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Clinical and translational values of spatial transcriptomics
Linlin Zhang1, Dongsheng Chen2, Dongli Song1, Xiaoxia Liu1, Yanan Zhang3, Xun Xu4✉ and Xiangdong Wang1✉

The combination of spatial transcriptomics (ST) and single cell RNA sequencing (scRNA-seq) acts as a pivotal component to bridge
the pathological phenomes of human tissues with molecular alterations, defining in situ intercellular molecular communications
and knowledge on spatiotemporal molecular medicine. The present article overviews the development of ST and aims to evaluate
clinical and translational values for understanding molecular pathogenesis and uncovering disease-specific biomarkers. We
compare the advantages and disadvantages of sequencing- and imaging-based technologies and highlight opportunities and
challenges of ST. We also describe the bioinformatics tools necessary on dissecting spatial patterns of gene expression and cellular
interactions and the potential applications of ST in human diseases for clinical practice as one of important issues in clinical and
translational medicine, including neurology, embryo development, oncology, and inflammation. Thus, clear clinical objectives,
designs, optimizations of sampling procedure and protocol, repeatability of ST, as well as simplifications of analysis and
interpretation are the key to translate ST from bench to clinic.
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INTRODUCTION
With the rapid development of biotechnology, scientists coined
the term spatiotemporal molecular medicine to understand
medicine at multiple dimensions, layers, angles, and dynamics,
by integrating spatialization and temporalization of clinical
phenomes with spatiotemporal molecular omics.1 Spatiotemporal
molecular medicine as a new emerging discipline describes
pathogenesis, epidemiology, history, patient symptoms and signs,
clinical measurements, and therapies. Of those, each has a clear
link at four dimensions, e.g., length, width, height, and time. The
most important piece of spatiotemporal molecular medicine is to
precisely link individual clinical phenomes with molecular changes
and to understand the alterations of clinical phenomes based on
molecular changes. Spatiotemporal molecular medicine also
covers the four-dimensional understanding, diagnosis, and
therapy for patients. The spatiotemporal molecular image was
conceptualized as the comprehensive integration of dynamics and
positioning of molecular profiles by spatial measurements and
trans-omics with clinical radiomics and pathological morphol-
ogy.2,3 Of spatiotemporal measurements and analyses, spatial
transcriptomics plays an important role in bridging and corre-
sponding information between histological sections and molecu-
lar profiles, like cell-cell interplay, transcriptional factor
distribution, and spatial location and mRNA expression of the
cell, using artificial intelligence, computerized programming, and
visualization.
Spatial transcriptome (ST) technologies visualize profiles of RNA

molecules in identified tissue regions, including technologies
based on micro-dissected gene expression, in situ hybridization,
in situ capturing and in situ sequencing technologies.4 ST provides
the information on transcriptomic expressions and corresponding

two-dimensional locations on the tissue at spatial resolution.5 The
in situ analysis of protein or mRNA in tissue sections is an
important part of spatiotemporal molecular imaging. Pathological
changes can appear in various positions of the tissue/organ and in
different cells within a position dynamically. RNA sequencing of
cell bulks fails to clarify the positioning of the altered transcrip-
tomic profiles and spatial distributions of cells. The aims of this
present article is to overview the development of experimental
and bioinformatic methods of ST and evaluate values of clinical
and translational application.

Invention, development, and history of ST technology
Spatial molecular omics mainly define positional relationship and
interactions among cells within the tissue and reveal the impact of
spatial cell distribution in the pathogenesis of diseases. The in situ
hybridization allows the visualization within original environment
by hybridizing with labeled probe complementary to the target
molecule. The in situ sequencing (ISS) presents the relationship
between cell genotypes/gene expression profiles and morpholo-
gic phenomes in local environment.6,7 Geographical position
sequencing (Geo-seq) analyzes the transcriptome of tissue regions
using laser capture microdissection (LCM)8 and single-cell RNA
sequencing (scRNA-seq), with an accurate resolution as small as
10 single cells and a low throughput.7,9 Geo-seq demonstrates the
gene expression of morphology-defined cells from specific parts
of tissue sections.4 ST provides the position information and
molecular profiles with high throughput, using spatial barcode
microarrays for unbiased mapping of transcripts on entire tissue
section.10 ST can be combined with scRNA-seq to obtain a
comprehensive 3D transcriptome map of the target tissue at
single-cell resolution.
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In the development of ST technologies, representatives include
ProximID (Fig. 1a), sequential fluorescence in situ hybridization
(seqFISH+) (Fig. 1b), spatiotemporal enhanced resolution omics-
sequencing (Stereo-seq) (Fig. 1c), sci-Space (Fig. 1d), spatially
resolved transcript amplicon readout mapping (STARmap)
(Fig. 1e), 10× Visium (Fig. 1f), Slide-seqV2 (Fig. 1g), and Seq-
Scope (Fig. 1h). ST provides new insights into the understanding
of embryo development process and defining key genes for
specific developing organ, early location, and migration.11,12 ST
provides better views of cell location and heterogeneity in a
developing cell lineage than scRNA-seq per se. Srivatsan et al
recently uncovered different functions and differentiations of
neurons in locations by combining pseudotime and spatial
information.11 ST can be of potential assistance for clinical
diagnosis and precise treatment customized for the individual.13,14

Deep learning algorithm can predict gene expressions in readily
available histopathology images after being trained with spatial
gene expression and whole-slide histopathology images.13 A well-
trained model can capture tumor biomarkers, of which some were
proven to have clinical diagnosis value. ST with deep learning
algorithm could identify new cancer biomarkers, improve
efficiency, and accuracy of clinical decisions.

Technologies for spatially resolved transcriptomics
Micro-dissected gene expression technology provides the spatial
gene expression information of captured target regions from
samples, by extracting RNA and measuring gene expression with
LCM,15 RNA tomography for spatially resolved transcriptomics
(tomo-Seq),16 transcriptome in vivo analysis (TIVA),17 NICHE-seq,18

or ProximID (Fig. 1a).19 LCM can efficiently and accurately define
and obtain tissues with target cell subgroups or single cells. Geo-
seq clarifies cell heterogeneities and spatial differences simulta-
neously.9 Tomo-seq combines classical cryo-sectioning of tissues
with section-based RNA-sequencing and spatially presents tran-
scriptomics with high sensitivity.20 Transcriptome maps from
tomo-seq can be constructed with the identical biological samples
and have challenges to be applied for clinical samples.16

We describe the following ST technologies based on various
principles, including TIVA (Fig. 2a), fluorescent in situ RNA
sequencing (FISSEQ) (Fig. 2b), sequential fluorescent in situ
hybridization (seqFISH) (Fig. 2c), LCM (Fig. 2d), RNA sequencing
using the peroxidase enzyme APEX2 (APEX-seq) (Fig. 2e), NICHE-
seq (Fig. 2f), high-definition spatial transcriptomics (HDST) (Fig.
2g), and deterministic barcoding in tissue for spatial omics
sequencing (DBiT-seq) (Fig. 2h). TIVA is a non-invasive, spatial,
and precise method in which oligonucleotide probes are inserted
into a live cell (Fig. 2a). It can capture mRNA from living single cells
within a microenvironment.17 The site-selective, photoinduced
biotinylation and mRNA within a living cell has great value in
identifying and validating biomarkers, cell types, and responses to
therapies in the real-time microenvironment.
NICHE-seq defines rare niche-specific cell subpopulations and

transcriptomic profiles within target regions and reconstructs the
spatial tissue using photoactivatable fluorescent markers, two-
photon laser scanning microscopy, and flow cytometry-based
fluorescence-activated cell sorting with scRNA-seq (Fig. 2f).18

