95% CI: 2.34–2.90) times or 3.66 (95% CI:
2.65–5.05) times more transmissible than Delta among fully-
vaccinated households or booster-vaccinated households, but
only merely 1.17 times (95% CI: 0.99–1.38) among unvaccinated
people, suggesting that the real-world advantage of Omicron
variant in transmission over Delta variant may be largely
attributed to the evasion of vaccine-elicited protection of
Omicron, especially in the context of broad vaccinated population.

Animal transmission: With increasing studies revealing the
sequence similarity between human ACE2 and other mammalian
ACE2, growing evidence indicated that SARS-CoV-2 can also infect
animals.360,363,364,380–383 An international organization OIE (World
Organization for Animal Health), recorded the investigation of
animal infection of SARS-CoV-2. Over 600 outbreaks in animals
have been reported worldwide, affecting 19 species in 35
countries (Fig. 7384,385). Currently, animals including the Feline
family (Cat,386–389 Lion, Tiger,390 Snow leopard,391 Fishing, cat,392

Lynx), Dog,358,393–395 Mink,111,389 Otter,396 Ferret,394,397,398 Gorilla,
Deer,399–402 Binturong, Coatimundi, Hippo,403 and Hamster404,405

were reported with positive cases of SARS-CoV-2 infection. These
results suggested the existence of a human-to-animal transmis-
sion pathway.
Moreover, evidence shows animal-to-animal transmission

between cats, minks, ferrets, and hamsters, which even shows
that the animal population near human activity could be a
repository for SARS-CoV-2.394,404,406–408 Studies on mink farms
indicated that SARS-CoV-2 could transmit between human and
mink and back to human,111,408 while non-synonymous muta-
tions could be found in the mink sequence. These results
further implied that SARS-CoV-2 evolution could occur during
intra-animal populational transmission, and such mutant strain
could be transmitted back to humans by animal-to-human
transmission.

Molecular characteristics, immune evasion, and impact of SARS-CoV-2. . .
Sun et al.

13

Signal Transduction and Targeted Therapy           (2022) 7:202 



Besides the study on the general transmission among animals,
SARS-CoV-2 variants manifested an inclination of broad host
spectrum tropism. In vitro studies have shown that various VOCs
displayed higher affinity to murine ACE2, and mice challenged
with the authentic virus of Alpha variant developed pathological
changes along the respiratory tract compared to the ancestral
strain.409 The primary outcomes suggested that the host tropism
of SARS-CoV-2 variants in animals tends to expand.
Generally, SARS-CoV-2 variants manifested an increase in trans-

missibility among the human population,410–412 and the Omicron
variant, with its remarkable evasion from neutralization, displayed an
even stronger populational prevalence.374,413 Furthermore, the
findings of animal infection of SARS-CoV-2 further displayed that
the virus enjoyed broader transmission due to the wider host tropism
and huger reservoir for viral evolution, which could facilitate the
emergence of SARS-CoV-2 variants and exacerbate the burden of
global cost in containing the pandemic. More evidence was required

to demonstrate an enhanced transmission of SARS-CoV-2 variants to
animal populations in wild conditions.

Clinical presentation and complications. With the broader dis-
tribution, enhanced evasion, and improved transmissibility men-
tioned above, SARS-CoV-2 variants infection cause more
heterogeneous outcomes in patients mainly in two ways: the
stronger but comprehensive ability to cause severe diseases due
to immune escape from host immunity and faster replication, or
the strain-specific mutational impact on viral protein leading to
diversity in pathogenesis.

Overall clinical outcome: Risks of hospitalization and severe
cases of death related to Alpha,378,414 Beta,414 Gamma,414,415 or
Delta416 variant infections increased. Conversely, the Omicron
variant shows a decrease in disease severity. This is consistent with
the laboratory finding that Omicron infected mice showed

Fig. 11 Change in SARS-CoV-2 variants transmissibility and patterns for transmission among human and animal populations. The
transmissibility of SARS-CoV-2 VOCs increased over strains during human-to-human transmission. And substantial evidence reveals the SARS-
CoV-2 transmission from humans to various mammalian animals as reported by OIE (https://www.oie.int/en/what-we-offer/emergency-and-
resilience/covid-19/). There have been cases reporting the transmission between animal populations and animals to humans, making wild
animals or pets a potential reservoir for viral preservation and evolution. BioRender is used to generate this figure
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reduced replication in respiratory tracts and ameliorated lung
pathology compared with ancestral strain or Delta variant infected
mice, and weight loss and mortality rate of Omicron infected mice
were also lowest.417 Epidemiologically, Omicron variant infection
was associated with a lower risk of hospitalization, ICU admission,
mechanical ventilation, and a shorter length of hospital stay than
Delta variant infection by large.414,418

