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Targeting PI3K/Akt signal transduction for cancer therapy
Yan He1, Miao Miao Sun2, Guo Geng Zhang3, Jing Yang3, Kui Sheng Chen2✉, Wen Wen Xu3✉ and Bin Li 1✉

The phosphatidylinositol 3-kinase (PI3K)/Akt pathway plays a crucial role in various cellular processes and is aberrantly activated in
cancers, contributing to the occurrence and progression of tumors. Examining the upstream and downstream nodes of this pathway
could allow full elucidation of its function. Based on accumulating evidence, strategies targeting major components of the
pathway might provide new insights for cancer drug discovery. Researchers have explored the use of some inhibitors targeting this
pathway to block survival pathways. However, because oncogenic PI3K pathway activation occurs through various mechanisms, the
clinical efficacies of these inhibitors are limited. Moreover, pathway activation is accompanied by the development of therapeutic
resistance. Therefore, strategies involving pathway inhibitors and other cancer treatments in combination might solve the
therapeutic dilemma. In this review, we discuss the roles of the PI3K/Akt pathway in various cancer phenotypes, review the current
statuses of different PI3K/Akt inhibitors, and introduce combination therapies consisting of signaling inhibitors and conventional
cancer therapies. The information presented herein suggests that cascading inhibitors of the PI3K/Akt signaling pathway, either
alone or in combination with other therapies, are the most effective treatment strategy for cancer.
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INTRODUCTION
The phosphoinositide 3-kinase (PI3K)/Akt signaling pathway is a
major signaling pathway in various types of cancer.1 It controls
hallmarks of cancer, including cell survival, metastasis and
metabolism. The PI3K/Akt pathway also plays essential roles in
the tumor environment, functioning in angiogenesis and inflam-
matory factor recruitment. The PI3K/Akt pathway can be
aberrantly activated through various mechanisms, including
different genomic alterations, such as mutations of PIK3CA,
phosphatase and tensin homolog (PTEN), Akt, TSC1, and mechan-
istic target of rapamycin (mTOR).2 PI3K phosphorylates phospha-
tidylinositol-4,5-bisphosphate (PIP2) to generate phospha
tidylinositol-3,4,5-trisphosphate (PIP3), and PIP3 then recruits
oncogenic signaling proteins, including the serine and threonine
kinase Akt.3 Once active, Akt phosphorylates a number of
substrates. mTOR, one of the most common downstream effectors
of Akt, integrates many proteins to promote cancer progression.
Members of the PI3K/Akt/mTOR pathway are often mutated and
activated in cancer.4,5

The study of PI3K/Akt networks has led to the discovery of
inhibitors for one or more nodes in the network, and the discovery
of effective inhibitors is important for improving the survival of
patients with cancer. To date, many inhibitors of the PI3K/Akt
signaling pathway have been developed, some of which have
been approved for the treatment of patients with cancer in the
clinic. However, many issues associated with the use of pathway
inhibitors, including which drugs should be used to treat specific
types of cancer and whether combination therapies will improve
treatment outcomes, remain to be resolved. Current research aims

to learn from clinical successes and failures to improve the design
of clinical therapies based on pathway inhibitors and ultimately
improve clinical cancer treatment.6

OVERVIEW OF THE PI3K/AKT SIGNALING PATHWAY
PI3Ks
Three classes of PI3Ks, class I, class II, and class III, have been
identified, each of which has specific substrates and distinct
effectors in addition to the common substrate Akt (Table 1).3 To
date, class I, class II and class III PI3Ks have been widely mentioned
in former studies.7,8 Further understanding the PI3K isoforms will
help to fully elucidate the biological processes in various types of
cancer cells.

Class I PI3Ks. Class I PI3Ks, heterodimers that consist of a p110
catalytic subunit and a p85 regulatory subunit, exert their
functions by activating downstream tyrosine kinases, such as G
protein-coupled receptors (GPCRs) and small monomeric
GTPases.9 Moreover, the p85 subunit can transmit various cellular
signals by laying a critical foundation for signal integration and
the activation of downstream proteins.10

Class I PI3Ks are divided into four catalytic isoforms, p110α,
p110β, p110γ and p110δ, and they are encoded by PIK3CA,
PIK3CB, PIK3CG and PIK3CD, respectively.3 Among the four class I
catalytic isoforms, PIK3CA is mentioned commonly in human
cancer due to its frequent mutations.6 The time point of pathway
activation varies among cancer types and patients. For example,
the activation of PIK3CA mutations is an early event in breast and
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colon cancer.11 In contrast to PIK3CA, transforming mutations in
the PIK3CB gene are rare; however, the gene is ubiquitously
expressed, probably due to the distinct mode of interaction
between this isoform and regulatory subunits. PIK3CD is mainly
expressed in white blood cells and B cells and is indispensable for
B cell follicle maturation and survival.12 Although the PIK3CG level
is related to cancer growth, reduced PIK3CG expression has been
reported to promote colon cancer growth and development.13

According to differences in the regulatory subunits, class I PI3Ks
are further divided into class IA and class IB enzymes, and both of
their catalytic subunits are formed by the PI3K catalytic core and
extended N-terminally with the Ras-binding domain (RBD).9,14 In
cancer, somatic genetic activation through multiple mechanisms
is very common in the class IA PI3K pathway. These mechanisms
include inactivation of PTEN and the p110 catalytic subunit.
Activating mutations of the p110 catalytic subunits often occur in
PIK3CA, while mutations in PIK3CB and PIK3CD are much less
frequent.4,14

Class I PI3Ks play an important role in the development of
cancers and exert their functions by regulating downstream
effectors. The downstream effectors of class I PI3Ks share a
pleckstrin homology (PH) domain and include serine/threonine
kinases from the AGC kinase family, tyrosine kinases expressed in
hepatocellular carcinoma (HCC, TEC family) and guanine nucleo-
tide exchange factors (GEFs). Akt is also a member of the serine/
threonine AGC kinase family, which will be introduced in detail
below. TEC family members are key effectors of class I PI3Ks in
lymphocytes. As a member of the TEC family, Bruton tyrosine
kinase (BTK) has a highly selective PH domain for PIP3. Activation
of the BTK signaling pathway triggers the growth of B cell
malignancies. BTK is often overexpressed in chronic lymphocytic
leukemia (CLL) cells, and its phosphorylation level is increased.15

GEFs are also important effectors of class I PI3Ks. PI3K activates
and promotes Rac-mediated actin recombination in cancer- and
growth factor-stimulated fibroblasts. In addition to modulating
cell morphology and motility, this PI3K/Rac signaling axis drives an
increase in glycolysis flow by releasing aldolase from actin
filaments.16

Class II PI3Ks. Class II PI3Ks comprise the C2α, C2β, and C2γ
catalytic isoforms and lack regulatory subunits; thus, they can be
activated as monomers.17 In mammals, three class II PI3K isoforms

have been identified, among which PI3KC2α and PI3KC2β are
broadly expressed, while PI3KC2γ is mainly expressed in the
liver.18 PI3KC2α plays a pivotal role in breast cancer progression by
affecting mitotic spindle formation.19 In addition, class II PI3Ks
contain additional protein-binding domains and an extended
N-terminal region, which contributes to intracellular localization.
Another feature of class II PI3Ks is that they do not produce PIP3
in vitro; however, they can generate PIP2 using PIP as a substrate,
which is significantly different from the functions of class I and III
PI3Ks.20