ProximID can define the interactions and networks among cells,
reconstruct the positioning of cell neighborhoods and connec-
tions, and visualize ST profiles.19 On the other hand ProximID can
identify features of cell interactions, however the manual
dissection process is labor intensive (Fig. 1a). The value of
NICHE-seq and ProximID in reconstruction of spatial cell networks
and structure needs to be furthermore validated in more studies
and pathological conditions (Table 1; Fig. 2).
In situ hybridization (ISH) with trackable labels visualizes the

gene expressions of specific targets directly in the original
microenvironment, including single molecule fluorescence
in situ hybridization (smFISH),21 sequential single-molecule

seqFISH,22 multiplexed error-robust fluorescence in situ hybridiza-
tion (MERFISH),23 improved continuous fluorescence in situ
hybridization (seqFISH+),24 cyclic single-molecule fluorescence
in situ hybridization (osmFISH),25 and RNAscope.26 Labeled nucleic
acid probes determine the spatial position and abundance of
cellular DNA and RNA within tissues.22 Multiple short oligonucleo-
tide probes monitor the expression of the same transcript among
various target regions in smFISH.21,27 smFISH possesses high
sensitivity and resolution of subcellular spatialization, while the
spectral overlap under microscope limits the simultaneous
detection of many target genes. An advantage of seqFISH, a
multiplexed variant of smFISH is that it can detect a single
transcript repeatedly via consecutive hybridization rounds, ima-
ging, and probe stripping (Fig. 2c). The number of smFISH probes
requires lengthy testing time and vast funds to ensure the number
of hybridization rounds.22 The coverage of the whole organism by
seqFISH staining is highly dependent upon the efficient exchange
of macromolecules in dense tissues.28

MERFISH, a single-molecule imaging approach, determines copy
numbers and spatial localizations of massive RNAs in single cells
and combines labeling and continuous imaging to improve the
quality and quantity of high-throughput detections by reducing
errors of single-molecule labeling and detection with the binary
barcodes.23 Spatial patterns of gene and genome co-regulations
are identified by addressing copy number variation and spatial
distribution of genes. The combination of MERFISH with expansion
microscopy widens the distance between RNA targets, detects
more numbers of RNAs, and reduces spectral overlaps.29 The main
probes in seqFISH+ contain the flanking area for positioning and
are read multiple times to image 10,000 target mRNAs in a cell
without super-resolution microscope (Fig. 1b).24 Cell types and
spatial distributions in tissues are detected with seqFISH+.
Multiple transcripts are targeted with fluorescent labels during
each hybridization and distinguished by fluorescent colors, after
the probe is removed before the next round of hybridization.25,30

The number of target genes is highly dependent upon the
amount of fluorescence channels and hybridization cycles.
OsmFISH with non-barcodes includes certain gene probe sets
per round, to overcome the limitation of marker gene numbers
and transcript lengths.25

RNAscope has two adjacent “Z-probes” with the target
sequence and forms the required binding site for further
amplification of molecular hybridization, to achieve signal
amplification and reduce background.26,31 RNAscope is combined
with the imaging mass cytometer, to hybridize the DNA tree with
metal tags and maximize the capacity of simultaneous detections
of RNA and protein targets. This is an important development of
individual cell ST analysis, to reconstruct images and positions
from co-localization data of biomolecules through chemical
reaction and obtain precise genetic information at high spatial
resolution.
The subcellular positioning of transcripts can be defined with

sufficient signals of amplification for imaging micron or
nanometer-sized DNA balls. The in situ sequencing with high
specificity and ability identifies targets with single-nucleotide
resolution and achieves wide-field imaging. In situ sequencing
reduces experimental costs and improves imaging flux, mainly
including ISS,32 BaristaSeq,33 STARmap,34 and FISSEQ (Fig. 2b).32,35

FISSEQ, a non-target method to capture all kinds of RNA, was
launched in 2014, though the sequencing depth was relatively
low. FISSEQ is more suitable for identifying cell types based on
in situ gene expression profiles.35 Using in situ barcode sequen-
cing compatible with Illumina sequencing, BaristaSeq increases
the amplification efficiency and sequencing accuracy, suitable for
lineage tracing and mapping long-range neuronal projections.
STARmap is another approach of ISS and it hybridizes the target

using barcode padlock probe and adds a second primer to the site
next to the padlock probe (Fig. 1e). STARmap reduces reverse
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Fig. 1 Development of spatial transcriptomic technologies. Representative technologies were exhibited with detailed schematic diagram,
including ProximID, STARmap, seqFISH+, 10× Visium, Slide-seqV2, Stereo-seq, Seq-Scope and sci-Space. The development of ST technologies
was shown in the middle part with method names and years. a The principle from cell isolation to interaction networks for ProximID; b The
principle of repeated in situ hybridizations for seqFISH+; c The principle of Stereo-seq; d The principle of sci-Space from fresh-frozen
sectioning, oligos and waypoints transferring, and pooled barcoded cell positioning and sequencing, to imaging and reading; e The principle
of in situ mRNA preparation, SNAIL probe function, and in situ sequencing for STARmap; f The principle of in situ capturing from tissue grids
to spot selection, from sample setting to quality control, and from partial reads to spatial barcodes for 10× Visium; g The principle of Slide-
seqV2 from tissue coating to library amplification; h The principle of Seq-Scope from high-definition map coordinate identifier (HDMI)-oligo
amplification to RNA capture from frozen section to achieve spatial transcriptome analysis at the single cell levels
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Fig. 2 Technical procedures of spatial transcriptomic measurements based on various principles. a Procedures from cell loading, photoactivation,
mRNA annealing, hybrids, and elution to transcriptomic sequencing TIVA; b Procedures from reverse transcription, cDNA linking, circularizing, rolling
circle replication, and amplicon cross-linking to sequencing for FISSEQ; c Procedures from repeated FISH probe hybridization and digestion to FISH
imaging for seqFISH; d Procedures from sample coating and selection to capture of target area for LCM; e Procedures from biotin-phenol labeling of
proteins and genes to RNA-seq for APEX-seq; f NICHE-seq includes labeled cells injection, tissue isolation, dissociation, and sequencing of
photoactivated cells. g Procedures from tissue section, image recording, and library preparation to sequencing for HDST; h Procedures from DNA-
antibody conjugating, barcoding, tissue imaging, and library construction to sequencing for DBiT-seq
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transcription steps and can overcome efficient barriers of cDNA
conversion by adding the second hybridization.34 Recently, a
reverse transcription-free and in situ RNA identification method,
BOLORAMIS, was designed by optimizing the probe design, to
improve detection efficiency and sensitivity and map spatial
patterns of cells and gene expression by targeting 96 kinds of
mRNA, with more than 90% specificity.36 The optimized probe can
simultaneously and directly target RNA to distinguish point
mutations and target shorter transcripts, such as microRNA.
BOLORAMIS is suitable for more cell and tissue types, including
human brain organoids.34

ST was initially developed in 2016.5 The efficiency of the
resolution was improved from barcode regions of 100 µm to
55 µm in diameter with “10× Visium” (Fig. 1f).37 This improves the
detection resolution and saves the time for protocol performance.
Slide-seq was further developed in 2019, by attaching regional
barcode reverse transcription primers to beads in solution and

distributing them on a glass surface.38 Slide-seq measures
genome-wide expression at high spatial resolution and improves
the detection of 3’ transcriptome gene expression in fresh-frozen
tissues. As compared with other in situ capturing methods, tissue
images obtained using Slide-seq originate from the contiguous
tissue section, rather than the tissue section where RNA data is
generated.
HDST deposits barcodes into finer 2 µm wells with randomly

ordered beads and decode positions by several hybridization
processes (Fig. 2g).39 The signals captured from HDST are highly
specific and conformant with those from bulk RNA-seq. Digital
spatial profiling (DSP) analyzes highly multiplex spatial RNAs and
proteins.40 Photocleavable oligonucleotide tags are applied to
quantify the abundance of RNAs or proteins in DSP, with single-
cell sensitivity in a customizable region consisting of about 5000
cells. Released indexing oligonucleotides tags are counted by the
nCounter system or next-generation sequencing.

