
LETTER OPEN

Visual function restoration with a highly sensitive and fast
Channelrhodopsin in blind mice
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Dear Editor,
Inherited and age-related retinal degenerative diseases cause

progressive loss of photoreceptors, ultimately leading to blind-
ness. Optogenetics is a promising strategy for restoring visual
function through photosensitive proteins’ ectopic expression in
surviving retinal neurons.1 Very recently, the optogenetic method
with a red-shifted Channelrhodopsin was clinically applied for
partial recovery of visual function in a blind patient.2 However,
major obstacles to achieving optimal optogenetic vision restora-
tion are either the low light sensitivity or the slow kinetics of
existing rhodopsin-based optogenetic tools, which can be
improved by molecular engineering to enhance the efficacy of
fast Channelrhodopsins (ChRs). Here, we present a newly
engineered ChR variant PsCatCh2.0, engineered from PsChR,3

which displays inherently high Ca2+ and Na+ conductance and
fast kinetics.3,4 We introduced a novel mutation PsChR L115C
(PsCatCh) to enhance its Ca2+ and Na+ permeability further and
fused the cleavable N-terminal signal peptide Lucy-Rho (LR5 in Fig.
1a), in addition to a plasma membrane trafficking signal (T) and ER
export signal (E), to improve its expression and plasma membrane
targeting. PsCatCh2.0 exhibited significant improvements in
expression levels/plasma membrane targeting efficiency and a
larger photocurrent (Fig. 1a, b, e). 100-fold less light intensity is
needed to generate a similar photocurrent response with
PsCatCh2.0 than with CatCh (Fig. 1b), with BAPTA, Ca2+ currents
of PsCatCh2.0 were four times larger than those generated by
CatCh (Fig. 1c, d), indicating that PsCatCh2.0 is a highly effective
excitatory tool for future clinical applications.
The photosensitivity and kinetics of PsCatCh2.0 were further

investigated in vivo in rd1 mice. Notably, a low light intensity
(3.7 × 1014 photons/cm2 s) evoked a 14.5 pA (14.5 ± 7.4, n= 5)
current in PsCatCh2.0-expressing RGCs in rd1 mice (Fig. 1g). It also
presented a persistent periodic response that could follow up to
32 Hz light stimuli, without obvious desensitization (Fig. 1h),
clearly outperformed MCO1 in kinetic aspect.6 Moreover,
PsCatCh2.0 could reliably induce action potentials firing at
100 Hz when expressing in the hippocampal neuron (Supplemen-
tary Fig. 1). We tested whether visual information input could be
transmitted from the PsCatCh2.0-treated retina to the brain in rd1
mice. We assessed the activity in the V1 cortex induced by light
through c-Fos and Arc. Following 2 h of continuous light
stimulation (470 nm, 4.7 × 1014 photons/cm2 s), both IEGs c-Fos
(red) and Arc (green) were expressed in the light-stimulated retina
and V1 cortex of wild-type and PsCatCh2.0-expressing rd1 mice
(Fig. 1j, k, m–o). In contrast, rd1 mice retina exhibited neither
obvious light responses nor upregulation of IEGs in the visual
cortex. Additionally, blue light flash visual evoked potential (VEP)
recording in the visual cortex was performed. No obvious N1
amplitude in rd1 mice was recorded (1.6 ± 1.0 µV, n= 8) compared
to the wild-type mice (−24.7 ± 6.7 µV, n= 8, Fig. 1i, l). In
PsCatCh2.0-treated rd1 mice, the N1 amplitude of VEP was

restored to −12.4 µV (−12.4 ± 1.8 µV, n= 8), suggesting regained
visual function after optogenetic treatment of blind mice.
Finally, we evaluated visually guided behavior in PsCatCh2.0-

