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PKCα phosphorylation of GLT-1 at Ser562/563 induces
glutamate excitotoxicity in ischemia in mice
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Dear Editor,
Glutamate excitotoxicity due to its accumulation in the

extracellular space is a major factor to the brain damage that
occurs during the early stages of cerebral ischemia1. GLT-1 is
mainly expressed in astrocytes, and it is responsible for almost
90% of glutamate uptake in the brain2. Although GLT-1
upregulation under the administration of ceftriaxone reduces
ischemic brain damage, translational application of ceftriaxone in
acute ischemia treatment is limited because several days are
needed for the upregulation of GLT-13, which misses the critical
time window during which suppression of excitotoxicity will be
effective.
Our recent work showed that quick modulation of GLT-1 activity

by sonic hedgehog (SHH) signaling played a key role in acute
cerebral ischemia, and the underlying mechanism included PKCα
activation and the phosphorylation of Ser562 (mouse)/563 (rat) on
the C terminal of GLT-14. However, it remains unclear whether
PKCα interacts with GLT-1, whether SHH regulates this interaction,
and what roles they might play during cerebral ischemia. In the
current study, we provide evidence to show that PKCα binds and
phosphorylates the C terminal of GLT-1 and activation of the SHH
pathway increases the interaction between GLT-1 and PKCα.
Furthermore, specific disruption of the interaction between PKCα
and GLT-1 by peptide or drug alleviates glutamate excitotoxicity
and ischemic brain damage.
To determine whether PKCα could interact with GLT-1, we

performed mass spectrum analysis on the immunocomplexes
from mouse brain homogenate precipitated by the GLT-1
antibody. As shown in Fig. 1a and Supplementary Table S1, GLT-
1 and PKCα were found in the same complex. We then observed
that PKCα could bind with GLT-1 in GST-pull-down assay (Fig. 1b
and Supplementary Fig. 1a, b). These data indicated that PKCα
could bind to GLT-1.
Further, we designed four peptides, His-SC-TAT, His-2A-TAT, His-

2A(P559)-TAT and His-2A(P563)-TAT (Fig. 1c). The His-2A-TAT
contained the last 21 amino acids of GLT-1 and His-SC-TAT was
used as the scramble control. The His-2A(P559)-TAT or His-2A
(P563)-TAT containing the phosphorylated serine at 559 or 563,
respectively, was used to test the specificity of the antibody, AP-
563. To directly check the phosphorylation status of Ser562/563
(mouse/rat) on GLT-1, we developed the antibody AP-563 and
found that AP-563 could specifically recognize His-2A(P563)-TAT,
which suggested that it could be used to detect the phosphoryla-
tion of Ser562/563 on GLT-1 (Fig. 1d). Next, we built up the in vitro
phosphorylation system, in which His-2A-TAT was incubated with
or without purified PKCα. We found that the phosphorylation of
Ser562/563 was significantly increased after incubating with PKCα
for 1 h and 2 h (Fig. 1e and Supplementary Fig. 1c). These results
showed that PKCα could directly phosphorylate Ser562/563 on the
C terminal of GLT-1.

Then, we found that SAG, the agonist of SHH pathway,
increased the binding between PKCα and GLT-1 in cultured
astrocytes (Supplementary Fig. 1d–f). To further explore whether
the interaction between PKCα and GLT-1 is important to the
modulation of GLT-1 activity induced by SHH signal, we incubated
His-2A-TAT, a peptide designed to interrupt the interaction
between PKCα and GLT-1, and its control peptide, His-SC-TAT, in
cultured astrocytes. These two peptides were detected in the cell
lysates, suggesting that they had passed through the membrane
(Supplementary Fig. 1g). The increased binding between PKCα
and GLT-1 (Supplementary Fig. 2a–d) and the phosphorylation of
Ser562/563 on GLT-1 (Fig. 1f and Supplementary Fig. 1h) were
both abolished in the His-2A-TAT group but not in the His-SC-TAT
group. Then, we observed that the decreased membrane
expression of GLT-1 (Supplementary Fig. 2e, f) and reduction of
GLT-1 activity (Fig. 1g) induced by SAG were reversed after
applying His-2A-TAT peptide. Together, these results indicated
that the increased phosphorylation of GLT-1 at Ser562/563 by
PKCα mediated SHH quick regulation of GLT-1 activity in
astrocytes.
To detect the changes in the phosphorylation of Ser562 on GLT-