Because the lipid products generated by class II and class I PI3Ks
are substantially different, class II PI3Ks may activate different
downstream effectors.21 Sortins, small GTPases and myotubularins
are three main downstream effectors of class II PI3Ks.22

Additionally, the catalytic pocket of class II PI3Ks differs from that
of class I and III PI3Ks. Currently, class II PI3Ks function as major
signaling enzymes and play important roles under normal and
pathological conditions.22 These three isoforms of class II PI3Ks
importantly contribute to various cellular activities because they
synthesize unique lipid products in cancer.23

Class III PI3Ks. Class III PI3K VPS34 (also called PIK3C3) is unique,
as it plays an important role in regulating autophagy and
macrophage phagocytosis by binding to a protein complex
composed of a regulatory subunit and a catalytic subunit.
Therefore, heterodimeric class III PI3K can also regulate autop-
hagy.7

The smallest PI3K catalytic core is the constituent element of
VPS34, and it forms tetrameric complex I and tetrameric complex
II.7 Complex I play a vital role in the formation and extension of
autophagosomes (wrapping and separating cytoplasmic compo-
nents), mainly by promoting recruitment at the phagocytosis
initiation site in the endoplasmic reticulum after activation.
Complex II has the advantage of increasing autophagosome-late
endosome/lysosome fusion by controlling endosome matura-
tion.24

While VPS34 does not directly regulate signal transduction, it
transduces signals by regulating various protein kinases when
activated by amino acids. For example, in breast cancer treatment,
the use of Akt inhibitors upregulates VPS34-dependent
SGK3 signaling.25 Another kinase regulated by VPS34 is intimal
LKB1 liver kinase B1 (LKB1; also known as STK11), an AMPK
activator and a positive regulator of cell polarity and epithelial
tissue.26 VPS34 and mTOR complex 1 (mTORC1) signaling have
been shown to be correlated. VPS34 exerts its function by
activating acute stimuli but not by controlling the basal activity of
mTORC1.27 Therefore, approaches targeting VPS34 may be a
useful clinical treatment strategy. Although the widely used VPS34
inhibitor 3-methyladenine is not selective, related studies have
documented the use of a highly selective inhibitor of VPS34.28

Akt
The serine and threonine kinase Akt, also known as protein kinase
B (PKB), was discovered 25 years ago.29 The upstream and
downstream targets of Akt have also been studied. Various
diseases are induced by Akt dysfunction, including cancer.25,30

Three Akt isoforms have been identified in mammals: Akt1, Akt2
and Akt3. Akt1 and Akt2 are enriched in many tissues, such as
pancreatic tissue, while Akt3 is mainly expressed in the brain, and
its expression is very limited by its tissue distribution.31 Different
Akt isoforms play different and vital roles in cancer; for example,
Akt2 is involved in cancer cell migration and invasion, and Akt3 is
associated with hormone independence.31,32 Moreover, Akt2 gene
expression is amplified in pancreatic cancer, while Akt3 is
overexpressed in breast and prostate cancer, and both Akt2 and
Akt3 are insensitive to hormones.33

Akt is classically activated by receptor tyrosine kinases (RTKs)
and GPCRs,3 and activated Akt recruits and activates one or more

Table 1. Different effectors of class I, II and III PI3Ks

PI3K isoforms Effectors References

Class I PI3K Serine/Threonine kinases
of the AGC kinase family

AKT 183

PKC 2

PDK-1 183

SGK1 244

Tyrosine kinases of the
TEC family

BTK 15

BMX 245

ITK 246

Guanine nucleotide
exchange factors (GEFs)

Rac 247

P-Rex1 16

Tiam1 248

Vav1 249

Vav2 249

Class II PI3K Sortins 250

Small GTPase 251

Myotubularins 252

Class III PI3K LKB1 26

SGK3 253
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subtypes of class I PI3Ks on the plasma membrane. In turn,
activated PI3K also phosphorylates the T ring and the C
hydrophobic motif, two key residues in the core activation
domain of Akt1, which regulate the corresponding residues of
Akt2 and Akt3.34 In addition, IGF1 activates Akt. When IGF1 binds
to IGF1R, IRS-1 and PI3K are recruited and activated. Activated
PI3K converts PIP2 to PIP3, which activates phosphoinositide-
dependent kinase-1 (PDK1) and then influences Akt.35 TRAF6 and
TBK1 also modulate the activity of Akt.36 In conclusion, Akt
activation is easily monitored, and research on class I PI3K signal
transduction might thus be performed by focusing on Akt.

MAJOR UPSTREAM ACTIVATORS OF THE PI3K/AKT SIGNALING
PATHWAY
Upstream activation of the PI3K/Akt signaling pathway is essential
for its function in cancer and other related diseases. Activation of
this pathway is related to many factors, including the RTK family,
Toll-like receptors (TLRs), and B-cell antigen receptors (BCRs).
Major upstream components of the PI3K/Akt signaling pathway
are discussed below (Fig. 1).

RTKs
RTKs constitute a transmembrane protein family with intrinsic
phosphotyrosine kinase activity that mainly includes epidermal
growth factor receptors (EGFRs), vascular endothelial growth
factor receptors (VEGFRs) and fibroblast growth factor receptors
(FGFRs). RTKs remain inactive in the plasma membrane prior to
their activation by ligands.37 Ligands such as homologous growth
factors, cytokines, and hormones activate PI3K signaling pathways
by activating RTKs.38 Furthermore, the p85 subunit of class I PI3Ks
binds to phosphorylated RTK, resulting in a conformational
change in the catalytic domain of PI3K (p110).

EGFRs. EGFRs are 170-kDa RTKs that phosphorylate tyrosine
residues and activate class I PI3K and class II PI3K signal
transduction by binding to ligands and forming homodimers or

heterodimers.39,40 EGFRs belong to the RTK ErbB family, which also
includes ErbB-3, ErbB-4, and HER2. HER2 forms HER2/EGFR
heterodimers with EGFR, and HER2/EGFR heterodimers have
greater signal transduction potential than EGFR homodimers.41

Inhibitors designed based on this feature have obvious effects on
clinical efficacy and may delay drug resistance. The other family
member, ErbB-3, has six tyrosine phosphorylation sites and
effectively binds to PI3K.42 The ligand TGF-α also binds to EGFRs,
activates the PI3K signaling pathway and promotes tumor growth
and metastasis in colorectal cancer cells.43 EGFR antibodies, such
as cetuximab and panitumumab, inhibit PI3K/Akt signal transduc-
tion by competitively binding to EGFRs, thus inhibiting the
occurrence and development of cancer.44