Acute clinical presentations in common: Clinically, the infection
of SARS-CoV-2 is diagnosed with reverse-transcription PCR as the
gold standard and could be classified into different clinical types
according to clinical manifestations and radiological examina-
tions.419 Severe COVID-19 in adults is defined as meeting any of
the following conditions: dyspnea with the respiratory rate of 30/
min, blood oxygen saturation of 93%, the ratio of the partial
pressure of arterial oxygen to the fraction of inspired oxygen
(Pao2:Fio2) 300mm Hg, or lung imaging showing infiltrates in
more than 50% of the field.420 In a large case series published by
the Chinese Center for Disease Control and Prevention early in the
pandemic, mild, severe, and critical cases accounted for 81%, 14%,
and 5%, respectively, and the case-fatality rate was 2.3% in the
44,672 confirmed COVID-19 cases series.421 Nevertheless, severe
cases and mortality rates vary as the vaccination campaign
progresses. Pandemic lineage shifts variant and experience in
treatment accumulates, which should be noticed in the following
discussion about clinical manifestations of SARS-COV-2 infection,
references of which would inevitably be limited by the
representativeness of the study population and time.
In clinical practice, the average incubation period (interval

between exposure to symptom onset) is approximately 5 days, and
most people develop symptoms within 11.5 days after infection.422

Common symptoms include fever, dry cough, fatigue, and shortness
of breath.423,424 Among hospitalized patients, common symptoms
were fever (>90%), dry cough (60–86%), shortness of breath
(53–80%), and fatigue (23–70%) (Fig. 8).425–427 In patients with mild
symptomatic infection, fatigue, cough, and fever were reported with
occurrence rates of 68%, 60%, and 56% as most frequent symptoms,
and an altered sense of smell or taste was reported at a rate of
around 3%.428 Besides these symptoms, sore throat, rhinorrhea,
diarrhea, nausea, abdominal pain, myalgia, chest pain, dizziness,
headache, anosmia, ageusia, testicle pain, and many other symptoms
have been reported for SARS-COV-2 infection.429–431 As for laboratory
findings, common laboratory abnormalities among hospitalized
patients include lymphocytopenia (83.2%), thrombocytopenia
(36.2%), and leukopenia (33.7%). Most patients had elevated
C-reactive protein levels, and some had additional increased levels
of aspartate aminotransferase, alanine aminotransferase, creatine
kinase, or D-dimer.425,432 Chest radiographs or CT scans found that
radiological abnormalities were common among hospitalized
patients on admission, including consolidation (59%), ground-glass
opacity (71%), and bilateral pulmonary infiltration (75%).427

Infected patients could develop more severe complications,433

especially with risk factors including older age, comorbidities,
immunocompromise, obesity, and heavy smoke.433–436 Most
hospitalized patients (91.1%) are diagnosed with pneumonia by
physicians on hospital admission, with a mean incubation of
3 days after onset of symptoms, and 3.4–8% of hospitalized
patients developed ARDS (acute respiratory distress syndrome426).
Extrapulmonary complications were observed in different organs
and systems, including myocarditis,437–439 arrhythmia,440–442

myocardial ischemia443–445 regarding the cardiovascular system,
acute kidney injury446–448 and electrolyte abnormalities,449–451

hyperglycemia,452 and ketoacidosis453 in the urinary system,
endocrine system, stroke,454–456 and encephalitis423,457,458 regard-
ing the neurological system (Fig. 12).459

Long-term post-acute clinical presentations in common: Besides
acute symptoms and complications, SARS-CoV-2 infection could

leave a long-lasting or fluctuating impact on patients, termed long
COVID.460,461 The World Health Organization has defined it as a
condition that “occurs in individuals with a history of probable or
confirmed SARS-CoV-2 infection, usually 3 months from the onset
of COVID-19 with symptoms lasting at least 2 months and cannot
be explained by an alternative diagnosis.” It should be noticed
that, for practical reasons, many studies investigating post-acute
COVID-19 syndrome were based on self-report data, and the
claimed symptoms were not validated with a comprehensive
inspection to exclude another possible diagnosis, which means
that they should not be recognized equivalently as long COVID.462

