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Multi-omic characterization of genome-wide abnormal DNA
methylation reveals diagnostic and prognostic markers for
esophageal squamous-cell carcinoma
Yiyi Xi1, Yuan Lin2, Wenjia Guo3, Xinyu Wang4, Hengqiang Zhao4, Chuanwang Miao1, Weiling Liu1, Yachen Liu1, Tianyuan Liu1,
Yingying Luo1, Wenyi Fan 1, Ai Lin1, Yamei Chen 1, Yanxia Sun 1, Yulin Ma1, Xiangjie Niu1, Ce Zhong1, Wen Tan1, Meng Zhou 4,
Jianzhong Su4,5✉, Chen Wu1,6,7✉ and Dongxin Lin 1,6,8✉

This study investigates aberrant DNA methylations as potential diagnosis and prognosis markers for esophageal squamous-cell
carcinoma (ESCC), which if diagnosed at advanced stages has <30% five-year survival rate. Comparing genome-wide methylation
sites of 91 ESCC and matched adjacent normal tissues, we identified 35,577 differentially methylated CpG sites (DMCs) and
characterized their distribution patterns. Integrating whole-genome DNA and RNA-sequencing data of the same samples, we found
multiple dysregulated transcription factors and ESCC-specific genomic correlates of identified DMCs. Using featured DMCs, we
developed a 12-marker diagnostic panel with high accuracy in our dataset and the TCGA ESCC dataset, and a 4-marker prognostic
panel distinguishing high-risk patients. In-vitro experiments validated the functions of 4 marker host genes. Together these results
provide additional evidence for the important roles of aberrant DNA methylations in ESCC development and progression. Our DMC-
based diagnostic and prognostic panels have potential values for clinical care of ESCC, laying foundations for developing targeted
methylation assays for future non-invasive cancer detection methods.
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INTRODUCTION
Esophageal squamous-cell carcinoma (ESCC) accounts for 80% of
esophageal cancer cases worldwide1 and has a 5-year survival rate
of <30%.2,3 About 350,000 people die of ESCC every year in China
where this malignancy largely occurs.4 Treating this disease at
early stages generally results in better prognosis than at late
stages, but effective biomarkers that aid early detection and/or
accurate prognosis prediction are currently lacking. Aberrant DNA
methylation5,6 plays an important role in cancer initiation and
progression7–9 and have been investigated to derive diagnostic/
prognostic biomarkers for several types of human cancer
including ESCC.10–13 For cancer detection, differentially methy-
lated CpG sites (DMCs) are considered better than other genetic
features due to their tissue-of-origin and cancer-type specificity,
early emergence during carcinogenesis and relative stability in
fixed samples and body fluid over time.14–17 A recent clinical study
has demonstrated the superiority of DMC markers when working
with circulating cell-free tumor DNAs (cfDNAs).18 In pursuit of
potential DMC-based markers, it is crucial to conduct unbiased
genome-wide screening in a large number of samples. Equally
important is subsequent association testing with the same

patient’s other relevant genomic or transcriptomic features
particularly the gene expression profile. Epigenetic anomalies
often disturb gene regulation; systematically investigating the
interactions between these two omics layers would help pinpoint
biologically sound DMC markers. However, few previous studies
have adequately fulfilled these two steps. Early works usually
focused on a small number of aberrantly methylated genes
instead of performing genome-wide search.19,20 More recent
studies either ignored the genomic and transcriptomic contexts or
investigated them in a different set of patients, likely due to a lack
of matched multi-omics data. For example, Wang et al. inter-
rogated the methylome of 84 TCGA ESCC patients and developed
diagnostic models, but gene expression data were not con-
sulted.21,22 Talukdar et al. developed a diagnostic 7-CpG panel
based on methylation profiling of more than 100 ESCC samples
collected from Africa, Asia and South America countries, but they
weighted each CpG marker based on gene expression from TCGA
ESCC patients (mostly Caucasian).13 Chen et al. integrated DNA
methylation and gene expression profiles from the same samples,
but the sample size was too small (n= 4).23 Furthermore, although
DMC sites in cancer genomes bear ethnic specificity,24 Caucasian
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samples are by far the mostly used for biomarker discovery, with
only a couple of exceptions.13,23 No large-scale methylome
interrogation has been carried out for Chinese ESCC patients.
In our previous study,25 we have performed whole-genome

sequencing and RNA-sequencing on 91 Chinese ESCC patients’
matched tumor and adjacent normal tissue samples. In the
present study, we continued to profile genome-wide DNA
methylation of the same samples and correlate DMCs with a
variety of gene expression alterations as well as somatic and
germline variants specific to ESCC. Based on the results, we have
developed a diagnostic model comprised of 12 promoter/gene-
body DNA methylation CpG sites that robustly distinguishes ESCC
from adjacent tissues or normal esophagus in multiple patient
sets. We have also developed a prognostic model comprised of 4
promoter/gene-body CpG sites that can classify ESCC patients into
high-risk and low-risk groups. The host genes of identified markers
have potentially functional roles in ESCC development and
progression, as implicated in the literature or by our in-vitro
experiments. Overall, this study demonstrates that the ESCC
genome abounds with specific DNA methylation patterns that
could be effective diagnostic or prognostic biomarkers and
potential mediators of tumor development and/or progression.