1 in vivo, we first examined the specificity of AP-563 antibody on
the hippocampus samples from wild-type (WT) and GLT-1 (S562A)
point-mutation mice subjected to middle cerebral artery occlusion
(MCAO) (Supplementary Fig. 3a–c). Next, we found that the
phosphorylation of Ser562 on GLT-1 was significantly increased in
the ipsilateral hippocampus, a representative penumbra area, in
the MCAO model of mice (Fig. 1h, i), and His-2A-TAT completely
blocked such an increase. Examination of total, cytosol and
membrane fractions isolated from the contralateral and ipsilateral
hippocampus showed that GLT-1 expression shifted from the
membrane to the cytosol in the ipsilateral hippocampus, and this
redistribution was inhibited by His-2A-TAT (Fig. 1j). Further, when
His-2A-TAT was injected intravenously 1 h before MCAO, the
accumulation of extracellular glutamate in the hippocampus was
significantly reduced during ischemia (Fig. 1k). More importantly,
the ischemic brain damage was alleviated 24 h after MCAO
(Fig. 1l). In contrast, the blood flow in the hippocampus did not
change after His-2A-TAT injection (Supplementary Fig. 3d). These
data provide the direct evidence that increased phosphorylation
of Ser562 on GLT-1 promoted the reduced membrane expression
of GLT-1 and eventually contributed to glutamate excitotoxicity in
ischemia.
Then, we used LXS-196, a PKCα inhibitor used for clinical trials

on uveal melanoma5 (Supplementary Fig. 4a). Similar to His-2A-
TAT treatment, LXS-196 completely blocked the increased
binding between PKCα and GLT-1 following SAG induction in
cultured astrocytes (Supplementary Fig. 4b, c). Moreover, LXS-196
reversed the increased phosphorylation of Ser563 on GLT-1 (Fig. 1m)
and sequentially reduced the membrane expression of GLT-1
(Supplementary Fig. 4d) by SAG stimulation. Finally, the reduced
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GLT-1 activity induced by SAG was recovered by the LXS-196
treatment (Fig. 1n). Taken together, these data indicated that LXS-
196 could reverse the quick modulation of GLT-1 activity by SHH
signaling through disrupting the interactions between PKCα and
GLT-1.

To further explore the translational possibility of LXS-196 for
treating cerebral ischemia, we intravenously injected LXS-196 and
found that LXS-196 inhibited the increased phosphorylation of Ser562
on GLT-1 in the ipsilateral hippocampus (Supplementary Fig. 5a, b).
When LXS-196 was administered 45min after MCAO, the increased
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phosphorylation of Ser562 on GLT-1 in the ipsilateral hippocampus
was reversed (Supplementary Fig. 5c, d), meanwhile, the accumula-
tion of extracellular glutamate in the ipsilateral hippocampus was
significantly reduced (Fig. 1o). The blood flow in the hippocampus did
not change after the LXS-196 injection (Supplementary Fig. 5e). Then,
we intravenously injected either LXS-196 or its solvent 30min after
MCAO and found that both the neurological deficit score and the
ischemic brain damage were alleviated in the LXS-196-treated group
(Fig. 1p and Supplementary Fig. 5f). Finally, we found that LXS-196
treatment significantly increased mice survival rate during the
following four weeks after MCAO (Fig. 1q). These data provided
further support to the idea that LXS-196 was promising for clinical
translation in treating ischemic stroke.
In summary, the present study identified that modulation of