VEGFRs. VEGFRs are RTKs that are categorized three main types:
VEGFR-1 (Flt-1), VEGFR-2 (KDR, Flk-1) and VEGFR-3 (Flt-4). Among
the three types, VEGFR-1 and VEGFR-2 mainly function in
endothelial cells, while VEGFR-3 is present in the lymphatic
endothelium.45 The VEGFR extracellular domain binds to VEGF,
leading to the dimerization and phosphorylation of the intracel-
lular tyrosine kinase domain and to the activation of downstream
proteins. Therefore, VEGFRs vitally stabilize neovascularization and
promote cell survival and migration.46 Similarly, VEGF forms VEGF/
VEGFR-2 dimers, which activate the PI3K/Akt pathway to mediate
tumor metastasis and angiogenesis.
VEGFR-2-mediated activation of the PI3K/Akt signaling pathway

is important for tumor survival. The binding of a ligand to VEGFR-2
activates PI3K and phosphorylates PIP2, resulting in the accumula-
tion and reactivation of PIP3 to thereby activate the PI3K/Akt
signaling pathway. VEGFR inhibitors used in combination with
PI3K/Akt/mTOR signaling pathway inhibitors represent an effec-
tive therapeutic strategy.47 Furthermore, VEGFR-1 and VEGFR-2
were shown to interact using the siRNA method. The siRNA-
mediated knockout of VEGFR-1 in endothelial cells resulted in the
attenuation of VEGFR-2 promoter activity, suggesting that VEGFR-
1 plays an important role in inducing and modulating multiple
signaling pathways.48

Fig. 1 Upstream activation of the PI3K/Akt signaling pathway. On the one hand, ligands combined with specific RTKs (EGFR, VEGFR and FGFR)
can activate class I PI3Ks via RAS; on the other hand, class I PI3Ks can be activated by BCRs through B cell adapters and by GPCRs. The FGFR
substrate FRS2 is phosphorylated in combination with GRB2, SOS and GAB1 to activate class I PI3Ks. In addition to being activated by EGFR,
class II PI3Ks can be activated by TCRs. While class III PI3Ks are activated by amino acids, total activated PI3K phosphorylates the third carbon
of the PIP2 inositol head and transforms it into PIP3 to thereby activate AKT via PDK1 and RAC, and this transformation process can be
inhibited by PTEN. In addition, IGF-1 in combination with IGF1R can recruit IRS-1 and class I PI3Ks and then participate in the conversion of
PIP2 to PIP3. Moreover, mTORC2 can affect the activity of Akt by affecting the phosphorylation of Akt and then affect downstream mTORC1
via TSC1/2, and both Akt and mTORC1 can be activated by TBK1. Moreover, TRAF6 can affect the activity of Akt by affecting its ubiquitylation.
Furthermore, DNA damage can affect Akt via ATM and ATR
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FGFRs. FGFRs are very important for cancer metastasis and
angiogenesis. For example, FGFR amplification in breast cancer
affects the phosphorylation of downstream fibroblast growth
factor receptor substrate 2 (FRS2), resulting in PI3K/Akt
signaling pathway activation.49 High FGFR levels lead to PI3K/
Akt pathway activation, which is involved in tumor growth.
Further studies revealed that changes downstream of the FGFR
pathway affect tumor cells and alter the tumor microenviron-
ment.50 In addition, the inhibition of FGFRs may result in gene
reprogramming.51

In summary, RTKs are involved in PI3K/Akt pathway activa-
tion. Mutations in RTKs potentially result in ligand-independent
transduction, which can be suppressed by pathway inhibitors in
non-small-cell lung cancer (NSCLC).52 The activation of class IA
PI3Ks is related to RTK signaling, and p85 regulatory subunits
are essential for the RTK-mediated activation of class IA PI3Ks.
Therefore, RTK inhibitors might negatively regulate PI3K
signaling.53 However, many types of cancer are always resistant
to a single RTK inhibitor because PI3K is activated by multiple
RTKs in cancer.54 Therefore, understanding RTK signaling
networks will facilitate a better comprehension of the PI3K
pathway and further exploration of cancer therapies.

TLRs
TLRs are expressed in immune and nonimmune cells and are
important in cancer progression.55,56 TLRs can identify conserved
microbial motifs in bacterial lipopolysaccharides (recognized by
TLR4) and single- or double-stranded RNA (identified by TLR3).57

TLRs also distinguish and bind endogenous ligands, thereby
activating the signaling pathway.58 For example, some studies
found that natural TLR4 ligands activate Akt by increasing its
phosphorylation in a time-dependent manner, which promotes
the progression of colorectal cancer.59 Similarly, activated TLR4
protects cells from chemotherapy, leading to drug resistance in
head and neck squamous cell carcinoma.60 TLR3 activation leads
to cancer cell apoptosis and has antitumor effects on renal cell
carcinoma and melanoma.61

BCRs
The signaling pathways activated by BCRs are crucial for the
development, activation, and differentiation of B cells.62 Among
them, the PI3K/Akt pathway is particularly important. In B cells,
class I PI3Ks are activated by BCRs via the B-cell receptor
associated protein (BCAP), which is an important step in PIP3
production and Akt activation.63 BCRs and cytoplasmic adapters
profoundly affect PI3K/Akt signaling pathway activation, and Akt is
not activated when B cells lack BCRs.64

The noncatalytic region of the tyrosine kinase (NCK) family
comprises a set of BCR adapters that are recruited to BCR signaling
complexes, which are essential factors that activate B cells to exert
their function. The NCK structure is characterized by three SRC
homology 3 domains at the N-terminus and an SH2 domain at the
C-terminus.65 NCK affects PI3K/Akt signaling in B cells, and
although Akt phosphorylation is decreased to some extent in
the absence of NCK1, almost no phosphorylation occurs when
both NCK1 and NCK2 are deficient.63

To date, BCR research has mainly focused on CLL. According to
previous studies, BCR signaling is vital for the maintenance of
cancer cell survival, and its function is downregulated by p110δ or
the inhibition of BTK.66

GPCRs
GPCRs constitute the largest cell surface protein family and play
an important role in cell signal transduction; additionally, they are
a common target of the PI3K/Akt signaling pathway.67 GPCRs
transmit signals through heterotrimeric G proteins and regulate
downstream effector pathways by interacting with various small G
proteins that bind directly to GPCRs and participate in the

regulation of signaling networks. One characteristic of GPCRs is
that they recognize and respond to chemically distinct ligands to
effectively activate PI3K/Akt signaling in different cells.3,68 More-
over, GPCRs regulate cancer cell proliferation and survival, and
their persistent activation affects mitotic and metabolic responses,
which are the basis for tumorigenesis.
The predominant mechanisms by which GPCRs activate PI3K

are tissue-specific, and many GPCR ligands, such as sphingosine 1-
phosphate, activate PI3Ks.69 GPCRs activate PI3K/Akt signaling by
stimulating Ras to thereby activate class I PI3Ks, which regulate
cancer and many other diseases. Small GTPases also promote
tumor metastasis by controlling PI3K/Akt signaling.70

PTEN
PTEN is a tumor suppressor that is key for maintaining normal
physiological activity; PTEN was initially identified as a gene prone
to mutations in multiple types of sporadic tumors.71 The C2
domain houses the PTEN lipid substrate and is necessary for the
proper localization of PTEN on the plasma membrane; PTEN has
shown affinity for the phospholipid membrane in vitro.72 Nuclear
PTEN is important for the maintenance of chromosomal integrity
and centromere stability.73