RESULTS
Overview of differentially methylated CpG sites in ESCC
Among 429,717 probes (out of 467,079, 92%) that had passed
quality control, 35,577 (8.28%) were differentially methylated
between tumor and adjacent normal samples (FDR q < 0.05,
absolute median methylation difference |MMD | > 0.20; Fig. 1a),
with 56.54% (20,114/35,577) of these DMCs hypo-methylated (Fig.
1b). The distribution of DMCs varied among chromosomes
(Supplementary Fig. S1a, b), mostly enriched in Chromosome 8
(odds ratio (OR)= 1.32, P= 1.00e-89) and mostly absent in
Chromosome 22 (OR= 0.67, P= 1.00e-45). Hyper-methylated sites
were mostly enriched in Chromosomes 18 and 19 (OR= 1.32, P=
3.60e-6, OR= 1.11, P= 4.25e-4) whereas hypo-methylated sites in
Chromosome 8 (OR= 1.60, P= 2.24e-68), respectively (Fig. 1c, d).
Furthermore, DMCs were significantly enriched in intergenic and
enhancer regions (Supplementary Fig. S1c, d), with more hypo-
than hyper-methylated CpG sites in intergenic regions and
similarly abundant hyper- and hypo-methylated sites in enhancer
regions (Fig. 1e, f). Hyper-methylated CpG sites were also enriched
in CpG islands (OR= 1.66, P= 1.00e-1502) and DNase I hypersen-
sitivity sites (OR= 1.77, P= 6.06e-258), while hypo-methylated
sites also enriched in open sea (OR= 1.89, P= 1.00e-4373) (Fig. 1e,
f). We found more hyper- than hypo-methylated sites within
promoter regions (Fig. 1e, f). At the chromosome level, Chromo-
some 8 was enriched with hypo-methylated sites mainly found in
open sea, intergenic and enhancer regions; Chromosomes 18 and
19 were enriched with hyper-methylated sites mainly found in
CpG islands, promoter and DNase I hypersensitivity sites
(Supplementary Fig. S1e−j).
Commercial DNA methylation arrays are intentionally focused

on DNA methylation CpGs at promoters and gene bodies, which
often regulate the expression of host genes in a cis manner. Even
so, the genome of our ESCC samples still contained more-than-
expected hyper-methylation in promoter and adjacent regions,
while hypo-methylation dominates genome wide, as observed in
several other cancer types.7,9,17 The methylation status of 3241
(9.11%) promoter or gene-body DMCs were significantly corre-
lated with the expression levels of their host genes in ESCC,
quantified using RNA sequencing data (|Spearman’s correlation
coefficient r | > 0.30, FDR q < 0.05). These DMCs were mostly
overrepresented in Chromosome 7 (OR= 1.55, P= 1.80e-14; Fig.
1g, h) and were more likely to reside at gene-bodies than at
promoter and adjacent regions (OR= 1.70, P= 6.22e-197; Fig. 1i,
j). Because DMCs at promoters and gene bodies often affect host

gene expression differently,26 we investigated promoter-DMC
involved negative expression-methylation correlations and gene-
body-DMC involved positive expression-methylation correlations,
using same patients’ gene expression profiles obtained in our
previous study25 (Fig. 2a, b). Among protein coding genes
differentially expressed between tumor and adjacent normal
samples, 90 downregulated and 44 upregulated genes were
associated with 224 hyper-methylated and 70 hypo-methylated
CpG sites at their promoter regions, respectively; 274 down-
regulated and 70 upregulated genes were associated with 764
hypo-methylated and 221 hyper-methylated CpG sites in their
gene-bodies, respectively (Fig. 2a, b). We then looked into the
methylation-expression correlation in Chromosomes 8, 18, 19.
Chromosomes 8 mainly contained genes whose expression levels
were associated with hypo-methylated sites in gene bodies
(Supplementary Fig. S2a, b); Chromosome 19 mainly contained
genes whose expression levels were associated with promoter
hyper-methylated sites (Supplementary Fig. S2c, d). No preference
was observed in Chromosome 18.
Host genes potentially dysregulated by negatively correlated

promoter-DMCs were enriched in the GO categories of metal ion
binding, transcription factor activity and transcription regulation,
whereas host genes potentially dysregulated by positively
correlated gene-body DMCs were enriched in the GO categories
of system development and cell part morphogenesis (Supple-
mentary Fig. S3). In light of this result, we examined the overlap
between these DMC-associated genes with known human
transcription factors (TFs)27 and found significant TF enrichment
in hyper-methylation associated genes, including 32 of 90
downregulated genes (P= 4.12e-15) associated with promoter
hyper-methylation and 39 of 70 upregulated genes (P= 4.83e-27)
associated with gene-body hyper-methylation (Fig. 2b). The
former group (32 downregulated TFs) were mostly the members
of the zinc finger gene family, such as ZNF38228 (Fig. 2c, f),
whereas the latter group (39 upregulated TFs) included 29
potential oncogenic Homeobox genes such as HOXB13 and
DLX129 (Fig. 2d, e, g, h), suggesting genome-wide DNA methyla-
tion anomalies may have led to the dysregulation of multiple TFs
involved in a variety of molecular processes contributing to ESCC
initiation and progression. Twenty-three of the 32 downregulated
TFs (71.88%) locate in Chromosome 19, accounting for 85.19%
(23/27) of all the protein coding genes in that chromosome that
were associated with hyper-methylated promoter CpGs and
downregulated in tumor samples (Supplementary Fig. S2d).