PKCα interaction with GLT-1 by activation of SHH pathway
immediately after cerebral ischemia served as a mechanism
underlying excitotoxicity in the ischemic brain. Targeting this
pathway, such as by using the inhibitor LXS-196 to PKCα, can be
developed into an effective clinical therapy to treat ischemic
stroke in humans. To be limited, although PKCα directly
phosphorylated Ser562/563 on the C terminal of GLT-1 in vitro,
it is possible that other proteins or even protein kinases were
involved in the regulation of the activities of GLT-1 induced by
SHH signal.
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Fig. 1 PKCα binds to GLT-1 and phosphorylates it on Ser563 to inhibit its activities during ischemia. a Representative Coomassie blue staining
image of the immunoprecipitated proteins from mice brain homogenate by GLT-1 antibody. The rectangle indicated the band used for mass
spectrum analysis. The mass spectrum result was summarized in Supplementary Table S1, GLT-1 and PKCα were highlighted in red color.
b Representative immunoblots of the precipitates by GST pull down to show the interaction between PKCα and GLT-1, bait protein: GST-
PKCα, prey protein: HA-GLT-1. c A diagram showing the sequence of the indicated peptides. Phosphorylated serine was indicated by red color.
d Upper: representative immunoblots of the four peptides indicated in the figure incubated with AP-563. Lower: representative Coomassie
blue staining image of the four peptides. e Representative immunoblots of the 1 h in vitro phosphorylation system with the indicated
antibodies. f Left: representative immunoblots of the immunoprecipitate from astrocytes incubated with His-SC-TAT or His-2A-TAT by the
indicated antibodies. Right: statistics, n= 4. g Aspartate (Asp)-evoked GLT-1 currents in cultured astrocytes incubated with the indicated drugs
for 30min, n > 10 in each condition. Left, representative traces; Right, statistics. h, i Upper: representative immunoblots of the hippocampus
lysate from contralateral or ipsilateral 30min after MCAO with the indicated antibodies. Lower: statistics, n= 4. j Upper: representative
immunoblots of the total, cytosol and membrane fractions of hippocampus taken from mice suffered for 1 h MCAO with His-SC-TAT or His-2A-
TAT given 1 h before MCAO. Lower: statistics, n= 4. k Microdialysis and HPLC analysis of extracellular glutamate in the hippocampus during
2 h MCAO and 2 h reperfusion. His-SC-TAT or His-2A-TAT was given 1 h before MCAO, n= 4 in Sham group, n= 3 in His-SC-TAT group and n= 4
in His-2A-TAT group. l Left: representative TTC staining of brain slices from mice subjected to 2 h MCAO and 24 h reperfusion. His-SC-TAT or
His-2A-TAT was given 1 h before MCAO. Right: statistics, n= 5 in sham group, n= 10 in His-SC-TAT group and n= 9 in His-2A-TAT group.
m Left: representative immunoblots of the immunoprecipitate from astrocytes incubated with the indicated agents by the indicated
antibodies. Right: statistics, n= 3. n Aspartate (Asp)-evoked GLT-1 currents in cultured astrocytes incubated with the indicated drugs for
30min, n > 9 in each condition. Left, representative traces; Right, statistics. o Microdialysis and HPLC analysis of extracellular glutamate in the
hippocampus during 2 h MCAO and 2 h reperfusion. Placebo or LXS-196 was given 45min after MCAO, n= 4 in Sham group, n= 3 in Placebo
group and n= 3 in LXS-196 group. p Left: representative TTC staining of brain slices from mice subjected to 2 h MCAO and 24 h reperfusion.
Placebo or LXS-196 was given 30min after MCAO. Right: statistics, n= 5 in sham group, n= 6 in placebo group and n= 7 in LXS-196 group.
q Evaluation of survival rate during the following four weeks after MCAO. LXS-196 or placebo was given 30min after MCAO. n= 5 in sham
group, n= 13 in placebo group and n= 14 in LXS-196 group. Data are means ± SEM, ns, no significance. *p < 0.05, **p < 0.01 and ***p < 0.001
by two-tailed Student’s t test in (f–j), by two-way ANOVA with Bonferroni’s multiple comparisons in (k) and (o), by one-way ANOVA with
Bonferroni’s multiple comparisons in (l–n) and (p) and by log-rank test in (q)
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