Table 1. List of representative ST technologies

Launch Methods Research group Institute Refs

1996 LCM Lance Liotta Laboratory of Pathology, National Cancer Institute, Room 2A33, Building 10, 9000 Rockville
Pike, Bethesda, MD 20892, USA

8

1998 smFISH Robert Singer Department of Anatomy and Structural Biology and Cell Biology. Albert Einstein College of
Medicine. Bronx, NY 10A61. USA

21

2012 RNAscope Yuling Luo Advanced Cell Diagnostics, Inc., 3960 Point Eden Way, Hayward, CA 94545 26

2013 ISS Mats Neilsson Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm
University, Stockholm, Sweden

32

2014 TIVA James Eberwine Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania, USA 17

2014 FISSEQ George Church Department of Genetics, Harvard Medical School, Boston, MA 02115, USA 35

2014 seqFISH Long Cai Division of Chemistry and Chemical Engineering, California Institute of Technology,
Pasadena, California, USA

22

2014 tomo-seq Alexander van
Oudenaarden

Hubrecht Institute, KNAW and University Medical Center Utrecht, Cancer Genomics
Netherlands, 3584 CT Utrecht, the Netherlands

16

2015 MERFISH Xiaowei Zhuang Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology,
Harvard University, Cambridge, MA 02138, USA. Department of Physics, Harvard
University, Cambridge

23

2016 ST Joakim Lundeberg Science for Life Laboratory, Division of Gene Technology, KTH Royal Institute of
Technology, SE-106 91 Stockholm, Sweden.

5

2017 Geo-seq Naihe Jing State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology,
Chinese Academy of Sciences, Shanghai, China

9

2017 NICHE-seq Ido Amit Department of Immunology, Weizmann Institute of Science, Rehovot, Israel 18

2018 BaristaSeq Anthony Zador Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA 33

2018 ProximID Alexander van
Oudenaarden

Oncode Institute, Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and
Sciences), Utrecht, the Netherlands

19

2018 STARmap Karl Deisseroth Department of Bioengineering, Stanford University, Stanford, CA 94305, USA 34

2018 osmFISH Sten Linnarsson Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics,
Karolinska Institutet, Stockholm, Sweden

25

2019 seqFISH+ Long Cai Division of Biology and Biological Engineering, California Institute of Technology,
Pasadena USA 911253

24

2019 Slide-seq Evan Macosko Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA 38

2019 APEX-seq Alice Ting Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA 41

2019 HDST Patrik Ståhl Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of
Technology, Stockholm, Sweden

39

2020 DSP Joseph Beechem NanoString Technologies, Inc., Seattle, WA, USA 40

2020 DBiT-seq Rong Fan Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA 43

2021 Slide-seqV2 Fei Chen Broad Institute of Harvard and MIT, Cambridge, MA, 02142 44

2021 Stereo-seq Jian Wang BGI-Shenzhen, Shenzhen 518103, China 45

2021 Seq-Scope Jun Lee Department of Molecular and Integrative Physiology, University of Michigan Medical
School, Ann Arbor, MI 48109, USA

46

2021 BOLORAMIS George Church Department of Genetics, Harvard Medical School, Boston, MA 02115, USA 36

2021 sci-Space Cole Trapnell Department of Genome Sciences, University of Washington, Seattle, WA, USA 11
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APEX-seq is an RNA direct proximity labeling technology. APEX-
seq provides spatial and localized information of transcriptome
using ascorbate peroxidase (Fig. 2e).41,42 The DBiT-seq combines
spatial analyses of transcriptome and proteome on one tissue
section with the resolution of 10 μm (Fig. 2h).43 Slide-seqV2
demonstrated highly sensitive ST sequencing at a near-cellular
resolution level (Fig. 1g).44

Stereo-seq with sufficient capture area and throughput can
define the spatiotemporal dynamics of gene expression in tissues
and organisms (Fig. 1c). Stereo-seq develops a large field of
transcriptomes on tissue at subcellular levels by combining DNA
nanoball chips and in situ RNA capture, with high sensitivity and
uniform capture rate.45 Seq-Scope, as a spatial barcoding method
with a comparable resolution has multiple functions and can
detect the distance of about 0.5–0.8 μm between pixels, visualize
ST heterogeneity at multiple histological scales, and can map
subcellular structure of the nucleus and cytoplasm (Fig. 1h).46 In
contrast sci-Space analyzes nucleus ST on a large scale (Fig. 1d).
The single-cell spatial map of mouse E14 embryos was figured out
by sci-Space, including spatial coordinates and transcriptomes of
about 120,000 nuclei and spatially expressed genes of cell types.11

However, sci-Space can only capture the mRNA in the nucleus and
loses cytoplasmic transcript information while also limiting the
number of cells captured per slice due to low spot density (Table 1).

Opportunities and challenges of ST technologies
It is difficult to capture the information in a larger area and resolve
spatially expression patterns of tissue-specific genes, using
technologies based on micro-dissected gene expression or
combination of precision microdissection with bulk RNA-Seq.
The combination of LCM, and scRNA-seq described transcriptomes
of small samples as being composed of about ten single cells. Bulk
RNA-seq of frozen sections dissecting the entire Drosophila
embryo shows 3D spatial information of embryo47 and while
tomo-seq can achieve better spatial resolution,16 there are still
technical limitations to be overcome before clinical practice. TIVA
was applied on fresh living tissue by capturing cell-specific gene
expressions through laser photoactivation.17 While cell numbers
can be analyzed simultaneously the real-time applications for
living tissues are relatively limited. NICHE-seq based on light-
activated technology captures thousands of specific cells by
combining scRNA-seq and the accuracy of information on spatial
distribution remains unclear. Based on multicellular aggregates
formed after tissue dissociation, ProximID demonstrates the
communication between proximal cells,42 while the flux is low
and costs are high. Thus, challenges of spatial technologies based
on micro-dissection are low throughput, high labor cost, and
limited capture capabilities and information of a large area.
Since its first report six decades ago, FISH technology has been

continuously developed to visualize gene expression in fixed
tissues.48 Challenges that have yet to be addressed include
requiring a large number of fluorophores for probes due to the
variability of hybridization characteristics, susceptibility of self-
quenching, complication of synthesis, and difficulty of purification.
smFISH can detect more in situ expression at subcellular
resolution with higher sensitivity, by combining 40 short probes.30

The number of targeted genes is sparse due to the inherent
limitation of spectral overlap. seqFISH improves the accuracy of
smFISH quantification by detecting individual transcripts multiple
times,49,50 however the cost is still high. MERFISH provides better
hybridization, shorter working time, wider distance between RNA
targets, and more detectable molecules.23,29 seqFISH targets the
multiplexing of 10,000 genes with confocal microscope,24 while
osmFISH has lower multiplex and higher quality capacity of larger
tissue areas, as compared with other FISH methods.25 RNAscope
performs RNA assessments,51,52 with low throughput. Thus, the
economic cost and operative complexity of FISH techniques are
relatively high.