Differentially methylated CpG sites are associated with ESCC-
specific genetic variations
We found recurrent promoter or gene-body DMCs (each in >51%
(46/91) patients) in 9 previously identified ESCC driver genes FAT1,
NOTCH1, JUB, MLL2, PIK3CA, TGFBR2, NFE2L2, NOTCH3 and
ZNF75025 (Fig. 3a; Supplementary Data S1). As many as 97% (88/
91) of our patients had promoter or gene-body DMCs in these
genes. Surprisingly, no DMCs were found in TP53. Among DMC-
correlated TF genes, some have been implicated in the progres-
sion of ESCC, including zinc finger genes such as ZNF382, ZNF582
and ZNF66728,30,31 and Homeobox genes such as BARX1, HOXA13
and HOXC10.32–34 All 7 CpG sites at the promoter of ZNF382, a NF-
κB inhibitor frequently downregulated in ESCC,28,35 were recur-
rently hyper-methylated in our data: at least one of the 7 DMCs
were found in 75.82% (69/91) ESCC genomes. We also found
hypo-methylation in the promoter of TP63, which is part of a core
regulatory circuitry for ESCC.36

The frequencies of differential methylation events were then
correlated with recurrent ESCC genomic variants that we have
previously identified.25 We found that hyper-methylation events
were significantly correlated with somatic mutations in the genes
RB1, NOTCH1, CDKN2A and PIK3CA, 3q26.32, 7p22.3 and 14q13.3
amplifications and 2q22.1 deletions; hypo-methylation events
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Fig. 1 Characteristics of differentially methylated probes in ESCC. a The proportion of all filtrated CpG sites that are differentially
methylated or not methylated. b The proportion of differentially hyper-methylated (red) or hypo-methylated (blue) CpG islands. c, d The
proportion (c) and odds ratio (d) of hyper-methylated (red) or hypo-methylated (blue) CpG sites in different chromosomes. e, f The category
(e) and odds ratio (f) of genomic locations for hyper-methylated (red) or hypo-methylated (blue) sites. g, h The proportions (g) and odds ratio
(h) of methylated CpG sites correlated with the expression levels of genes in different chromosomes. i, j The category (i) and odds ratio (j) of
genomic locations for CpG sites correlated with genes expression. Odds ratio was computed against the general distribution and P value was
computed by Hypergeometric test. Island, CpG island; shore, 0–2 kb from CpG island; shelf, 2–4 kb from CpG island; open sea, other genomic
regions; TSS1500, 200–1500 bases upstream of the transcriptional start site (TSS); TSS200, 0–200 bases upstream of the TSS; 5’UTR, within the
5’ untranslated region and between the TSS and the ATG start site; body, between the ATG and stop codon regardless the presence of introns,
exons, TSS or promoters; 3’UTR, between the stop codon and poly A signal
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were significantly correlated with somatic mutations in the genes
CREBBP and NOTCH3, 19q13.12 amplifications and 3p14.2 and
13q14.3 deletions (Fig. 3b, c and Supplementary Data S2, 3). Cis-
meQTL analysis indicated 292 DMCs associated with 4864 nearby
SNPs (within a 100-kb window centering each DMC) in ESCC

tissues and 2064 DMCs associated with 29,321 SNPs in adjacent
normal tissues (Supplementary Data S4, 5 and Supplementary Fig.
S4). Compared with adjacent normal, 1974 DMCs lost genetic
control in tumor genomes and 202 DMCs gained new correlations.
Moreover, ESCC-associated SNPs (14,761, nominal P < 0.05)
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ascertained from our previous GWAS studies37 were enriched in
the identified meQTLs (tumor, P= 5.66e-260; normal, P= 1.00e-
1240), which suggests that perturbed DNA methylation may
contribute to ESCC predisposition.

Differentially methylated CpG sites are effective diagnostic/
prognostic markers for ESCC
Not only were the identified DMCs associated with various
molecular characteristics of ESCC, together they could distinguish
ESCC from normal esophageal tissues (Supplementary Fig. S5a).
We hypothesized that a relatively small number of DMC markers
are sufficient for ESCC diagnosis. To identify such markers, we
randomly divided the patients into a training set (n= 60) and a
validation set (n= 31) and started with the 1034 promoter/gene-
body DMCs whose methylation levels were negatively (or
positively) correlated with the expression levels of their host
genes. Tumors and adjacent normal samples in the training set
were adequately separated by the 1034 DMCs (Supplementary Fig.
S5b). Applying random-forest and LASSO to these DMCs
generated a model of 12 DMCs (Supplementary Table S1). This
model achieved 98.33% sensitivity and 93.33% specificity in the
training set (Fig. 4a) and 96.77% sensitivity and 100% specificity in
the validation set (Fig. 4b). We also computed receiver operating
characteristic (ROC) curves and the area-under-curve values
(AUCs) were 99.6% and 97.1% in the training and the validation
sets, respectively (Fig. 4d, e). When tested in other ESCC datasets,
including TCGA ESCC data and additional GEO datasets (GSE52826
and GSE77991), this diagnostic model consistently showed high
sensitivity, specificity and AUCs (Fig. 4c, f and Supplementary Fig.
S6a−d), which indicates robustness and generalizability. Unsu-
pervised hierarchical clustering based on these DMCs clearly
distinguishes ESCC from normal tissue samples (Fig. 4g−i).
We looked for potential prognosis markers among DMCs based

on how strong they were associated with the overall survival (OS)
time of ESCC patients in our sample and the TCGA ESCC sample.
For each DMC, we constructed a Cox regression model including
that DMC as a single predictor and age, sex, smoking status,
drinking status and tumor TNM stage as covariates. Four DMCs
(cg23378365, cg06090867 and cg03244277 in the promoters of
CYFIP2, UBXN10, AREG, respectively, and cg02370667 in the gene-
body of NECAB2) were significantly associated with patient survival
in our sample. We then constructed a prognostic model by
summing the methylation levels of these 4 DMCs, each weighted
by the hazard ratio (HR) in the corresponding Cox regression result
(Supplementary Table S2). This model classified our patients as
having high or low prognostic risk (Supplementary Table S3)
where the high-risk patients had significantly shorter median OS
than others (12 versus 33 months, Plog-rank= 1.74e-4; Fig. 5a), the
HR being 3.22 (95% confidence interval (CI)= 1.84−5.62) adjusted
for age, sex, smoking status, drinking status and tumor TNM stage.
Applying this model to the TCGA ESCC sample yielded a similar
result: the predicted high-risk patients had significantly shorter
median OS than low-risk patients (23 versus 42 months, Plog-rank=
0.032; Fig. 5b), the HR being 4.25 (95% CI= 1.58−11.42) adjusted
for age, sex and tumor TNM stage.