As a lipid phosphatase, PTEN negatively regulates the PI3K
signaling pathway and transforms PIP3 into PIP2.74 When PTEN is
mutated or participates in another form of inactivation, PI3K
effectors, especially Akt, become activated without any exogenous
oncogenic stimulus.75 In particular, PI3K phosphorylates
membrane-bound PIP2 to generate PIP3. The binding of PIP3 to
the PH domain anchors Akt on the plasma membrane and allows
it to be phosphorylated and activated by PDK1. Usually, PTEN
participates in tumor signal transduction by dephosphorylating
protein targets such as focal adhesion kinase (FAK), insulin
receptor substrate 1, c-SRC, and PTEN itself.76 The overactivation
of Akt by PTEN is the most important carcinogenic factor in PTEN-
deficient cancers. In addition, PTEN plays an important role in the
control of tumor cell migration and angiogenesis.77

MAJOR EFFECTORS DOWNSTREAM OF THE PI3K/AKT
SIGNALING PATHWAY
Akt phosphorylates downstream effectors on serine and threonine
in a sequence-dependent manner, which typically recognizes
substrates containing the consensus phosphorylation motif R-X-R-
X-X-S/T.78 Akt signaling promotes tumor cell survival, proliferation,
growth, and metabolism by activating its downstream effectors.
Here, we introduce the major targets downstream of the PI3K/Akt
signaling pathway (Fig. 2).

mTOR
More than 100 Akt substrates have been discovered, although not
all of them have been confirmed.78 Due to its parallel regulation of
different substrates, the downstream effects of Akt signaling are
extensive. mTOR is reported to regulate tumor growth, survival,
metabolism, and immunity. As a protein kinase, mTOR is
considered an atypical member of the PI3K-related kinase family,
and it is usually assembled into complexes, such as mTORC1 and
mTOR complex 2 (mTORC2), to play critical roles in many
biological processes.79

Many growth factors and their receptors, such as VEGF and
VEGFR, act as positive regulators to transmit signals to mTOR
through the PI3K/Akt pathway.80 Under normal conditions, PI3K
activity is at a basal level. After stimulation with growth factors,
signals are transmitted to PI3K. Then, PI3K catalyzes the
production of PIP3, which binds to the PH domain of Akt. This
step is limited by a negative regulator of mTOR named PTEN.81 Akt
and mTOR are thought to interact, as Akt was shown to activate
mTOR through the phosphorylation of tuberous sclerosis complex
2 (TSC2).82
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The mTORC1 complex is composed of mTOR, mLST8, raptor,
and PRAS40. mTORC1 controls cell growth in part by phosphor-
ylating S6 kinase 1 (S6K1) and eIF-4E-binding protein 1 (4EBP1),
known regulators of protein synthesis.83 Furthermore, mTORC1-
mediated signaling to HIF1α and LIPIN1 increases glucose
metabolism and lipid synthesis, respectively.84 mTORC2 is
composed of mTOR, mLST8, SIN1 and rictor. Activated mTOR
interacts with its protein subunits and forms mTORC2.85 Akt is
phosphorylated by mTORC2 upon activation by growth factors. In
conclusion, mTOR inhibition has enormous potential in clinical
cancer therapy.

GSK3
The multifunctional serine and threonine protein kinase glycogen
synthase kinase 3 (GSK3) was the first reported Akt substrate.86

Two subtypes of GSK3, GSH3α and GSK3β, have been identified.
These two subtypes share 85% sequence homology, and they
were originally identified to be associated with the glycogen
synthesis response to insulin.87 Studies have confirmed that
different GSK3 subtypes have specific functions in different
tissues.88

GSK3 is considered to be expressed at the crossroads of
multiple biochemical pathways in some diseases.89 The EGFR/
RAS/PI3K/PTEN/Akt/GSK3/mTORC1 pathway is common in can-
cer, and GSK3 is one of its targets. After the Akt-induced
phosphorylation of either Ser21 (α) or Ser9 (β) in N-terminal
regulatory domains in response to PI3K-mediated signaling,
GSK3 (both GSH3α and GSK3β) is inactivated and targeted for
proteasomal degradation.86,90 The Akt-mediated phosphoryla-
tion of GSK3 produces an intramolecular pseudosubstrate that
blocks the binding pocket and inhibits the substrate from
approaching GSK3.91 GSK3 expression affects various biochem-
ical processes in cancer. In addition to tumor growth, GSK3
participates in tumor metabolism by phosphorylating and
inhibiting metabolic enzymes such as its substrate glycogen
synthase (GS).92 Similarly, another study suggested that the
GSK3 inhibitor IX increases apoptosis and alters the structures of
membrane lipids.93

FOXOs
Forkhead box Os (FOXOs) are a subgroup of a forkhead box (FOX)-
containing transcription factor (TF) superfamily. FOXO TFs include
four direct downstream targets of Akt: FOXO1, FOXO3, FOXO4,
and FOXO6. In mammals, these TFs control the expression of
many target genes94 and are expressed in specific tissues. FOXO1
and FOXO4 are predominantly expressed in adipose tissue and
skeletal muscle, respectively, whereas FOXO3 tends to be
expressed in the brain, heart, kidney and spleen. In contrast,
FOXO6 is expressed mainly in the adult brain, suggesting its
important function in the nervous system.95

A major characteristic of FOXOs is the strict control of their
localization in the cytoplasm and nucleus. FOXOs contain a
nuclear localization signal (NLS) domain and a nuclear export
signal (NES) domain, which closely regulate FOXO shuttling.96 A
study found that the PI3K/Akt signaling pathway partially
regulates cell survival by phosphorylating FOXOs to thereby
increase their binding to the 14-3-3 protein, which masks the NLS
(also blocking nuclear translocation from the cytoplasm but
increasing FOXO removal from the nucleus) and leads to the final
ubiquitin proteasome pathway (UPP)-dependent degradation of
FOXOs.97 Therefore, the insulin/PI3K/Akt pathway is essential for
adjusting FOXO levels by phosphorylation.
Similarly, the highly conserved genetic relationship between

Akt and FOXOs supports the hypothesis of an important
regulatory association existing between Akt and FOXO suppres-
sion. This association was first identified in C. elegans, in which the
loss of FOXO family members rescued dauer-stage arrest caused
by the depletion of Akt-1 and Akt-2.98 The activity and substrates
of Akt are regulated by the phosphorylation of threonine 308 and
serine 473,99 and the phosphorylation of serine 473 is not essential
for the Akt-mediated phosphorylation of TSC2 and GSK3β;
however, it is essential for the phosphorylation and inactivation
of FOXOs.100 In summary, these biochemical and genetic studies
have confirmed that the main phenotypes induced by Akt
depletion are driven by FOXO-mediated transcription; therefore,
FOXOs are downstream targets of Akt signaling in various
biological reactions.

Fig. 2 Downstream effectors of the PI3K/Akt signaling pathway and their cellular functions. The activation of Akt signaling can promote
(arrows) or inhibit (blocking arrows) the phosphorylation of downstream effectors. Downstream regulation by Akt contributes to many cellular
processes, including tumor growth, tumor survival, tumor cell proliferation, cancer immunity, cancer metabolism and cancer angiogenesis
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TSC2
PI3K and Akt stimulation by growth factors such as IGF1 is an
evolutionarily conserved function that promotes cell growth
through the Akt-mediated activation of mTORC1 and the
subsequent phosphorylation and inhibition of TSC2 (also known
as tuberin).82 TSC1 and TSC2 are encoded by tumor suppressor
genes that are mutated in tuberous sclerosis (TSC).101 The
complex comprising TSC1 and TSC2 suppresses mTORC1 activity;
through a C-terminal domain and a GTPase-activating protein
domain, TSC2 converts Ras-related Rheb-GTP, a potent activator of
mTORC1, to Rheb-GDP,102 thereby inactivating mTORC1. However,
the Akt-mediated phosphorylation of TSC2 reverses this process
and is thus important for the regulation of mTORC1 and might
impair the ability of TSC2 to inhibit Rheb and mTORC1.