One important finding is that the post-acute COVID-19 syndrome
is not just limited to patients with severe COVID-19.463,464 In a
study investigating post-acute syndromes in SARS-CoV-2 sympto-
matic infection patients over 18 years old, 35% of the
274 symptomatic respondents, with over half of them under 50
years old, reported “not having returned to their usual state of
health 2 weeks or more after testing”, and the most common
symptoms were fatigue (71%), cough (61%), and headache (61%).
Another study included self-reported data of around 100
thousand people with diagnosed COVID-19 infection previously
and found that 37.7% of them reported at least one persistent
symptom lasting for at least 12 weeks, with fatigue, shortness of
breath, myalgia, and insomnia being the most common symp-
toms.465,466 A meta-analysis analyzed the prevalence of post-acute
COVID-19 syndrome symptoms and found that many COVID-19
patients experienced long-lasting post-acute COVID-19 syndrome
after recovery from the acute phase of infection.467 The clinical
manifestations involve a wide range of systems, and the most
common symptoms were fatigue (32%), dyspnea (25%), sleeping
disorder (24%), and difficulty in concentrating (22%) within
3–6 months following infection. Many other symptoms, including
depression, anxiety, palpitations, effort intolerance, chest pain,
diarrhea, joint pain, myalgia, cognitive disorder, headache, and
cough, are also found in no less than 10% of convalescent patients
in this period. Under the current pandemic of the Omicron variant,
infections continuously occur for evasion of vaccine and infection-
induced immunity, meaning that a large proportion of people may
suffer the post-acute COVID-19 syndrome, which raised the
importance of further studies exploring underlying mechanisms
and treatment of the post-acute COVID-19 syndrome468 (Fig. 12).
Especially a recent study based on UK Biobank data found that

participants infected with SARS-CoV-2 showed a greater reduction
in grey matter thickness and global brain size than the controls,
with the reduction still being significant after excluding hospita-
lized cases.469 This study raised concern about the impact of SARS-
CoV-2 infection on the neurological system.

Diversity in clinical presentation among VOCs: Evidence regard-
ing the impacts of SARS-CoV-2 variants on certain symptoms was
relatively limited. A previous meta-analysis found that anosmia was
much more prevalent among populations predominantly infected
with the G614 virus (pooled prevalence of 31.8%) as compared with
populations predominantly infected with the D614 virus (pooled
anosmia prevalence of 5.3%), suggesting that the D614G mutation
contributed to the prevalence of anosmia in COVID-19.470 The
Omicron variant was linked to a decrease in disease severity, which
has been discussed above and was also found to impact clinical
manifestation.414 Compared to Delta variant, anosmia was reported
less often in Omicron variant infection cases (13% of Omicron cases,
34% of Delta cases, OR: 0.22, 95% CI: 0.21–0.23), and sore throat was
reported more often in Omicron variant infection cases (53% of
Omicron cases, 34% of Delta cases, OR: 1.93, 95% CI: 1.88–1.98).471 A
Laboratory study found that replication of the Omicron variant was
similar to the Delta variant in human nasal cultures but lower in lung
cells and gut cells.472

With a sharp increase in infected cases worldwide, even mild
cases of infection could be extremely troublesome for regions
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with poor medical resources. A variety of COVID-19 acute infection
symptoms could affect almost every critical body system in
humans.459 More serious consideration should be given to a wider
and more rapid application of booster vaccination globally. The
long COVID further suggests that the infection of SARS-CoV-2,
even if not deadly, may bring a long-term negative influence on
the infected population and decrease the life quality post-
infection.473

Discussion and perspective. As the COVID-19 pandemic persisted,
various SARS-CoV-2 variants emerged and became a major threat
to public health.110,474–476 These variants harbored critical muta-
tions in structural and non-structural proteins, affecting protein
stability, antigenicity, and function.317,477 The accumulated impact

on viral proteins at the single-residue level led to significant
changes in biological behaviors of the virus, including infection,
transmission, replication, and response to host immunity, and
finally influenced the clinical phenotypes and presentations post-
viral infection. Therefore, systematic studies connecting the
molecular, biological, epidemiological, and clinical evidence of
SARS-CoV-2 variants would be greatly demanded to provide
insightful and constructive ideas for fundamental research on the
virus itself and pandemic disease control.
The sequencing data from SARS-CoV-2 isolated samples

provided evolutionary trace and revealed a newly-emergent
strain. The evolutionary and sequential abundance analysis
witnessed the Omicron strain as the most-diverged strain from
the ancestors and currently the most prevalent strain. As more