We further carried out survival analysis in patients with different
tumor stages to evaluate the discriminating ability of our
prognostic panel. Within early-stage (I and II) patients in our
sample, the low-risk group had longer OS time than the high-risk
group (Fig. 5c), although the statistic was marginally significant
(Plog-rank= 0.097; HR= 1.62, 95% CI 0.34−7.84), probably due to
relatively small sample size (n= 24). Our model did not perform as
well in early-stage patients of the TCGA ESCC cohort (Fig. 5d). For
patients with advanced disease (stage III and IV), our model was
particularly strong. In our sample, the median OS time in
advanced ESCC patients was 12 months for the high-risk group
versus 23.5 months for the low-risk group (Plog-rank= 4.70e-3;
HR= 2.69, 95% CI 1.48−4.90; Fig. 5e). Similarly, in the TCGA ESCC
sample, the median OS time in advanced ESCC patients was 13
and 42 months for high and low-risk groups, respectively
(Plog-rank= 0.018; HR of 24.11, 95% CI 3.50−166.18; Fig. 5f).
We examined the differential methylation status of the above

16 diagnostic/prognostic markers in the TCGA ESCC data. Ten of
them showed similarly significant methylation changes in TCGA
ESCC samples compared with normal samples. The rest six
markers (cg05446471, cg19310604, cg21041579, cg03244277,
cg06090867, cg23378365 in HDAC11, HOXC10, SYNE3, AREG,
UBXN10 and CYFIP2, respectively) showed similarly significant yet
less intensive methylation changes (P < 0.05, absolute methylation
difference <0.20). We also compared the methylation patterns of
the 16 markers across 22 cancer types that have available 450 K
array data and normal samples in the TCGA database, with
esophageal cancer samples further divided into ESCC and
esophageal adenocarcinoma (EAC). The result (Supplementary
Fig. S7) confirmed that these markers are ESCC specific.

Functional implications of identified diagnostic and prognostic
markers
Some DMC markers we identified locate in the promoters or gene
bodies of protein-coding genes and may have contributed to
ESCC development or progression by affecting the expression of
these genes. To test our hypothesis, we first looked for markers
whose methylation levels were correlated with the expression
levels of host or nearby genes. Among the 12 DMC markers for
ESCC diagnosis, cg10085326, cg24276395, cg05446471,
cg21553182 reside at the promoters of MMP13, YEATS2, HDAC11
and ZNF578, respectively. We classified patients into two groups
by the median methylation levels of each site and then compared
the expression levels of the corresponding genes. Patients with
high methylation of each marker had significantly lower expres-
sion levels of these 4 genes in ESCC than patients with low
methylation (Supplementary Fig. S8a−d). The methylation status
of each marker was negatively correlated with the expression level
of the corresponding host gene (all Spearman r < –0.30, P < 0.05,
Supplementary Fig. S9a−d).
The other 8 diagnostic DMCs locate in the gene-body of AFF3,

PDE4D, SYNE3, SLC8A3, CPS1, HOXC10, LDB2 and PACRG, respec-
tively. The high methylation status in the 8 sites corresponded to
significantly higher expression levels than low methylation status,
except for AFF3 (Supplementary Fig. S8e−l). The expression levels

Fig. 2 Integrative analysis of whole-genome DNA and RNA-sequencing data uncovered methylation-mediated dysregulation of multiple
TFs in ESCC. a, b The association between promoter or gene-body methylation and host gene expression were identified. There are four
clusters: genes (n= 90) that are hyper-methylated in promoter with low expression in ESCC; genes (n= 44) that are hypo-methylated in
promoter with high expression; genes (n= 70): that are hyper-methylated in gene-body with high expression; genes (n= 274) that are hypo-
methylated in gene-body with low expression. Number of known TFs are shown in each cluster. P value was computed by Hypergeometric
test. c Differential expression (top) and promoter methylation (bottom) levels of ZNF382 in ESCC and normal samples. d, e Differential
expression (top) and gene-body methylation (bottom) levels of HOXB13 (d) and DLX1 (e) in ESCC and normal samples. f The correlation
between mRNA expression and promoter DNA methylation levels of ZNF382. g, h The correlation between mRNA expression and gene-body
DNA methylation levels of HOXB13 (g) and DLX1 (h). P of Student’s t test for gene expression and Wilcoxon signed-rank test for methylation.
Genes mRNA expression level (RSEM) was added by 1 and then log2 transformed. Dotted short line indicates mean expression level of
each gene
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of these genes were positively correlated with the methylation
levels in their gene bodies (all Spearman r > 0.30, P < 0.05,
Supplementary Fig. S9e−l).
Three of the four DMCs associated with the survival time in

ESCC patients, cg23378365, cg06090867, cg03244277 locate at the
promoters of CYFIP2, UBXN10 and AREG, respectively; cg02370667

resides in the gene-body of NECAB2. The expression levels of these
genes showed no significant difference between high and low
methylation groups of each marker except for NECAB2 (Supple-
mentary Fig. S8m−p). The expression levels of NECAB2 and
UBXN10 were significantly correlated with the methylation levels
of corresponding CpG sites (NECAB2, r= 0.42, P= 3.48e-5,