MDM2
Decreased p53 levels have been proposed to arrest the cell cycle,
while increased p53 levels induce cell apoptosis.103 The activation
of PI3K/Akt signaling may be induced by the suppression of p53
through the activation of another tumor promoter, MDM2.104

MDM2 is an oncogene that induces tumorigenesis, and its mRNA
level is controlled by p53 in response to oxidative stress and DNA
damage.105 These findings, in addition to the finding that MDM2
forms a complex with wild-type p53, demonstrate that MDM2
exerts its oncogenic function by interacting with wild-type p53
and suppressing the transcription of target genes.106

The intracellular localization of MDM2 is posttranslationally
modulated by PI3K/Akt.107 A study revealed that PI3K/Akt
phosphorylates a serine in the MDM2 domain.108 Because
phosphorylation is essential for the transfer of MDM2 from the
cytoplasm to the nucleus, activated PI3K/Akt can induce the
nuclear translocation of MDM2, bypass mitogen stimulation, and
activate PI3K/Akt signaling. Therefore, after nuclear entry, MDM2
binds to the tumor suppressor p53, inhibits its transcription, and
induces its degradation.108,109 Consistently, the suppression of the
PI3K/Akt pathway by PTEN protects p53 from MDM2-induced
degradation. Furthermore, p53 expression is positively associated
with DNA damage.110

CROSSTALK WITH OTHER PATHWAYS
According to previous studies, no pathways exist independently.
Other signaling pathways are associated with the PI3K/Akt
pathway network through direct regulation or downstream targets.

Crosstalk with MAPK signaling
The RAS/RAF/MEK/ERK (MAPK) pathway is important in cellular
processes such as tumor cell proliferation, survival and invasion.
The mutation of components such as RAS, RAF and MEK results in
dysregulation of the pathway in various types of cancer.111

Moreover, 30% of RAS GTPases are activated by mutations in
these types of cancer, but inhibitors that directly target RAS
proteins have not been developed. To date, research has aimed to
develop inhibitors of the downstream RAF/MEK/ERK and PI3K/Akt
pathways.112

According to reports, the PI3K/Akt and MEK/ERK pathways
cooperate in tumor growth.113 Signaling pathways also interact
with each other, and the enhancement of one signaling pathway
may enhance or inhibit another pathway. For instance, the effect
of PI3K/mTOR inhibitors on tumor cells is blocked by the inhibition
of MEK or knockout of ERK, and the combined inhibition of MEK
and PI3K/Akt/mTOR signaling thus inhibits tumor cell growth.114 In
addition, MAPK pathway signals function as second messengers to
attenuate PI3K/Akt signals by decreasing reactive oxygen species
(ROS) levels. MEK1/2 inhibition upregulates Akt phosphorylation
and MEK1/2 inhibition in response to mild hypoxia.115 These
effects may provide negative feedback for the PI3K/Akt-induced
activation of MAPK pathways.

Crosstalk with NF-κB signaling
The NF-κB TF family includes components such as p50 and p65;
NF-κB is a heterodimer that is isolated in the cytoplasm by
inhibitor of kappa B (IκB).116 Upon the phosphorylation of IκB, NF-
κB is released, enabling its nuclear translocation and binding to
genes involved in processes such as cell proliferation and
angiogenesis in esophageal cancer.117 Some studies have
suggested that Akt signaling phosphorylates IκB kinase α to
activate NF-κB TFs, which are downstream of multiple signaling
pathways.118

A regulatory circuit between the EGFR/PI3K/Akt/mTORC1 and
IKK/NF-κB signaling pathways has been identified in cancer.119

The EGFR/PI3K/Akt/mTORC1 signaling pathway regulates the IKK/
NF-κB signaling pathway, while IKK/NF-κB also regulates EGFR
expression and subsequently modulates the PI3K/Akt pathway.
Inhibitors targeting IKK effectively block the EGFR/PI3K/Akt and
IKK/NF-κB signaling pathways, which is very important for the use
of IKK inhibitors as a single drug or in combination with other
inhibitors in clinical trials.119

Crosstalk with Wnt/β-catenin signaling
Although the Wnt/β-catenin and PI3K/Akt pathways have different
carcinogenic mechanisms, they have been shown to be asso-
ciated. The Wnt pathway is an important factor maintaining
intestinal homeostasis; it regulates the self-renewal of stem cells
and increases the proliferation of intestinal epithelial cells, and
overactivation of the Wnt pathway may eventually lead to
cancer.120,121 Some studies have shown an association between
the Wnt/β-catenin and PI3K/Akt pathways in cancer. Wnt/
β-catenin pathway activation is mediated by phospholipase
D1PLD1 (PLD1), which downregulates ICAT via the PI3K/Akt
signaling axis.122

Moreover, in breast cancer, activation of the PI3K/Akt pathway
by Nectin-4 induces the activation of the Wnt pathway and then
affects the proliferation of tumor stem cells, which is an important
mechanism by which cancer stem cells achieve self-renewal.123

Communication between the Wnt/β-catenin and PI3K/Akt path-
ways has been observed in different types of human cancer, and
PI3K/Akt pathway activation leads to Wnt/β-catenin pathway
inhibition. In contrast, when the PI3K/Akt pathway is inhibited, the
Wnt/β-catenin pathway is overactivated.124

PI3K/AKT SIGNALING AND CANCER
PI3K/Akt signaling and tumorigenesis
At present, tumors are generally thought to be propagated by
somatic cells, constituting the tumorigenesis process. Due to
dysregulation of their self-detection function, cells are unable to
identify their own mutations and “quit” dividing on time and
instead replicate and reproduce with mutations, resulting in the
accumulation of mutations. Moreover, autoimmune deficiencies,
endocrine disorders, and other adverse stimuli also provide
conditions that support the process of tumorigenesis. A study
identified AMPK as a vital regulator of Akt activation by various
stresses in tumorigenesis.125 Other studies have also shown that
the PI3K/Akt signaling pathway regulates its downstream effec-
tors, thereby promoting the occurrence of tumors.126

As mentioned above, FOXO is a vital target protein in the PI3K/
Akt signaling pathway. After phosphorylation by PI3K/Akt signal-
ing, the entry of FOXO into the nucleus is blocked,127 which
prevents the expression of its target genes and eliminates its
transcriptional effects on AR, ERG, Runx2, and other target genes,
thereby promoting the occurrence of cancer.
Based on the important role of the PI3K/Akt signaling pathway

in tumorigenesis, some oncogenes in the PI3K/Akt signaling
pathway are positively regulated. For example, KDM5a plays a vital
role in the occurrence of tumors. It promotes the formation of HCC
lesions by regulating miR-433-FXYD3-PI3K-Akt signaling.128
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Therefore, studies on this pathway and its related pathways may
be crucial to increase the anticancer efficacies of clinical PI3K/Akt
inhibitors.