In situ sequencing captures target gene information in tissue
space and detects sequence information such as alternative
splicing, transcript fusion and single-nucleotide variants. Barista-
Seq based on padlock probes and sequencing increases the read
length and is applied to cultured cells.53 STARmap analyzes tissue
samples in 3D by introducing a second primer and a hydrogel 3D,
rather than a single 2D layer of cells. More than 1000 genes were
targeted in 100–150 µm thick slices of mouse brain tissue.34

FISSEQ captures RNAs in cultured fibroblasts and detects more
than 8000 genes at subcellular resolution.35

Transcript capturing in situ followed by ex-situ sequencing
avoids limitations of direct visualization and allows unbiased
analysis of the complete transcriptome. The RNA capture
efficiency is still a challenge in the improvement of resolution
and capture/barcode area. ST barcode area with a diameter of
100 µm allows the resolution at 10 to 40 cell level.54 HDST
enhances the reading depth of each area by randomly depositing
2 µm-sized beads with barcode reverse transcription primers onto
an ordered array.39 Slide-Seq and HDST improve the capture
sensitivity and assistance for defining localized cell types. The
HDST resolution reached 2 μm at tissue samples, where each spot
captures about 500 UMI. DSP is highly sensitive and can generate
usable data with 60–100 cells,55 and can also be used for
quantitative protein characterization.56 APEX-Seq defines the
association of specific subcellular locations of RNA in living cells
with corresponding function.41,42 DBiT-seq contains three resolu-
tions of 10, 25, and 50 μm, of which each pixel at 10 μm resolution
can capture about 2000 genes. Stereo-seq achieves sub-cellular
resolution with spot distance at 500–715 nm.
With the wide application of machine learning methods,57 the

integration of ST and machine learning has improved the
interpretability of histopathology and application for clinical
decision-making, guide precision medicine-based treatment, and
predict prognosis of patients.58,59 A new dataset of deep learning
algorithms was used to spatially predict local gene expression
from histopathological images of breast cancer.13 The integration
of ST with scRNA-seq or multiplexed immunohistochemistry
redefines tumor-associated macrophage subpopulations and
biomarkers.60 The spatial distribution in tumor microenvironment
obtained through multiplexed immunohistochemistry and ST
provides better views on inter- and intra-tumoral heterogeneity
and deeper understanding of relationship between functions and
phenotypes of tumor-associated macrophages.

Bioinformatics tools of ST
Compared with the clustering method of scRNA-seq, ST needs
more comprehensive and integrative considerations on gene
expression, spatial location, and histological information. A key
analytic step of ST is to cluster spots and identify regions where
gene expression profiles and morphological phenomes are
spatially consistent. Spatial clustering methods analyze spatial
dependency of gene expression and mainly include SpaCell,61

SpatialCPie,62 ClusterMap,63 FICT,64 SpaRTaCo,65 SC-MEB,66 and
CCST.67 Of those, SpaCell can integrate gene expression profiles
and imaging data, obtain the embedding layer by training two
autoencoders, connect these into a latent matrix, and then subject
it to clustering algorithms for further analysis.61 ClusterMap was
developed for multi-scale clustering analysis for spatial gene
expression, precisely locating RNA molecules into subcellular
structures or cell bodies in distinct tissue regions.63

Identification of spatially variable genes (SVGs) is important to
define the location of cell types. With the increasing resolution of
ST, new methods are developed to detect spatially variable genes,
e.g., GLISS, SpatialDE,68 SOMDE,69 trendsceek,70 or SPADE.71 GLISS
reconstructs spatial locations by casting scRNA-seq data into
spatial dimension.72 SVGs in spatial reference are identified as
landmark genes, the Laplacian score of each gene is calculated,
and then coherent regions with gene expression are spatially
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obtained.72 SPATA detects SVGs along the axis by defining axis
and visualizing gene expression and cell type annotations.73

In ST data analysis, the distribution of cell types in each spot can
be inferred using scRNA-seq data. A variety of cell-type
deconvolution methods have been designed for analyses of
spatial data, such as SPOTlight,74 spatialDWLS,75 DSTG,76 DestVI,77

or STRIDE78 and RCTD.79 SPOTlight deconvolutes the information
of spatial transcriptomics with scRNAseq data using seeded NMF
regression,74 and DSTG performs cell-type deconvolution by
illustrating convolutional neural networks.76 RCTD can robustly
decompose cell type mixtures in ST data, thus discovering gene
expression variety depending on spatial environment.79

For ST data lacking the single-cell resolution, each spot may
contain different cell types. The quality of analyses can be
improved by referring to the information of neighboring spots or
to images with high-resolution information of cell morphology
and phenomes. Tools for enhancing gene expression resolution
include BayesSpace, and XFuse.80 BayesSpace dissects spatial
transcriptomics data at sub-spot resolution by adopting a
Bayesian statistical method which utilizes spatial neighborhood
information.81 XFuse infers high-resolution spatial gene expression
from histological images by assuming that gene expression and
histological images share the same spatial state.80

Cell-cell communications regulate diverse biological processes
to maintain biological functions and microenvironmental home-
ostasis of cells within organs/tissues.82,83 Ligand-receptor pairs are
used to explore the communication between different cell types
within the tissue and between distinct cells within the same cell
type by scRNA-seq, while ST provides the information on cell-cell
communication at spatial level. A number of tools was developed
to identify cell-cell communications, including GCNG84 and
SVCA.85 GCNG captures the high-order structure of spatial
neighborhood map and the direction of causality in new pairs,
including predicting novel pairs of genes involved in signal
transduction.84 SVCA models the expression of interested genes as
a Gaussian process and decomposes both non-spatial and spatial
sources of variation.85 Collectively, the development of ST tools
are dependent upon specific purposes, prerequisites, and analysis
requirement (Table 2). The consistence and robustness of results
should be evaluated by different tools with similar functions or
methods with various parameters. Clues from ST data analysis
need to be confirmed by comprehensive experimental methods,
in order to draw convincing conclusions. Details of ST online
resources and ST research groups are listed Table 3 and Table 1,
respectively for further references.

Application potentials of ST in development and disease
ST is mainly applied to reveal comprehensive cellular connec-
tomes, sophisticated regulatory networks among distinct cell
types, cellular heterogeneity, and microenvironmental home-
ostasis in the fields of neural science, embryo development, and
pathology in Homo sapiens (Fig. 3a) and Mus musculus (Fig. 3b). In
addition, ST profiles of some tissues were mapped in Danio rerio
(Fig. 3c), Gallus gallus (Fig. 3d), Sus scrofa (Fig. 3e), Cricetinae
(Fig. 3f), and Drosophilidae (Fig. 3g) (Table 4).
ST was widely used to analyze the molecular spatial structure of

tissues and to create an atlas of biomolecules in clinical and
biological research (Fig. 6a; Table 5).4 Using Slide-seq technology,
spatial gene expression patterns of mouse and human test
subjects were captured and generated with a single-cell resolu-
tion.86 STARmap analyzed the complexity of 3D brain space with
23 cell type markers in more than 30,000 cells in the primary visual
cortex of mice.34 The embryonic development of organisms is a
complex and dynamic process, of which the expression blueprint
and distribution was drawn by ST.4,87 Another important applica-
tion of ST is to study intra-tumoral heterogeneity for precise
understanding of tumor progression and treatment outcome.
Tumor heterogeneity was re-stratified in prostate cancer by

analyzing gene expression gradient within tumor microenviron-
ment in the stroma adjacent to tumor area .88 Transcriptomes of
nearly 2200 tissue domains were studied in melanoma through
lymph node biopsy, to visualize the transcription landscape within
the tissue and to identify gene expression profile in a specific
tissue area.89 ST combined with machine learning identified
diagnostic biomarkers from breast cancer ST data, to distinguish
ductal carcinoma in situ from invasive ductal carcinoma.81 The
prediction accuracy of ductal carcinoma was 95% and invasive
ductal carcinoma was 91%. The recent ST retains the tissue
structure and reflects the immune response by analyzing cell-cell
interactions.90 Rapid and accurate identification of drug-resistant
clones and spatially sensitive biomarkers are needed in cancer
patients during targeted therapy, to predict the response to
immunotherapy.91 ST will provide opportunities for the early
detection of gene expression and cellular interactions within the
tissue, however precisive resolution and sensitivity of cells for
precision oncology need to be furthermore improved.