Fig. 3 Hyper- and hypo-methylation events across ESCC and integrated profiling of ESCC driver genes. a Map overview of genetic and
epigenetic alterations in 20 ESCC driver genes previously identified. ach column denotes an individual patient and each row represents the
status of one gene including somatic mutations (black squares), copy number amplifications (red bars), copy number deletions (blue bars),
hyper- (pink bars) and hypo-methylated events (azure bars). Wild-type cases are in gray. Right, percentage of alterations for each gene in 91
ESCC patients while the X axis represents total percentage of alterations for each gene. b, c We tested recurrent genetic alterations in ESCC for
their associations with frequency of hyper- (b) or hypo-methylated event (c). Significant associations (Wilcoxon P < 0.05) were shown in above
and labeled by gene symbol for somatic mutations or cytoband for amplifications and deletions. Each column denotes an individual patient
and each row is one genetic alteration including somatic mutations (black bars), copy number amplifications (red bars) and copy number
deletions (blue bars). Wild-type cases are in gray. Top color bars represent the frequency of DNA methylation
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Supplementary Fig. S9m; UBXN10, r= 0.22, P= 0.033, Supplemen-
tary Fig. S9o).
Next, we focused on marker host genes whose expression levels

significantly increased in ESCC samples and associated with the
methylation levels of corresponding DMC markers, hypothesizing
that knocking down the expression of such genes would diminish
the malignancy of ESCC cells in vitro. MMP13, YEATS2 and HOXC10
with DMC markers in their promoters and NECAB2 with a gene-
body DMC marker were selected for the functional experiments.
These four genes were overexpressed in our ESCC samples
compared to matched normal tissue samples and the expression
levels were strongly correlated with the methylation levels of
corresponding DMCs (|Spearman’s r | > 0.30). We knocked down
the expression of these genes in ESCC cell lines, one at a time
(Supplementary Fig. S10). Silencing the expression of YEATS2,
HOXC10 or NECAB2 by siRNA significantly inhibited ESCC cell
proliferation, migration and invasion; silencing the expression of

MMP13 significantly suppressed ESCC cell migration and invasion
but not proliferation (Fig. 6a−h).

DISCUSSION
Despite the promising future of targeted DNA methylation assays
in ESCC detection, only recently have we begun to rely on large
sample size and genome-wide profiling, and the interactions
between DNA methylation and other omic features (e.g., aberrant
gene expression and genomic alterations) are too often
ignored.23,38–44 A large-scale, systematic screening of diagnostic
and prognostic DMC markers has not been conducted on Chinese
samples before, even though China has the highest incidence of
ESCC around the world. Here, we explored genome-wide DNA
methylation anomalies of 91 Chinese ESCC patients. By comparing
their tumor and paired normal samples, we identified 35,577
DMCs and characterized their genome-wide distribution patterns.

Fig. 4 Diagnosis of ESCC with a DNA methylation panel. a–c The confusion tables of binary results of diagnostic prediction model in the
training (a), validation (b) and TCGA ESCC (c) datasets. d–f The receiver operating characteristic curve (ROC) of the diagnostic prediction
model in the training (d), validation (e) and TCGA ESCC (f) datasets. g−i Unsupervised hierarchical clustering and heatmap of 12 methylation
markers screened for constructing the diagnostic prediction model in the training (g), validation (h) and TCGA ESCC (i) datasets
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By further integrating genomic and gene expression data of the
same samples, we associated many of these DMCs with ESCC-
specific genomic or transcriptomic variations, such as somatic
mutations in putative ESCC driver genes, germline SNPs asso-
ciated with ESCC predisposition, as well as aberrant expression of
characteristic functional gene sets and pathways.
Notably, the expression of multiple TFs, including several

members of the zinc finger family and the homeobox family,
were perturbed in ESCC likely due to associated DMCs. Two of
these DMCs, associated with ZNF578 and HOXC10 respectively,
were selected into our diagnostic panel and we validated the
functional role of HOXC10 in vitro. Previous pan-cancer analyses
have shown that DNA methylation plays a predominant role in
dysregulating TFs in general and the homeobox family in
particular.29,45 Since TFs are “master regulators” of biological
processes and pathways critical for the development and
differentiation of specific cell types46 and their defining func-
tions,47 DNA methylation associated with TF dysregulation could
happen at an early or even precancerous stage of ESCC, making
them good candidates for early diagnosis markers. In our data,
most of the perturbed TFs locate in Chromosome 19, suggesting
that Chromosome 19 targeted marker detection could be an
alternative to whole-genome screening when the latter is too
expensive (e.g., for a very large cohort).

Based on featured DMCs, we developed a panel of 12
methylation CpG sites that can well distinguish ESCC tumor from
normal tissues and a linear model of 4 CpG sites that can classify
patients into different risk groups in terms of overall survival time.
Both models were validated in public ESCC datasets. Recently a
7-CpG diagnostic panel for ESCC has been developed using a large
non-TCGA discovery cohort.13 When applied to TCGA ESCC data,
the model showed an AUC of 89%, lower than ours 96.6%.
Without looking into the not-yet-released data of that study, we
can only speculate on the reasons: (a) we processed all samples
into freshly frozen tissues while they used formalin-fixed paraffin-
embedded (FFPE) tissues; (b) we only included tumor samples
with >75% neoplastic cells, while their filtering threshold was 50%;
(c) we combined random forest and the least absolute shrinkage
and selection operator (LASSO)-penalized logistic regression for
marker screening, while they performed partial least square-
discriminant analysis (PLS-DA); (d) we integrated gene expression
data of the same patients while they used those of TCGA ESCC
patients. A 9-CpG panel has been previously developed for ESCC
prognosis,38 but was based on Illumina’s GoldenGate methylation
array with only 1505 CpG sites. Only one marker in that panel
showed correlation with its host gene.
Following the cis-effect hypothesis of DMCs, we investigated the