PI3K/Akt signaling and tumor growth
One important feature of cancer cells is their uncontrolled
proliferation, and the proliferation rate determines the type of
tumor therapy. EGFRs regulate the proliferation of tumor cells
through signal transduction pathways. Studies have shown that
the PI3K/Akt signaling pathway affects the cell cycle by modulat-
ing its downstream targets, thereby promoting the proliferation of
tumor cells.129

Akt phosphorylates cyclin-dependent kinase inhibitors and
prevents p27 from translocating to the nucleus, thereby weaken-
ing its inhibitory effect on the cell cycle and directly promoting
the proliferation of tumor cells.129 Akt also promotes the
proliferation of tumor cells through its downstream effector p27.
Since the PI3K/Akt signaling pathway can directly control the
proliferation of tumor cells, some proteins are also involved in
cancer cell proliferation through the PI3K/Akt pathway. Further-
more, insulin growth factor 2 (IGF2) is involved in the develop-
ment of many malignancies and alters the cancer cell proliferation
process by regulating the PI3K/Akt pathway.130

During cancer treatment, the PI3K/Akt signaling pathway is
often targeted to inhibit cancer cell proliferation; for example, the
signaling pathway is controlled by the inhibition of lncRNA TDRG1
expression in osteosarcoma cells, thus interfering with their
proliferation.131

PI3K/Akt signaling and apoptosis
Apoptosis is an autonomous cell death process.132 Abnormal
apoptosis and uncontrolled growth allow cancer cells to rapidly
proliferate. PI3K/Akt signaling blocks the expression of proapop-
totic proteins, reduces tissue apoptosis and increases the survival
rate of cancer cells.133

Akt inhibits the proapoptotic factors Bad and procaspase-9
through phosphorylation and induces the expression of the
proapoptotic factor Fas ligand. In addition, Akt activation is
associated with resistance to increased apoptosis induced by
tumor necrosis factor (TNF)-associated apoptosis-inducing ligand
(TRAIL/APO-2L), a member of the TNF superfamily that has been
shown to have selective antitumor activity.134 Similarly, Akt
negatively regulates the function or expression of Bcl-2
homology domain 3-only proteins, which play a proapoptotic
role by inactivating the original prosurvival Bcl-2 family
members. In conclusion, inhibition of the PI3K/Akt signaling
pathway, which has been shown to regulate cancer cell
apoptosis, can serve as a new direction for future research on
cancer treatment.131

PI3K/Akt signaling and drug resistance
In tumor therapy, cancer drug resistance is the main reason for
treatment failure and indirectly promotes tumor progression.135

The dysregulation of PI3K/Akt signaling also plays an important
role in cancer drug resistance. Furthermore, studies have
demonstrated that the IGF1R/p110β/AKT/mTOR axis confers
resistance to BYL-719 in PIK3CA mutant breast cancers.136

Similarly, a study showed that targeting PI3K/Akt signaling
pathway components can be used to overcome drug resistance
in cancer therapy.137

Chemotherapy resistance. Chemotherapies are mainly used to
destroy tumor cell DNA and thereby prevent the cells from
replicating, eventually affecting cell survival. During routine
chemotherapy, no treatment interval exists, allowing resistant
cells to be generated and leading to tumor regeneration.138 In
addition, DNA destruction is prevented in drug-resistant cells due
to their dormancy.139

The PI3K/Akt signaling pathway is important for the drug
resistance of different types of cancer, such as lung cancer140 and
esophageal cancer.141 PI3K/Akt inhibitors inhibit tumor growth
and induce tumor cell apoptosis. For NSCLC cells with high Akt
expression, the use of PI3K/Akt signaling pathway inhibitors
increases their cell apoptosis induced by chemotherapy and
reduces their resistance to chemotherapy; furthermore, inhibition
of the PI3K/Akt signaling pathway effectively improves drug-
induced lung cancer cell apoptosis.142 Moreover, members of the
PI3K/Akt signaling pathway play an important role in antiestrogen
resistance in breast cancer.143

Immunotherapeutic resistance. The discovery and application of
immune checkpoint inhibitors have substantially advanced the
treatment of malignant tumors. Thus far, CTLA-4, PD-1 and PD-L1
have achieved significant clinical efficacy and have been approved
for the treatment of many types of cancer.144 However, the
problem of immune drug resistance persists. Some patients do
not respond to immunotherapy, while other relapse after
immunotherapeutic treatment. The PI3K/Akt signaling pathway
plays an important role in the regulation of immune checkpoints
and sensitivity to immune checkpoint inhibitors. Studies have
shown that the activation of the Akt signaling pathway caused by
the deletion of PI3KCA mutations is strongly related to the
upregulation of PD-L1 expression in the prostate gland.145 In
mouse lung cancer models and human lung cancer cell lines, the
Akt signaling pathway regulates the expression of PD-L1 at the
protein translation level.146 In conclusion, the PI3K/Akt signaling
pathway is obviously related to immune resistance, which
provides a basis for combined therapeutic strategies including
immune checkpoint inhibitors and PI3K pathway inhibitors in the
future.

PI3K/Akt signaling and cancer metabolism
One of the main features of cancer is the occurrence of metabolic
aberrations, such as changes in glycolytic pathway. Metabolic
aberrations will lead to changes in signaling pathways, affecting
the occurrence, development and metastasis of cancer. Under
physiological conditions, the PI3K/Akt signaling pathway is
activated by the actions of insulin, growth factors and cytokines
to regulate metabolism in organisms.147 In cancer cells, the
activation of oncogenes in the PI3K/Akt signaling pathway
reprograms cellular metabolism by enhancing the activities of
nutrient transporters and metabolic enzymes, thus supporting the
anabolic needs of abnormally growing cells.147

PI3K/Akt signaling not only regulates metabolism-associated
proteins such as SREBP and alters metabolism through phosphor-
ylation mediated by metabolic enzymes but also indirectly alters
metabolism by controlling various TFs.147 The phosphorylation of
metabolic enzymes causes acute changes in the activities of
metabolic pathways and the directionality of metabolic fluxes,
while long-term changes in cellular metabolism are usually
achieved by controlling gene expression programs.147 Akt not
only directly phosphorylates a variety of metabolic enzymes and
nutrient transport regulators but also regulates cellular metabo-
lism by activating mTORC1, GSK3 and FOXO.91 The phosphoryla-
tion of TSC2 by Akt leads to Rheb-GTP aggregation, which in turn
activates mTORC1 to thereby enhance glucose metabolism and
lipid synthesis.84 GSK3, a key regulatory factor in cellular
metabolism, participates in cellular metabolism by phosphorylat-
ing and inhibiting metabolic enzymes, such as its substrate
glycogen synthase.86,87,92 FOXO TFs regulate cellular metabolism
and tumor suppression.148 Akt phosphorylates FOXO and prevents
it from entering the nucleus to mediate the expression of its target
genes.127,149 In addition, accumulating evidence indicates that PI
(3,4)P2 is not only a waste product for the removal of PI(3,4,5)P3
but also functions as a signaling molecule in cancer
metabolism.150
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PI3K/Akt signaling and angiogenesis
Angiogenesis in tumors mainly refers to the growth of new
capillaries from the existing capillary network that supply tumor
cells with nutrition. Among the three subtypes of Akt, Akt1 is the
main subtype that regulates the normal physiological function of
endothelial cells. After activation by VEGF, Akt promotes the
proliferation, migration and survival of endothelial cells, thus
affecting angiogenesis.151 This finding also provides lateral
support for the conclusion that endothelial nitric oxide carbon
synthase (eNOS), which controls vascular tone, is a specific
substrate of Akt1 in endothelial cells.152 At the same time, the
loss of Akt1 in mouse endothelial cells reduces the amount of
nitric oxide on the cell membrane and affects the formation of
blood vessels.153 Akt1 is also related to vascular remodeling, which
is mediated by endothelial cells. Expression of the activated Akt1
allele prevents the formation of intimal lesions after arterial injury,
induces pathological angiogenesis, and increases vascular
permeability.154