Table 2. Representative bioinformatics tools of ST

Tool Website Refs

SpatialCPie https://github.com/jbergenstrahle/SpatialCPie 62

ClusterMap https://github.com/xgaoo/ClusterMap 63

FICT https://github.com/haotianteng/FICT 64

SpaRTaCo https://arxiv.org/abs/2110.04872 65

SC-MEB https://github.com/Shufeyangyi2015310117/SC.
MEB

66

CCST https://github.com/xiaoyeye/CCST 67

SpaCell https://github.com/BiomedicalMachineLearning/
SpaCell

61

GLISS https://github.com/junjiezhujason/gliss 72

SpatialDE https://github.com/Teichlab/SpatialDE 68

SOMDE https://github.com/WhirlFirst/somde 69

trendsceek https://github.com/edsgard/trendsceek 70

SPADE https://github.com/NVlabs/SPADE 71

SpatialDWLS https://github.com/rdong08/spatialDWLS_dataset 75

DSTG https://github.com/Su-informatics-lab/DSTG 76

DestVI https://github.com/YosefLab/scvi-tools 77

STRIDE https://github.com/DongqingSun96/STRIDE 78

SPOTlight https://github.com/maciejkula/spotlight 74

BayesSpace https://bioconductor.org/packages/release/bioc/
html/BayesSpace.html

81

XFuse https://github.com/ludvb/xfuse 80

GCNG https://github.com/xiaoyeye/GCNG 84

SVCA https://github.com/damienArnol/svca 85

RCTD https://github.com/dmcable/RCTD 79

Table 3. Representative ST online resources

Tools Website Refs

SpatialDB https://www.spatialomics.org/SpatialDB 143

Allen Brain Atlas https://portal.brain-map.org/ 144

eGastrulation http://egastrulation.sibcb.ac.cn. 145

iCHTatlas https://www.picb.ac.cn/hanlab/ichtatlas/ 146

EMAGE http://www.emouseatlas.org/emage/ 147

eMouseAtlas https://www.emouseatlas.org/emap/home.
html

148

BEST http://best.psych.ac.cn/ 149
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ST in neurology
The neural system ST provides new insights into understanding
individual neuron types, locations, dendritic structures, axon
projections, and corresponding functions.92 ST profiles of dysfunc-
tional brains offer molecular information on developmental or
degenerative organization and location of brain cell types, to
develop new molecular biomarkers/targets and to understand
new mechanisms of brain diseases.93 Paralysis in amyotrophic
lateral sclerosis (ALS) is caused by denervation of skeletal muscle,
degeneration of motor neurons, dysfunctional interaction
between motor neurons and glial cells, and loss of motor
neurons.94 Using Fiji “Analyze particles” plugin and ST pipeline
for data processing, ST with a hierarchical generative probabilistic
model was used to measure gene expressions of mouse spinal
cords and postmortem tissues of patients with ALS, distinguish
regional differences between early microglia and astrocytes, and
to identify interferences of transcription pathways between ALS
model and patient spinal cord pathology,95 as explained in Fig. 4a.
Spatial distributions of about 11,138 genes were uncovered in
mice dynamically after the induction of ALS and further 9624
genes spinal cord samples were uncovered from patients with
ALS. This particular study defined the clear positioning and multi-
dimensional distributions of gene expressions in tissue and
described new mechanisms of the degenerative disease, e.g.,
TREM2-TYROBP complex, Apoe, Lpl, B2m, and Cx3cr1 at different
stages and positions.95 The 16 dysregulated transcripts in 6
disease-related pathways were found from ST profiles of post
mortem brain tissue using ST pipeline for data processing. Of
those, the metabotropic glutamate receptor 3 and ubiquitin
specific protease 47 were furthermore identified with comple-
mentary molecular pathology as spatial disease-specific targets.96

The dysregulation of glutamate neurotransmission and synaptic
plasticity by the metabotropic glutamate receptor 3 and cell

growth and genome integrity by ubiquitin specific protease 47
can be a new alternative of clinical therapies (Fig. 4b).
The combination of ST and scRNA-seq is a new approach to

understand the molecular mechanisms of diseases, both dynami-
cally and multi-dimensionally and to develop new classes of
spatial biomarkers.97 The combination was recommended as an
efficient way to diagnose diseases, monitor the progression and
therapeutic effects, and to discover new categories of spatial
target-based drugs. This combination can feature transcriptional
diversities and subclasses of brain endothelial cells in vascular
cavernomas, and define functional roles in the development of
cerebral cavernous malformation.98 It was initially uncovered that
angiogenic venous capillary endothelial cells and resident
endothelial progenitors might be the major source of cerebral
cavernous malformation transformation, rather than arterial
endothelial cells. Alzheimer’s disease (AD) is a destructive
neurological disease with a gradual loss of mental skills, cognition,
and physical functions. AD-associated genes were identified from
ST profiles of mouse sections, including spatially dysregulated
genes associated with stress responses and mitochondrial
dysfunction.99 In AD model, ST demonstrated transcriptional
changes of co-expression networks rich in myelin sheath and
oligodendrocyte genes in tissue section at a diameter of 100
microns around amyloid plaques at the early stage, while in
complement system, oxidative stress, lysosome, and inflammation
at the late stage.100 Spatially defining features and molecular atlas
of ST brain regions by unbiased identification could interpret the
structure-function relationship of circuits and behavior and the
systematic classification of an adult mouse brain.101 The annota-
tion of spatial genes in different brain regions provides new
insights for understanding the neuron structure, neural connec-
tions, interneuron projections, pre-synapses, and glial interac-
tions.92 The spatial organization of adult mouse brain regions

Fig. 3 Representative spatial transcriptomics studies across multiple species. a Representative ST studies in tissues of Homo sapiens;
b Representative ST studies in tissues of Mus musculus; c Representative ST studies in tissues of Danio rerio; d Representative ST studies in
tissues of Gallus gallus; e Representative ST studies in tissues of Sus scrofa; f Representative ST studies in tissues of Cricetinae; g Representative
ST studies in tissues of Drosophilidae.
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includes molecular codes for mapping and targeting discrete
neuroanatomical domains.101

ST in embryo development
Embryos and stem cell lineages serve as paradigms to explore the
tissue patterning and corresponding molecular regulation circuits.
ST with scRNA-seq have opened up new ways for dissecting
molecular dynamics of cell organization, differences in morphol-
ogy and molecular properties, and lineage allocation during the
process of embryo development.102 The process of somitogenesis
was explored for key features of embryos and development after
implantation in mouse gastruloids using ST with scRNA-seq.103