host genes of the DMC markers in our models. All 12 diagnostic-

Fig. 5 The correlation of the methylation signature and survival time in patients with ESCC. a, b Kaplan–Meier survival curves for all our
patient sample (a) and all TCGA ESCC patient sample (b). c, d Kaplan–Meier survival curves for patients with early stage ESCC in our sample (c)
and in TCGA ESCC sample (d). e, f Kaplan–Meier survival curves for patients with advanced stage ESCC in our sample (e) and in TCGA ESCC
sample (f). High- or low-risk group was defined by the weighted hazard ratios of the 4 methylation sites in patients. The P value was calculated
by log rank test. HR and 95% CI was computed with Cox hazard proportion model
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Fig. 6 Effects of silencing some genes in diagnostic and prognostic panels on ESCC cell phenotypes. a–d Silencing the expression of
MMP13 (a), YEATS2 (b), HOXC10 (c) and NECAB2 (d) significantly suppressed KYSE30 and KYSE150 cell proliferation. e–h Silencing the expression
of MMP13 (e), YEATS2 (f), HOXC10 (g) and NECAB2 (h) significantly suppressed KYSE30 and KYSE150 cell migration and invasion. Left panel
shows representative cell migration and invasion images and right panel shows quantification statistics. Data represent mean ± SEM from 3
independent experiments. *P < 0.05; **P < 0.01; ***P < 1.00e-3; ****P < 1.00e-4 and ns not significant of Student’s t test compared with
corresponding control
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marker host genes were dysregulated in ESCC samples compared
with matched adjacent normal samples. Among them, MMP13
encodes a member of the matrix metalloproteinase family that can
be dysregulated in esophageal cancer.48,49 YEATS2 encodes a
scaffolding subunit of the Ada-two-A-containing (ATAC) complex
implicated in lung tumorigenesis.50 HDAC11 encodes a class IV
histone deacetylase involved in multiple types of cancer.51–53 AFF3
is a potential tumor suppressor in lung cancer.54 PDE4D and CPS1
were dysregulated in a variety of cancer types.55–60 HOXC10 has
been associated with many cancer types including ESCC.34,61–64

The roles of SYNE3, SLC8A3, LDB2 and PACRG in ESCC development
remain unknown and thus warrant further investigations. Three out
of four prognostic-marker host genes were dysregulated in our
ESCC samples. AREG encodes the epidermal growth factor receptor
(EGFR) ligand amphiregulin, an often-upregulated prognostic
marker in several types of human cancer.65–69 The methylation of
AREG has been associated with survival in patients with
astrocytoma.69 The protein product of CYFIP2 is involved in p53-
dependent apoptosis induction.70 Decreased expression of CYFIP2
can promote cancer cell growth in vitro71 and has been reported in
gastric cancer.72 The roles of UBXN10 and NECAB2 in ESCC
progression remain to be elucidated. We demonstrated in vitro
that MMP13, YEATS2, HOXC10 and previously unreported NECAB2
could contribute to ESCC progression when upregulated.
We validated the 16 DMC markers in the TCGA 450 K microarray

data. Although they all had similarly significant methylation
changes, 6 sites, including one at the functionally validated
MMP13, changed so little that they would not have been
discovered if we had screened the TCGA data. We also examined
previously reported DNA methylation markers and their host
genes13,21–23,38,39 in our samples. Of 30 differentially methylated
CpG regions/sites that involve 25 genes, six regions (in PAX9,
THSD4, TWIST1, EPB41L3, GPX3 and COL14A1, respectively) and 4
CpG sites (cg20655070, cg27062795 in ZNF542 and cg04550052,
cg04698114 in SALL1) had similarly significant methylation
changes. The methylation status of one region (in CDH5) and 8
CpG sites was undetermined in our samples, as the 450 K
microarray we used does not include corresponding probes. No
significant methylation difference was detected regarding three
regions (in SIM2, MLH1 and CDX1, respectively) and 7 CpG sites
(cg15830431, cg19396867, cg26671652, cg20295442, cg20912169,
cg22383888, cg12973591 in STK3, ZNF418, ADHFE1, EOMES and
TFPI2, respectively). These discrepancies may reflect ethnic
divergency.
Though equipped with multi-omic data, we decided not to

identify markers from other omics layers and then integrate them
into current DMC-only diagnostic/prognostic panels. On the one
hand, it might help explain more individual heterogeneity but not
necessarily lead to more discriminating power. For example, we
and others have found genomic alterations previously considered
tumor-specific (e.g., driver mutations and copy number variations)
in normal aging esophagus,73 so incorporating these genomic
features may end up adding noise. On the other hand, multi-
analyte tests, i.e., checking markers from different omic layers, are
presumably more complicated and expensive. In a clinical setting,
comprehensiveness is rarely the priority and often traded-off for
cost efficiency; fewer markers are preferred if they can do the
same job. Finally, as mentioned earlier, DMC markers have unique
advantages over other omics markers.74

The current study has several limitations. First, our DNA
methylation profiling is limited by the fixed design of microarrays.
Sequencing-based profiling may provide more insights due to
improved base-pair resolution and better genome coverage.
Second, marker screening and functional validation were limited
to DMCs primarily affecting their host protein-coding genes in a
cis manner, while DMCs can exert influences at a distance (i.e., in a
trans manner) and on non-coding elements as well. Moreover,
these influences may not be strictly one-to-one but rather form an

interconnected network. Since our panels perform relatively well,
we speculate that they may capture some central relations within
this “network,” which requires further investigation. Third, 73.63%
(67/91) of the ESCC samples we used to develop the diagnostic
and the prognostic models were at an advanced stage (III or IV).
Although both models were validated in the TCGA ESCC set,
67.39% (62/92) of which are at an early stage (I or II), their efficacy
in patients with early-stage ESCC or precancerous lesions needs
additional evaluation. Lastly, the results of this study only
implicate a potential functional role of DNA methylation in ESCC
development and progression, which warrants further mechanistic
investigations.
In conclusion, our characterization of genome-wide DNA

methylation anomalies using a multi-omic approach in 91 Chinese
ESCC patients has supported that aberrant DNA methylation is an
important part of ESCC development and progression. This study
has also targeted a small number of potentially functional
methylation CpG sites able to distinguish tumors from normal
tissues or classify patients into high or low-risk groups. Using these
CpG sites, we have constructed DNA-methylation panels for
molecular diagnosis and prognosis of ESCC and validated them in
multiple public datasets. The panels are potentially useful for
clinical care of ESCC and it would be interesting to evaluate their
utilities on non-invasively collected, small amount of tumor DNA,
such as those obtained using Cytosponge75 or liquid biopsy.76