treated rd1 mice. The fraction of time spent in light boxes, the
distance and speed of movement for discovering the hole to the
dark box were recorded. PsCatCh2.0-treated rd1 mice in the blue-
light chamber could easily find the hole entering to the dark box,
with similar performance as the wild-type mice (percentage of
time spent in the light box: PsCatCh2.0, 40.8% ± 3.7 (n= 19); wild-
type, 40.1% ± 2.1 (n= 11); rd1, 86.1% ± 4.0, (n= 13); one-way
ANOVA; Fig. 1q). PsCatCh2.0 also rescued the distance and
average speed performance of rd1 mice to the wild-type level
(Fig. 1r: distance (cm): wild-type, 101.9 ± 25.7, n= 11; PsCatCh2.0,
82.3 ± 22.5, n= 19; rd1, 1058 ± 108.3, n= 13; Fig. 1s: average
speed (cm/s): PsCatCh2.0, 7.7 ± 0.6, n= 19; wild-type, 7.6 ± 1.3,
n= 11; rd1, 4.8 ± 0.5, n= 13). Especially, PsCatCh2.0-treated rd1
mice showed visual tracking behavior to the grating flash with an
average peak spatial frequency of 0.22 ± 0.02 (c/d), compared to
no response of the rd1 littermates, and 0.53 ± 0.02 c/d of the wild-
type mice (Fig. 1t). Therefore, PsCatCh2.0-treated rd1 mice
improved visual acuity dramatically.
A light intensity of 4.7 × 1014 photons/cm2 s was all present to

induce retinal, cortical and behavioral responses, which is safe for
light therapy. In this study, PsCatCh2.0 was expressed in retinal
ganglion cells of blind rd1 mice. Visual acuity raised to 0.22 c/d,
with a temporal resolution of at least 32 Hz. The faster and larger
current PsCatCh2.0 may be an optimal therapeutic option for the
treatment of retinal degeneration. Furthermore, the blue-shifted
action spectrum of PsCatCh2.0 (Supplementary Fig. 2) provided
the possibility to combine with red-shifted optogenetic tools2 to
achieve colored vision restoration in the future.
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Fig. 1 The characterizations of PsCatCh2.0, and the efficiency for vision restoration by optogenetics in rd1 mice. a Scheme of PsCatCh2.0 and
representative photocurrent traces of CatCh and PsCatCh2.0 measured by two-electrode voltage clamp (TEVC) in Xenopus oocyte.
b Stationary photocurrents of CatCh, PsCatCh and PsCatCh2.0 illuminated by different intensities of blue (450 nm) light. n= 3. c Representative
photocurrent traces of CatCh and PsCatCh2.0 in 80mM CaCl2 pH 9.0 buffer with (both top traces) and without 10mM BAPTA injection, holding
at −100 mV. d Comparison of the CatCh and PsCatCh2.0 calcium current. n= 6–7. e Fluorescence pictures (left) of PsCatCh and PsCatCh2.0-
expressing oocytes and fluorescence emission values (right) of PsCatCh and PsCatCh2.0-expression oocytes. All measurements were done two
days after injecting 20 ng cRNA into fresh oocytes. n= 4. f Representative image of whole-cell patch-clamp recording ganglion cell in
PsCatCh2.0-treated rd1 retinal slice, the light-evoked current traces of PsCatCh2.0-expressed RGCs with 1 s light pulses at 470 nm under
different light intensities measured as photons/cm2 s. g The light intensity and current response relationship were measured at peak and
plateau currents. n= 5. h Temporal properties of PsCatCh2.0 in retina induced photocurrents at increasing stimulation frequencies at a light
intensity of 2.7 × 1016 photons/cm2 s of 470 nm blue light. i Representative VEP waveforms. j Representative co-labeling of c-Fos (red), an
immediate early gene, with GFP (green) in vertical retinal sections. k Representative co-labeling of light-induced immediate early genes c-Fos
(red) and Arc (green) in the V1 area of the visual cortex. l Graphed VEP N1 amplitudes. n= 8. Representative result of counting positive cells of
c-Fos or Arc in the retina (m) and V1-visual cortex (n, o), respectively. All mice experiments under the light intensity of 4.7 × 1014 photons/cm2

s of 470 nm blue light. One-way ANOVA test, **P < 0.01, ***P < 0.001. Scale bars, 20 μm (j, k). n= 5. p Representative traces of the first time to
find the hole in light/dark box. q Percentage of time spent in the light compartment under a light intensity of 4.7 × 1014 photons/cm2 s. n=
11–19. r, d Representative distance and average velocity of the first time to find the hole in light/dark box, one-way ANOVA test, ***P < 0.001).
t The average spatial acuity of mice (t-test, ***P < 0.001). Stimulus light intensity 4.7 × 1014 photons/cm2 s. All data showed mean ± SD
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