The comprehensive transcriptional landscape of human embryo-
nic heart cell types, cell-type distribution, and spatial organization
reveals three developmental stages at 4.5–5, 6.5, and 9 post-
conception weeks.104 Using Seurat package for data processing,
ST profiles of three human embryonic cardiac samples showed
about 3,115 individual spots and 10 myocardial clusters during
development of human embryonic heart.104 Spatial maps of cell
types, transcriptomes, and spatiotemporal maps of human heart
development were obtained from about 69 selected target genes
(Fig. 5). scRNA-seq analysis of cardiac embryonic tissue yielded
three-types cardiomyocytes, two type endothelial cells, and four-

type fibroblast-like cells. By combining ST, scRNA-seq, and GO
analysis it enabled a better identification for location distributions
and gene markers of each cell type in the tissue (Fig. 5a), heart cell
type-specific genes, and interaction networks (Fig. 5b). Such
mapping of the human embryonic heart allowed scientists to fully
exploit valuable resources, cell-cell communication, and lineage
development. By using 10× Genomics Visium and Space Ranger
software, ST with scRNA-seq demonstrated the spatiotemporal
atlas of human intestinal development and morphogenesis.105 In
this particular study, 77 intestinal samples were collected from 17
embryos representing different developmental time points and
tissue locations, and 101 subgroups were identified in the
compartment based on the fine cluster annotation of key marker
genes. Transcriptional regulatory networks were positioned and
exampled in Fig. 5c, to highlight the key regulatory network of
each cell type and to reconstruct the “decision tree” of cell fate
using scRNA-seq, including known developmental regulators, 306
developmental time courses, and 44 positional changes of
regulatory networks. ST analysis of tissues from the entire
intestinal development (Fig. 5c) revealed spatiotemporal locations
of scRNA-seq-identified clusters, formation of epithelial crypt villi,
differentiation of mesenchyme, establishment of muscle layer,
expansion of vascular system, and immune colonization and
appearance of gut-associated lymphoid tissue.105 Each type of
cells has specific gene markers, of which some have location and
time-point differences in gene expression (Fig. 5c), intestinal cell
type-specific genes, and interaction networks (Fig. 5d). The
outstanding findings from this particular study provides new
insights for understanding neonatal diseases and genetic defects
of intestinal development (Table 5).

ST in pathology
ST-characterized 3D images present the heterogeneity of interac-
tion between tumor and immune cells and the difference of
infiltrated immune cells between locations.106 Using machine
learning models, capacities of analysis, description, and stratifica-
tion of interaction between tumor and immunity were improved
with high accuracy.107 ST of melanoma lymph node biopsies
revealed the heterogeneity of transcriptional landscape and gene
expression profiles among spatial intra-tumoral compositions
linked with histological entities89. The gene expression pattern

Table 4. Representative studies of ST on multiple species

Species Tissue Health status Published year Refs

Human Bladder Cancer 2021 150

Human Brain Alzheimer’s
disease

2020 100

Human Breast Cancer 2020 13

Human Spinal cord Amyotrophic
lateral sclerosis

2019 95

Human White
adipose tissue

Healthy donors
and patients

2021 151

Human Pancreatic ductal Pancreatic ductal
adenocarcinoma

2020 14

Human Skin Cutaneous
squamous cell
carcinoma

2020 106

Human Fetal heart Normal 2019 104

Mouse Brain Alzheimer’s
disease

2020 100

Mouse Brain Alzheimer’s
disease

2020 99

Mouse Bone marrow Normal 2019 152

Mouse Hippocampus,
neocortex

Normal 2020 44

Mouse Cerebral cortex Normal 2021 153

Mouse Gastruloids Normal 2020 103

Mouse Embryonic liver Normal 2021 154

Mouse Embryonic
endoderm

Normal 2019 155

Mouse Embryonic germ-
layer

Normal 2019 145

Mouse Embryonic brain Normal 2021 11

Zebrafish Muscle Normal 2021 156

Zebrafish Heart Normal and
hapln1a mutants

2021 157

Pig Muscle Normal 2021 158

Chicken Heart Normal 2021 12

Fruit fly Retina Normal 2019 159

Hamster Kidney Cell line 2018 33

Table 5. Representative ST research on human samples

Sample Disease Refs

PDAC tumors tissue Pancreatic ductal adenocarcinoma 14

Intestinal samples Inflammatory bowel disease/
colorectal cancer

105

Prostate cancer tissue Prostate cancer 88

Heart tissue Angina pectoris 109

Heart tissue Embryonic cardiac samples 104

Skin tissue Cutaneous SCCs\normal adjacent skin 106

Pulmonary tissue SARS-CoV-2, pH1N1 patients, and
uninfected patients

127

Dorsolateral
prefrontal cortex

Postmortem samples 92

Gingival tissue Periodontitis 108

Skin tissue Cutaneous malignant melanoma 89

Spinal cord Amyotrophic lateral sclerosis (ALS) 95

Synovial tissue Arthritis 10

Brain tissue ALS 96

Skin tissue Human leprosy granulomas 128
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of the lymphoid area in close proximity to the tumor region was
similar to that of tumor microenvironment. Spatial positioning of
transcriptomic profiles has great potential to help us understand
molecular mechanisms of tumor progression, metastases, and to

identify therapeutic targets. ST profiles of periodontal tissues
showed up-regulated expression of specific polar shadow in the
inflammatory area as part of pathogenesis of chronic inflamma-
tory periodontitis.108 ST profiles of adult heart demonstrated

Fig. 4 Spatial transcriptomics provide new insights for understanding molecular mechanisms of human diseases and preclinical disease
models. a In neurodegenerative disease models, Trem2 and Tyrobp form a receptor complex that can trigger phagocytosis or regulate cytokine
signaling, when bound by membrane lipids or lipoprotein complexes. Tyrobp expression is up-regulated before symptoms and before Trem2
expression in the ventral horn and white matter. Lp1 and B2m are up-regulated before symptoms, especially in the ventral horn. Apoe and
Cx3cr1 are up-regulated in the spinal cord of symptomatic mice. Apoe expression is driven by Trem2 signal and the ligand of Trem2. b In
amyotrophic lateral sclerosis (ALS) models, expression of GRM3 gene in the prefrontal lobe and motor cortex was lower in C9orf72 repeat
expansion, mutant SOD1, and sALS. The GRM3 gene encodes mGlu3, a metabotropic glutamate receptor, regulates the neurotransmission of
glutamate in the central nervous system. The expression of neuronal mGlu3 receptor is mainly at presynaptic terminals. When the
extrasynaptic glutamate overflows excessively, the G protein signaling cascade is activated to regulate the activity of presynaptic ion channels,
followed by negatively regulating the release of presynaptic glutamate. The regulation that the decrease of mGlu3 receptor expression in the
prefrontal cortex increases the transmission of glutamate and produces excitotoxicity may be a common mechanism feature between
schizophrenia and ALS. c Spatial positions of different subgroups are identified and mapped within cell type in the entire tissue by integrating
scRNA-seq and MIA. A total of four ductal subgroups are identified, including ductal population, terminal ductal population, centroacinar duct
population, and antigen-presenting duct cells, respectively expressing APOL1, ERO1A and CA9 genes; TFF1, TFF2 and TFF3; CRISP3 genes; CD74,
HLA -DPA1, HLA-DQA2, HLA-DRA, HLA-DRB1 and HLA-DRB5, and C1S, C4A, C4B, CFB and CFH genes. d The combined application of spatial
transcriptomics, scRNA-seq, and MIBI demonstrates that TSK cells and basal tumor cells are located on the leading edge. Fibroblasts,
macrophages and Tregs are most abundant at the tumor-stroma boundary, while CD8 T cells and neutrophils are largely excluded from the
tumor, indicating that the localization of Tregs may prevent effector lymphocytes into the tumor. e The gene expression in 3 regions obtained
by factor analysis is applied for identifying region-specific markers in normal, cancer and PIN region. Enrichment of SPINK1 and PGC, the
depletion of ACPP, and the increase of NPY level in the PIN area are observed in cancer areas. In addition, the interaction between factors was
determined by hierarchical clustering of ten factors. These ten factors include normal glands signature, normal glands, stroma, inflammation,
PIN, cancer, immune profile, proximity to PIN signature, and mix of prostatic atrophy and stroma et al. f In malignant melanoma models, PMEL
and SPP1 overexpressed in tumor cell clusters, and the lymphoid tissue regions from and adjacent to tumor cell regions were characterized by
the expression of immune-related genes CD74 and IGLL5, respectively. FTL, B2M, APOE and HLA-related genes (HLA A-C) express in the
transition zone and related to tumor growth regulation through the GADD45/JNK pathway
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spatial differences of fetal gene expression among patients with
heart failure.109