Fig. 12 The overview of SARS-CoV-2 infection affecting the human system and summary of acute and long-term symptoms post. COVID-19
could lead to various symptoms occurring in various body systems except for the expiratory system. The summary table lists the clinical
presentations of COVID-19, including severe and mild symptoms during acute infection and long-term symptoms with the occurrence time
and rate. The reported occurrence rates of long-term symptoms are average with the 95% confidential interval (CI), and the occurrence time is
presented as the time (m - month) post-infection. BioRender is used to generate the human body system presenetation
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mutations were found, the greater concern was given to the
surveillance of mutational impact on the critical viral proteins.478

Among the structural proteins of SARS-CoV-2, spike protein was
regarded as the most important target determining the fate of
viral recognition and fusion due to its binding with host receptor
ACE2, for which mutation located on the spike protein exerted
versatile influence on the structural characteristics, including
receptor affinity, antibody binding, structural stability, and protein
yield.479 These factors had an enormous and direct impact on the
viral activity and response to host immunity and highlighted the
value of current effort in closely monitoring the critical mutations
leading to a significant alteration in vitro structural and biological
features of spike protein from variants.480 Whereas, less attention
was given to the accumulated mutations in non-structural
proteins with extremely important biological functions during
the virus life cycle, as they were by the large recognized stable
invariants. However, the discovered mutation locus from the
variants of concern at non-structural proteins with reported
evidence showing the impact on structural stability doubts their
“uninfluenced” prospect as a target for drug development. More
experimental evidence was required to reveal the mutational
impact on these key viral proteins in modeling the structural
characters and mediating viral replication.
Since the mutations brought new molecular characteristics to

key proteins of SARS-CoV-2, therapeutic strategies against viral
infection confronted more challenges. It has been widely reported
that all the VOCs manifested varied immune escape, especially the
Omicron.50,323,481,482 Extensive effort has been put into revealing
both molecular and immunological basis of the resistance of these
variants to an antibody or vaccine sera targeting spike protein,
and increasing evidence has indicated the connection between
the structural change in protein-antibody complex and the
diminished neutralizing capability of antibodies.483–486 These
results possibly suggested a positive selection of emergent strains
harboring mutations in spike protein with a potent immune
escape from humoral immunity in the global population. The
breakthrough of currently available recombinant or vaccine-
induced antibodies has led to growing worried about the future
development of antibody-based therapy.190,322,487 In comparison,
recently, good news came from the small molecule drug targeting
non-structural proteins such as 3CL protease inhibitor Nirmatrelvir
and RdRp inhibitor Molnupiravir, as they manifested well-
maintained antiviral activity against SARS-CoV-2 variants including
Omicron during in vitro experiment. Therefore, closer monitor of
drug resistance due to mutational change in non-structural
protein targets and more high-level clinical evidence of drug
efficacy are in demand to provide clear guidance in the use of
anti-SARS-CoV-2 drugs against variants,488–490 while a “game-
changer” method for developing variant-effective antibody is
under great expectation.
With the changes in response to current therapeutic agents,

SARS-CoV-2 variants exhibited various epidemiological and clinical
manifestations differed by strain.425 The global epidemiological
profile has shown an unprecedentedly rapid spread of the
Omicron variant. Interestingly, global vaccination against SARS-
CoV-2 rapidly increased since the first identification of the Alpha
variant as VOC. In particular, the distribution of emerging infection
and vaccination quota displayed a huge geographical imbalance
and a mismatched relationship. Moreover, the vaccination efficacy
confronted great challenges from the SARS-CoV-2 variants. Clear
breakthrough has been observed among all vaccines for their
programmed vaccination, and booster vaccination cannot provide
significant sterile immunity toward the infection but higher
efficacy in preventing symptomatic and severe cases. However,
the duration of protection from the booster vaccination could be a
key point for its efficacy against SARS-CoV-2, and more studies are
required to answer this question.491,492 Besides, the higher
transmissibility among the human population and wider host

tropism of SARS-CoV-2 urged more attention to the transmission
dynamics of the virus between humans or between humans and
animals.381,492 As the potential virus bank, animal infection of
SARS-CoV-2 might become an “Achilles’ heel” for disease
surveillance and containment.493 Although an overall reduction
in the Omicron variant-related death rate was observed, the
increasing number of infected cases raised to worry about the
global medical resources for curing the symptomatic infection. As
more evidence has demonstrated the acute and long-term impact
of SARS-CoV-2 infection,420,443,494–497 greater effort should be
given to reduce populational infection instead of merely focusing
on the number of death cases. Governments should realize the
importance of collaboration in COVID-19 disease control.
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