MATERIALS AND METHODS
Study subjects and biospecimens
Individuals with ESCC (n= 91) were recruited from Chinese
Academy of Medical Sciences Cancer Hospital (CAMSCH; Beijing,
China) and Zhejiang Cancer Hospital (ZCH; Hangzhou, China)
between 2010 and 2014. All subjects underwent esophagost-
omy and had not been treated with chemotherapy or radio-
therapy prior to the surgery. ESCC tumor and adjacent normal
tissue (≥5 cm from the tumor margin) were collected from each
individual as described previously.25 Histological evaluation was
conducted by two pathologists to ensure that tumor specimens
contained an average of >75% tumor cell nuclei with <20%
necrosis, whereas normal specimens contained no tumor cells.
The demographic characteristics and clinical data of the study
subjects were obtained from medical records. Written informed
consent was obtained from every subject and this study was
approved by the Institutional Review Board of CAMSCH
and ZCH.

Cell lines and cell culture
Human ESCC cell lines KYSE30 and KYSE150 were generous gifts
from Dr Y. Shimada at the Kyoto University. These cell lines were
maintained in RPMI 1640 medium supplemented with 10% fetal
bovine serum (FBS). Cell lines used in this study were authenti-
cated by short tandem repeat profiling and were free of
mycoplasma infection.

RNA interference
Small interfering RNA (siRNA) oligos targeting MMP13, YEATS2,
HOXC10 or NECAB2 were provided by JTSBIO (Supplementary
Table S4). The transfection of each siRNA was performed with
Lipofectamine 3000 (Invitrogen). The specific sequences for target
genes are provided in the supplementary information.

Quantitative real-time PCR analysis
Total RNA was extracted with Trizol reagent (Invitrogen) and the
reverse transcription was performed using PrimeScriptTM RT
reagent kit (Takara). Quantitative real-time PCR (qRT-PCR) was
performed in triplicate using TB Green Premix Ex Taq (Takara). The
primer sequences used for qRT-PCR of interest genes are shown in
Supplementary Table S4.
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Western blot analysis
Proteins were extracted using RIPA lysis buffer (Solarbio, R0020)
containing PMSF (Solarbio, P0100), phosphatase inhibitor cocktail I
and II (MCE, HY-K0021 and HY-K0022). In total, lysate containing
10–20 μg of protein was separated on SDS-PAGE and transferred
to PVDF membranes (Millipore). Antibodies against MMP13
(ab51072), HOXC10 (ab153904) and GAPDH (ab181602) were
from Abcam while antibodies against YEATS2 (24717-1-AP) and
NECAB2 (12257-1-AP) were from Proteintech. The signal was
captured with a SuperSignalTM West Pico/Femto Chemilumines-
cent Substrate kit (Thermo Fisher, 34580) analyzedthrough the
Amersham Imager 600.

Cell viability and migration or invasion assays
Cell viability was measured after incubation with CCK-8
(Dojindo). Invasion assays were performed in 24-well chambers
(Corning) coated with Matrigel (BD Biosciences). Cells (20 × 104)
in serum-free medium were added to the coated chamber and
incubated for 18 or 24 h before fixed with methanol and
stained with 0.5% crystal violet. Migration assays were
performed in a similar fashion but without coating the filters
with Matrigel.

DNA extraction and methylation data processing
Genomic DNA was isolated from tissue samples with Allprep DNA/
RNA Kit (Qiagen) and arrayed using Infinium HumanMethyla-
tion450 BeadChips (450 K array, Illumina) to detect genome-wide
methylation. We then conducted data preprocessing, normal-
ization and calculation of β-value using the R package minfi77

(version 1.26.2). We applied the following criteria for quality
control: (i) probes with detection P ≥ 0.01 in >5% of samples were
removed from all samples; (ii) probes on the X or Y chromosome
were removed; (iii) probes overlapping with single nucleotide
polymorphisms (SNPs) were removed; (iv) probes mapped to
multiple sites in human genome were removed. Finally, 429,717
probes were kept for further analysis.
The CpG probe annotation file was downloaded from the

ENCODE Project database (http://genome.ucsc.edu/ENCODE/
downloads.html). Each CpG probe is annotated with the
corresponding gene, genomic region (TSS1500, 200–1500 bases
upstream of the transcriptional start site [TSS]; TSS200, 0–200
bases upstream of the TSS; 5’UTR, within the 5’ untranslated
region, between the TSS and the ATG start site; body, between
the ATG and the stop codon; irrespective of the presence of
introns, exons, TSS, or promoters; 3’UTR, between the stop
codon and the poly A signal), the CpG island-associated regions
(shore, 0–2 kb from island; shelf, 2–4 kb from island; N, upstream
5’ of CpG island; S, downstream 3’ of CpG island) and functional
regions (enhancer, predicted enhancer elements as annotated in
the original 450 K design are marked “true”; DHS, DNase I
hypersensitivity site).78

Identification of differentially methylated CpG sites
We applied a two-sided Wilcoxon signed-rank test to identify CpG
sites (DMCs) differentially methylated between paired tumor and
normal samples. P values were adjusted for multiple testing using
the Benjamini–Hochberg method to control the false discovery
rate (FDR). We required that significant DMCs have FDR q < 0.05
and the absolute median methylation difference (|MMD | ) > 0.20.
We compared the of each DMC in ESCC and matched adjacent
normal samples to determine its methylation status. A DMC in the
ESCC genome of a specific patient is considered hyper-methylated
or hypo-methylated if the β-value of this CpG site minus the
β-value of the same site in that patient’s matched adjacent normal
tissue sample is greater or less than 0.20, respectively. We counted
the fraction of hyper-methylated or hypo-methylated CpG sites as
the frequencies of hyper- or hypo-methylation events for each
patient.