Intra- and inter-tumoral heterogeneities are highly associated
with the expansion of tumor subclones with genetic, genomic
changes, and interactions between tumor cells in the tumor

microenvironment and are responsible for tumor progression and
complexity.110 ST profiles of various diseases were mapped,
including within brain tissue,92 spinal cord tissue,95 breast cancer,5

cutaneous malignant melanoma,89 prostate cancer,88 gingival
tissue,108 pancreatic tissue,14 and human heart tissue.109 Moncada
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et al. performed scRNA-Seq and ST (custom-built pipeline for data
processing) analysis in two tissue samples of primary pancreatic
ductal adenocarcinomas and developed a multimodal intersection
analysis to determine the degree of overlapping genes, as
compared with accidentally expected analysis (Fig. 4c).14 This
serves as initial evidence to uncover subpopulations of tissue cells
across spatial regions, functional interactions among cell types,
and stress-associated re-distributions of inflammatory fibroblasts
with cancer cells. The combination of scRNA-seq, ST, and multiple
ion beam imaging revealed the main locations of tumor-specific
keratinocytes (TSK) populations at the leading edge of human
cutaneous squamous cell carcinoma.106 TSK cells recruit specific
cell types like Treg cells to cancer sites by integrating ligand-
receptor networks as the hub of cell-cell communication and
express chemoattractive factor genes, while CD8 T cells and
neutrophils are absent in the tumor microenvironment (Fig. 4d).
This indicates that Treg re-localization may be one of potential
mechanisms by which the infiltration of effector lymphocytes is
prevented into tumor. Patients with high expression of TSK
markers, integrin-beta1, and urokinase-type plasminogen activa-
tor, had lower progression-free survival rates after receiving PD-1
checkpoint inhibitor.106 This is an example to apply ST for
understanding tumorigenesis and progression, formation of tumor
microenvironment, and therapy in the complex ecosystem. It
should be furthermore clarified what the number of patients,
samples per patient, and sections per sample are enough to make
a conclusion from ST. In a prostate cancer study, the conclusion
that the spatial pattern was correlated with the histologically
identifiable structure was made on basis of patient sample
including normal, cancer, and prostatic intraepithelial neoplasia
areas, using the Poisson factorization core model of factor analysis
(Fig. 4e).88 This analysis was used in ST study on cutaneous
malignant melanoma,89 firstly delineating cell-type-specific and
tissue-region-specific genes and overlap (Fig. 4f). Of those four
studies,14,88,89,106 three were analyzed with the combination of ST
and scRNA-seq by integrating two datasets.
Spatiotemporal molecular pathology is a ST-based concept and

a critical part of spatiotemporal molecular medicine, including
multi-dimensional morphological phenomes, intracellular orga-
nelle functions, and gene/protein interactions.111–115

Spatial transcriptome has important application value in
analyzing the pathogenesis of infectious diseases. The integration
between scRNA-seq and ST of ileal and cardiac tissues from
neonatal mice with reovirus infection at different time points
revealed the dynamic process of myocarditis infection pathogen-
esis, the spatially heterogeneous network of different cellular
phenotypes, and the association with virus-induced intercellular
interactions.116 Spatiotemporal multi-omics and trans-omics will
provide even more important and comprehensive insights for
understanding the disease. More measures are needed to define
quantitation, spatiotemporal localization, mutations, splice iso-
forms, and posttranslational modifications variants of expressed
target proteins.114 The application of spatiotemporal techniques

to clinic is still lagged behind by complicated procedures of
sample preparation, quality control, data generation and inter-
pretation, or high cost.117 The novelty and standardization of
methodologies should be furthermore developed, e.g., enhanced
throughput (number of spots or cells captured per experiment)
and augmented resolution (number of genes detected per cell).
The spatial trans-omics is a new direction of ST development and
requires simultaneous detections of chromosome structure,
chromatin accessibility, histone modification, DNA methylation,
transcriptome, proteome, metabolism, and non-coding RNAs in
one sample. Tools based on cloud computing and artificial
intelligence will allow scientists to interpret complicated spatio-
temporal data easily and freely. With the rapid development of
sequencing methods, library construction protocols, and chemical
reagents, the cost will be reduced, efficiently making spatiotem-
poral molecular pathology a candidate for clinical screening,
diagnosis, and therapeutic monitoring.

ST in inflammatory diseases
Spatial locations or natural states of cell clusters and subtypes as
well as corresponding genes in tissues represent different signal
concentration gradients, according to external stimuli, develop-
mental directions, stages of tumor metastasis, and “interface” cell
states in tumor microenvironment.118 The spatial cell-cell com-
munication in microenvironment provides more detail informa-
tion on biological functions, networks, and host-pathogen
interactions in development of organs and diseases. Circulating
biomarkers of patients with COVID-19 or pandemic H1N1
influenza were measured, although it is still questioned whether
parameters in peripheral blood can accurately reflect the viral load
or degree of tissue damage.119–121 The ‘bulk’ sequencing of whole
lung tissue hardly describes the heterogeneity and positioning of
infected cells.122,123 The spatial information of tissues provided
deeper understanding of cell changes and characteristics of
transcriptomic profiles in response to viruses, although the
number of genes differentially expressed between the lungs of
influenza and COVID-19 patients was limited124 and it remains
unclear how to translate the knowledge of COVID-19 into the
prevention of Omicron variants.111,125,126 Genes related to
inflammation, type I interferon production, coagulation, and
angiogenesis were up-regulated in lungs of patients with
COVID-19. ST profiles of COVID-19 infected lungs presented novel
gene signatures closely associated with the pathogenesis of SARS-
COV-2.127 SARS-CoV-2 was unevenly distributed in lungs, with few
areas of high viral load in responses to increased type I
interferon.127

ST describes immune cell mechanisms and tissue diversities
caused by chronic inflammatory diseases, including over-
expression inCD3E, CXCL9, CXCL13, and LTB in rheumatoid arthritis.
While POSTN, COMP, CILP2, and PRG4 in spondyloarthritis were
related to higher cartilage turnover rate.10 The cell-cell interaction
network and spatial location of gene expression is critical in the
progression of inflammation. Study on human leprosy granulomas