In addition, a recent report revealed that the p110α subtype of
PI3K promotes tumor angiogenesis in homogenic mouse models
and that the inactivation of p110α leads to an increased vascular
density, decreased vessel size and altered pericyte coverage on
vessels. This decrease in vascular function is associated with
increased tumor necrosis and decreased tumor growth. The role of
p110α in tumor angiogenesis is mediated by several factors, such
as the regulation of endothelial cell proliferation and the
expression of delta-like protein 4 (DLL4). Thus, p110α regulates
angiogenesis in the tumor stroma, and inactivation of p110α
suppresses tumor angiogenesis and tumor growth.155

PI3K/Akt signaling and cancer metastasis
Studies have shown that cancer metastasis is the main cause of
poor prognosis.156 The mechanism of cancer metastasis involves
many factors, such as genetic material, surface structure, invasion,
adhesion, angiogenesis and lymphangiogenesis. Two main
mechanisms by which PI3K/Akt signaling promotes cancer
metastasis have been identified.
First, the PI3K pathway promotes metastasis by reducing

intercellular adhesion and enhancing mobility. After extracellular
signaling molecules bind to specific receptors on the surface of
the cell membrane, they are activated by different signal
transduction pathways in the cell to modulate the activities of
different TFs, resulting in differential degrees of epithelial cell
phenotype transformation. The PI3K/Akt signaling pathway plays
an important role in the induction of squamous cancer cell
epithelial-mesenchymal transition (EMT). PI3K activation produces
the second messenger PIP3 downstream of Akt activation, which
activates or inhibits downstream target proteins via phosphoryla-
tion, thereby regulating cell survival, proliferation, and differentia-
tion as well as the composition of the cytoskeleton, among other
processes, inducing EMT. PI3K/Akt signaling pathway activation
increases tumor cell invasion and metastasis.157 Steelman et al.
reported that the continuous activation and high expression of
PI3K/Akt are closely related to EMT in NSCLC.158

Second, the PI3K pathway promotes metastasis by promoting
tumor neovascularization, which is required for the metastatic
spread of tumors. Multiple signaling pathways have been shown
to be involved in the regulation of tumor angiogenesis, among
which PI3K/Akt signaling is the most important.159 PI3K forms a
complex with E-cadherin, β-catenin, and VEGFR-2 and is involved
in endothelial signaling mediated by VEGF through the activation
of the PI3K/Akt pathway.160 The PI3K/Akt signaling pathway also
promotes TNF-induced endothelial cell migration and regulates
tumor angiogenesis.161 Matrix metalloproteinases (MMPs) and
cyclooxygenase 2 (COX-2) also affect tumor angiogenesis. In
tumor invasion and metastasis, platelet-derived growth factor
(PDGF) induces MMP expression through a PI3K-mediated
signaling pathway.162 Upregulation of the antiapoptotic protein

Bcl-2 and activation of the PI3K/Akt signaling pathway are the
main mechanisms by which COX-2 stimulates endothelial
angiogenesis.163

However, not all components of the PI3K/Akt signaling pathway
promote metastasis. One of the Akt isoforms, Akt1, can exert an
antimetastatic effect, which is accompanied by increased ERα
expression.164 Breast cancer cells undergo differentiation upon the
activation of Akt1, thereby losing their metastatic potential.165

Similarly, Akt1 can inhibit metastasis in mice by regulating MMP9
and E-cadherin.166

PI3K/Akt signaling and inflammation
Virchow first proposed an association between inflammation and
cancer in 1863,167 and many subsequent studies have supported
this association.168 A study showed that the PI3K/Akt signaling
pathway promotes the development of inflammation by affecting
neutrophils, lymphocytes and other white blood cells.169 However,
IL-1, IL-6, TFN-α and other inflammatory factors activate Akt and
expand the range of inflammation, while Akt inhibition blocks
both inflammation and tumor development.170 IL-6 activates the
PI3K/Akt signaling pathway to promote the expression of B-FGF,
which induces angiogenesis.171 mTOR and p70 S6K1, downstream
effectors of Akt, directly act on endothelial cells to promote tumor
inflammation.172

Studies have shown that the positive effect of Akt signaling on
inflammatory cells is conducive to promoting the aggregation of
reactive cells, and the resulting oxidative stress reaction leads to
the accumulation and release of peroxides (ROS) at the tumor
site.173 In addition, IL-37 is an anti-inflammatory cytokine that has
been reported to induce autophagy and apoptosis by regulating
PI3K/Akt/mTOR signaling.174

Inflammation also promotes cancer development by activating
the PI3K/Akt signaling pathway. For example, inflammation-
induced PI3K/Akt signaling regulates the permeability and
migration of endothelial cells and affects cancer progression.175

In conclusion, inflammation affects the biological processes of
endothelial cells in tumors through the PI3K/Akt signaling
pathway, which is an important component of inflammation-
induced tumor development.

PI3K/Akt signaling and immunity
Immunity is divided into innate and adaptive immunity. The
immune system plays an important role in tumor detection and
elimination. To date, various immunotherapies have been applied
in the clinic. The PI3K/Akt signaling pathway also exerts a vital
effect on the immune system. Growth factors, cytokines, and other
factors activate Akt signaling in myeloid cells, thus activating
downstream effectors of Akt.

Innate immunity. The innate immune system, which is composed
of monocytes, leukocytes and macrophages, is the first line of
defense against infection.176 According to some studies, inhibition
of the PI3K signaling pathway reduces the secretion of
proinflammatory cytokines, and the PI3K pathway is related to
the movement of macrophages.177

The PI3K signaling pathway affects the secretion of proin-
flammatory cytokines from innate immune system cells by
regulating the activity of downstream targets. It participates in
the movement and adhesion of macrophages and plays an
important role in cells.178 On the other hand, Akt signaling is the
key signal transduction pathway activated in macrophages under
various external stimuli.179 Akt signaling is activated in both M1
and M2 macrophages, but most of the current evidence suggests
that Akt signaling exacerbates the M2 state. Hence, interventions
targeting PI3K signaling may be an effective treatment for some
immune and tumor-related diseases.180 Similarly, the PI3K/Akt
pathway affects natural killer (NK) cells. A study reported reduced
NK cellularity and a decreased number of CD27(high) NK cells in
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mice expressing p110 δ (D910A), which is a catalytically inactive
form of p110 δ, and that inactivated p110 δ slightly impaired NK-
mediated tumor cell cytotoxicity in vitro and in vivo.181