Methylation quantitative trait loci (meQTL) analysis
The single nucleotide polymorphism (SNP) data of the 91 study
subjects were obtained from our previous DNA sequencing
study.25 From a total of 6,092,313 SNPs that have minor allele
frequency ≥5% and no deviation from the Hardy-Weinberg
equilibrium (P < 1.00e-6), we only selected SNPs within a 100-kb
window centering each DMC on the same chromosome for
meQTL mapping. An additive linear regression model implemen-
ted in the R package MatrixEQTL (v.2.3) was used and only SNPs
with FDR q < 0.05 were deemed significant. A hypergeometric test
was then used to assess the statistical significance of the overlap
between identified meQTLs and potential ESCC risk SNPs obtained
from the CCGD-ESCC database.37

Identification of differentially expressed genes and gene set
enrichment analysis
We identified genes differentially expressed between paired
tumor and normal tissue samples using Student’s t test on log2-
transformed gene expression levels (quantified by Transcript per
Million, TPM). Only genes had FDR q < 0.05 and the relative fold
change of mean expression levels > 2 or < 0.50 (tumor versus
normal) were deemed significant. We replaced Student’s t test
with Wilcoxon signed-rank test and 99.75% of the genes were still
differentially expressed (FDR q < 0.05, relative fold change > 2 or <
0.50), including all the genes we used for downstream analyses.
Gene ontology (GO) analysis was conducted using the enrichGO
function implemented in the R package clusterProfiler (v. 3.8.1)79

and only the top 10 enriched GO terms were plotted.

Identification of correlations between DNA methylation and gene
expression
We examined the correlations between the methylation levels of
DMCs and the expression levels of their corresponding genes
using Spearman’s rank correlation and considered a correlation
statistically significant if FDR q < 0.05 and the absolute Spearman
rank correlation coefficient |r | > 0.30. We further considered the
consistency of direction between the methylation level of DMC
and the corresponding gene expression level for a more rigorous
screening. For DMCs located in promoter, we applied the
following criteria: (a) negative correlations (Spearman r <−0.30,
P < 0.05) between DMCs and their corresponding genes; (b) hyper-
methylation of DMC corresponding silencing of gene expression
or hypo-methylation of DMC corresponding upregulation of gene
expression. For DMCs located in gene-body, we applied the
inverse criteria: (a) positive correlations (Spearman r > 0.30,
P < 0.05) between DMCs and their corresponding genes; (b)
hyper-methylation of DMC corresponding upregulation of gene
expression or hypo-methylation of DMC corresponding silencing
of gene expression.

Development of a panel of DMCs for ESCC diagnosis
The panel was developed in 4 steps: (a) randomly divide 91
patients into the training (n= 60) and the validation (n= 31)
sets with a 2:1 ratio; (b) From all the 1034 DMCs identified from
91 patients (method described above), select important
variables for the training set using random forest analysis, with
the feature dropping fraction of each iteration set at 1/3
according to the importance score; (c) use the least absolute
shrinkage and selection operator (LASSO)-penalized logistic
regression (a binomial model, 10-fold cross-validation) to further
select the variables obtained in the previous step; (d) carry out
the diagnostic model in the validation dataset and TCGA ESCC
methylation dataset.

Development of a pane of DMCs for prognostic risk prediction
For each DMC identified in our patient set, we fitted a univariate
Cox proportional hazard model with that DMC as the covariate
and only retained DMCs with nominal P < 0.05. Then, for each
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retained DMC, we fit a multivariate Cox proportional hazard model
with that DMC as the predictor variable and age, sex, smoking
status, drinking status and tumor TNM stage as covariates, and
again, only retain DMCs with nominal P < 0.05. A sum of the
methylation level of each remaining DMC multiplied by its
respective natural logarithm of hazard ratio (HR) in our patient
sample is the prognostic prediction model. And we applied the
prognostic model in both our patients and TCGA ESCC patients.

Other analyses
Unsupervised hierarchical clustering based on the methylation
difference between ESCC and adjacent normal tissue samples was
conducted using the pheatmap function implemented in the R
package pheatmap (v. 1.0.12). The R package survival (v. 3.2-7) and
survminer (v. 0.4.8) were used for survival analysis. Overall survival
time was estimated by the Kaplan–Meier method and the
differences were examined by the log-rank test. Hazard ratios
(HRs) and their 95% confidence intervals (CIs) were calculated with
the Cox proportional hazards model. All statistical tests were two-
sided tests and P < 0.05 was considered significant unless
indicated. We used R 3.6.1 (https://www.r-project.org/).

DATA AVAILABILITY
The methylation data generated in this study are deposited in the OMIX, China
National Center for Bioinformation/Beijing Institute of Genomics, Chinese Academy
of Sciences (http://bigd.big.ac.cn/omix, accession number OMIX267). The other
genetic and transcriptomic data of the same individuals are available through our
earlier publications.25 We obtained DNA methylation data (level 3) of 95 ESCCs and
14 normal esophageal tissue samples from The Cancer Genome Atlas (TCGA) (http://
gdac.broadinstitute.org/) for comparative analysis. We also obtained methylation
data from the Gene Expression Omnibus (GEO) database (GSE52826 and GSE77991),
which include 4 ESCCs, 14 normal tissues adjacent to tumors from patients, and 21
esophageal mucosal tissues from healthy individuals. Methylation data of 16 ESCC
markers in TCGA 22 cancer types were downloaded from SMART (Shiny methylation
analysis resource tool) app.80
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