Fig. 5 Spatial transcriptomics with scRNA-seq present new cell types and molecular markers in human embryonic development. a scRNA-seq
analysis of cardiac embryonic tissue shows three types cardiomyocytes (cardiac neural crest cells & Schwann progenitor cells, epicardial cells,
ventricular and atrial cardiomyocytes), two types of endothelial cells (capillary endothelium, endothelium/pericytes/adventia) and four types
of fibroblast-like cells (related to cardiac skeleton connective tissue, smaller vascular development, smooth muscle cells, larger vascular
development). Spatial transcriptome combined with scRNA-seq reveals location distribution and gene markers of each cell type. Cell types
and genes are screened based on the reference,104 combined with differentially expressed genes in scRNA-Seq clusters and spatially
heterogeneous gene panel. b GO (BP: biological process) analysis of heart cell type-specific genes and protein interaction networks (https://cn.
string-db.org/). c Spatiotemporal analysis of human intestinal development at single-cell resolution identify nine intestinal compartments
including epithelial, fibroblast, endothelial, pericytes, neural, muscularis, mesothelium, myofibroblast, and immune cells. Each type cells have
specific gene markers, of which some have location and time-point differences in gene expression. FABP1 expresses specifically in epithelial
cells and over-expresses in colon. HMGA2, MYH11, and PHOX2B down-express consistently in colon and terminal ileum. Intestinal cell signature
genes are identified according to Supplemental Table 1 of the reference,105 which exhibit specific key genes expression in each cell types.
d GO (BP: biological process) analysis of intestinal cell type-specific genes and protein interaction networks (https://cn.string-db.org/)
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Fig. 6 Summary of workflows during applications for spatial transcriptomics. a Spatial transcriptomics techniques are mainly used to solve spatial
heterogeneity of diseases, biological spatial transcriptome map, and embryonic development spatial blueprint. The four ST techniques include
micro-dissected gene expression, in situ hybridization, in situ sequencing and in situ capturing. Different techniques are used according to different
sample characteristics and needs, and a variety of biological tools are used for analysis. b A simulation diagram of tumor microenvironment. ST
technology assists in understanding the spatial location of tumor cells and gene expression as well as intercellular molecular communication
between cells within the microenvironment. For example, H&E staining in lung tissue provides sample pathological information and assesses
sample quality, and further integrates cell grouping and location information analysis such as basal, goblet, ciliated cell, alveolar epithelial cells type
1, 2 and other cells, so as to provide a better understanding of the molecular communication mechanisms in the cellular microenvironment
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demonstrated that the construction of molecular networks
revealed the tissue structure of granuloma, constituent and
functional layers, and clusters of cells with unique antimicrobial
genes and secreted cytokines to promote antimicrobial
responses,128 including macrophages, T cells, keratinocytes, and
fibroblasts. Different from lung cancer, multi-inflammatory factors
and cells contribute to the formation of lung microenvironment
during infection and inflammation.112,129–131 Local hyperrespon-
siveness and re-distributions of fibroblasts, hyper-production of
inflammatory mediators, and over-activation of extracellular
matrix proteases occurred in the interstitial inflammation area
within mouse lung section using 10× Genomics-based ST.132 It is
important to define the correlation between tissue ST and scRNA-
seq with circulating scRNA-seq and develop scRNA-seq as a
routine measurement of clinical biochemistry in clinical decision-
making and guide therapy.133

Potential challenges for clinical application
It is important to understand spatial heterogeneity in occurrence
and development of diseases and develop ST for defining gene/
protein/cell types and precise location in the lesion tissue, since
gene expression occurs on complex spatial forms during
biological processes.134 Precise selection of methods is one of
the critical steps to optimally present an atlas of disease-specific
molecular interactions. For example, a type of disease-associated
microglia was found to be associated with neurodegenerative
diseases in AD model using scRNA-seq, while the location of such
microglia type near the Aβ plaque and closely related to the origin
of AD was determined in human AD postmortem brain using RNA-
seq and smFISH.135 Increased number of intracellular Aβ particles
and positive disease-associated microglia markers were validated
using immunohistochemical staining. This discovery provides an
opportunity to develop microglia activating drugs for AD-targeted
therapy. Although ST shows location-based gene expression
phenomes, the regulation of pathways and cell states in
differentiation of secretory and ciliary lineages was furthermore
explored in endometrial organoids using 10× Genomics Visium
technology.136 NOTCH and WNT pathways control the mechanism
for differentiation efficiency of cilia and secretory epithelial cells
and provides an idea for the treatment of endometriosis and
endometrial cancer.
ST profiles present 3D molecular phenomes and descriptive

information with identity, degree, and location of expressed
genes. The spatial expression of fetal genes in adult cardiac biopsy
in patients with heart failure were similar to those of fetal
myocardium.137 Over-expression of fetal marker genes contrib-
uted to the remodeling of the human heart.109 The hepatic
zonation represents the most important factors responsible for
spatial heterogeneity and identity of the vascular structure on
basis of spatial expression of target genes in the liver lobule
zonation.138 Preclinical ST studies demonstrate the cell-cell
communication and dysfunction between somatic cells of
ischemic neurons and axon mitochondria at single-cell level,139,140

and between tissue cells in acute kidney injury induced by
endotoxemia.141 Such spatial patterns of gene expression help us
understand the occurrence and development of heterogeneity,
including microenvironment, intra- and inter-tumors, reoccur-
rence, metastasis, and responses to treatment (Fig. 6b). ST profiles
provide a clear positioning of gene expression and cell-cell
interaction, as compared with scRNA-seq, while both belong to
comprehensive descriptive information. Different from scRNA-seq,
ST produces the descriptive information on spatial phenomes for
the proposal of molecular mechanisms.
The clinical significance and application of ST are highly

dependent upon the matchability, reproducibility, and stability
of ST profiles and upon disease complexity, severity, stage,
pathology, and structural accuracy. Within ST profiles of the
multicellular gene regulatory network, 57 plaque-induced genes

gradually constructed a regulatory network in AD model.100 The
deposition of β-amyloid plaques may play a “trigger” or “drive”
role in the course of disease, partially as neurodegenerative
mechanism of multicellular synergy. It is a challenge to translate
preclinical ST profiles into clinical values due to variations of
molecular profiles and morphological phenomes between animals
and humans and between models and diseases.
The complexity and repeatability of ST with comprehensive

analyses are seriously considered as technical limitations for clinical
application.7 There is growing evidence that ST is an important tool
for understanding of human diseases,102 monitoring spatial hetero-
geneity of molecular signals and cell-cell interaction, and developing
precision medicine strategy. ST profiles are dependent upon the
positioning of histological sections in 3D organs/tissues and upon
the dynamical phase of disease progressions. It is questioned
whether the degree of ST profiles in selected histological section
represents and covers the full landscape and changes of multi-
dimensional organs, due to massive variations among tissue sections
at different levels and orientations. Molecular features from cancer
ST data may classify transcriptomic interactions within breast cancer
regions and provide scientific evidence and supports for clinical
understanding and decision.107 The precision of pathological
identification and selection is decisive in reliability and matching
of ST profiles and corresponding cell-cell interactions. Although ST
profiles have made advances in discovery and identification of
disease-specific and spatialization-specific factors, comprehensive
analyses for constructing spatial maps and drawing spatial blue-
prints need to be furthermore standardized, automatized, and
characterized for large scales of ST analysis, reduction of methodo-
logical variations, and more potential explorations.4 The number of
human samples are still limited for clear conclusions due to difficulty
of sample collections, preservation, and transports.117 There are
urgent needs to have systemically well-designed clinical studies on
target diseases with clear information on section location, disease
phase and severity, and interventions. ST currently impacts our
understanding and knowledge about transcriptomic regulations and
cell-cell interactions in tissue structure, while the long-term impact
of ST should be evidenced by clinical applications of integrated ST
with clinical phenomes.
With the rapid development of new ST technologies, data

acquisition is constantly being improved and challenges in ST
resolution, sensitivity, throughput, and accessibility are being
overcome. ST is compatible with paraffin-embedded tissues,100,142

providing the possibility for retrospective analysis of samples
collected in biobanks. It will be possible to systematically detect a
variety of tissues and reconstruct 3D spatial structure gene
expression of organisms.58 Improved ST will allow us to further
understand the development process of organisms and provide
the basis for early disease detection in clinical medicine and
precise targeted therapy. Combined application of ST with
multiple technologies will be needed to meet clinical require-
ments. Thus, we believe that continuous improvements of ST
resolution and sensitivity at single-cell resolution will benefit
clinical practice and improve patient outcomes.
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