Adaptive immunity. The adaptive immune system mainly
includes T and B cells, each of which have unique antigen
receptors. PI3K signaling plays a key role in T and B cells.182 PI3Kδ
has been identified as the main subtype of PI3K activated by T cell
receptors (TCRs) and BCRs, and activated PI3Kδ subsequently
activates Akt and other downstream signals.62

TEC family proteins, such as BTK, play a key role in PI3K signal
transduction.183 BTK inhibition reduces the output of the PI3K
signal in B cells.66,184 Cooperation between the PI3K signaling
pathway and BTK in immune cells has also been documented.
Upon the antigen activation of B cells, the cells undergo cloning,
expansion and differentiation and secrete different antigen-
specific antibodies. Some B cells rapidly differentiate into plasma
cells, mainly producing low-affinity IgM, while others secrete high-
affinity conversion antibodies. This differentiation is determined in
part by the levels of PI3K/Akt signaling and FOXO TF activity.185

In CD8+ T cells, class IA PI3Ks are mainly activated by RTKs, such
as TCRs and cytokine receptors. Activated PI3K/Akt signaling
promotes the uptake of glucose and amino acids by CD8+ T cells
for energy-demanding cellular processes, such as proliferation and
cytokine synthesis and secretion.186 Moreover, research has shown
that Akt inhibition effectively enhances memory T cell differentia-
tion in cancer.187 Therefore, inhibition of the PI3K/Akt signaling
pathway may affect T cell function. The PI3K/Akt signaling
pathway plays an indispensable role in the immune system.

Functional role of the PI3K/Akt signaling pathway in the tumor
microenvironment
The tumor microenvironment plays an important role in the
occurrence, development, and metastasis of tumors and influ-
ences cancer treatment.188 The tumor microenvironment includes
immune cells, endothelial cells, fibroblasts, the extracellular matrix,
and signaling molecules surrounding tumor cells. PI3K/Akt and its
downstream effectors are known to constitute a signaling
pathway involved in tumor cell development. PI3K signals regulate
cell survival, development, and proliferation by relying on
extracellular signaling molecules, and signaling molecules outside
tumor cells are part of the tumor microenvironment.
In the tumor microenvironment, cancer-associated fibroblasts

(CAFs) are the most abundant cells in the tumor matrix and
promote tumor progression by secreting several growth factors,
such as FGFs.189 Hepatocyte growth factor (HGF) secreted by CAFs
specifically triggers PI3K/Akt signaling to affect cancer progres-
sion, and HGF has been detected in many types of human cancer,
such as ovarian cancer.190 Furthermore, CCL5 derived from CAFs
has been detected in ovarian cancer cells and shown to influence
drug resistance by regulating PI3K/Akt signaling.191

In addition, tumor growth depends on oxygen and nutrients
delivered by new blood vessels,192 which are in turn related to
endothelial cells, an important component of the tumor micro-
environment. As shown in previous studies, PI3K subtypes promote
the differentiation of endothelial cells and other cells,193 and
different PI3K inhibitors thus produce different vascular responses.
Interventions targeting PI3K in CAFs and endothelial cells in the
tumor microenvironment in combination with conventional
therapies have great potential in the treatment of cancer. In
summary, the PI3K/Akt signaling pathway plays an essential role in
multiple cancer phenotypes, as summarized in Fig. 3.

CANCER THERAPIES TARGETING THE PI3K/AKT PATHWAY
PI3K inhibitors
Because of the function of PI3K/Akt signaling in oncogenesis,
various inhibitors targeting PI3K are being explored for the

treatment of various types of cancer (Table 2); to date, some
agents have been approved for the treatment of malignancies and
for the improvement of cancer therapy.194

Pan-PI3K inhibitors. Pan-PI3K inhibitors target the p110 subunits
of class IA PI3Ks, which are the most widely involved subunits in
cancer. These inhibitors have greater anticancer activity and fewer
side effects (less toxicity) than inhibitors of other PI3K classes.
Some representative small-molecule pan-PI3K inhibitors include
pictilisib (GDC-0941), buparlisib (BKM120) and pilaralisib (XL147).195

GDC-0941, a thienopyrimidine derivative, was the first inhibitor
to enter clinical trials. As a pan-class I PI3K inhibitor, GDC-0941
shows the same activity (IC50= 3 nM) against p110α and p110δ
enzymes, and in kinase assays, it exerts an inhibitory effect on
p110β and p110γ at nanomolar concentrations.196 Experiments
have shown that monotherapy or combination therapy with GDC-
0941 and other agents has strong antitumor activity in mouse
xenograft models of human cancer.196,197

BKM120, also known as NVP-BKM120, is another effective pan-
class I PI3K inhibitor that exerts a strong inhibitory effect on p110-α
and p110β enzymes, with IC50 values of 52 nM and 166 nM,
respectively. It also effectively inhibits p110δ and p110γ enzymes,
with IC50 values of 116 nM and 262 nM, respectively.198 Preclinical
studies have shown that BKM120 hinders the growth of
U-87MGGBM cells after xenotransplantation in the brain, which
helps to prolong the xenotransplantation duration in host animals;
most importantly, it does not induce significant adverse effects.199

According to a research report describing a phase I study of 35
patients with advanced solid tumors receiving BKM120 at
12.5–150mg per day, the administration of BKM120 at the
maximum tolerated dose of 100mg/day was safe and exhibited
preliminary antitumor activity.200

Another class I inhibitor, XL147, has high specificity for four
subtypes of PI3Ks.201 Analysis of its selectivity for more than 130
protein kinases revealed that XL147 is much more selective for
class I PI3Ks than other kinases. In cell experiments, XL147 inhibited
the formation of PIP3 in the cell membrane and the phosphoryla-
tion of kinases such as Akt in a variety of tumor cell lines,
influencing genetic alterations in the PI3K pathway.201 In mouse
transplant models, the oral administration of XL147 inhibited the
phosphorylation of Akt, p70S6K, and S6 for at least 24 h, and
repeated administration of XL147 significantly inhibited tumor
growth.201

Isoform-selective PI3K inhibitors. Compared to pan-PI3K inhibitors,
isotype-specific inhibitors exhibit less off-target toxicity because

Fig. 3 PI3K/Akt signaling and cancer. Various biological processes
are regulated by the PI3K/Akt pathway via key mediators/pathways
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they are specific to the tumor type; thus, isotype-specific inhibitors
can be administered at higher doses and are more effective.202

Alpelisib (BYL-719) and taselisib (GDC-0032) are representative
homospecific inhibitors.
BYL-719 is the first inhibitor to selectively target class I p110α. In

a phase I trial, BYL-719 resulted in monotherapy sensitivity in
patients with PI3KCA-mutant solid tumors.203 The combination of
BYL-719 and fulvestrant resulted in the remission of 29% of
patients with severe pretreated PI3KCA-mutant tumors and had a
good safety profile in patients.204

Based on the antitumor activity of BYL-719 in phase I clinical
trials, scientists conducted a phase III clinical trial of BYL-719
combined with fulvestrant in the treatment of advanced breast
cancer.205 The phase III trial showed a significantly prolonged
survival rate of patients with advanced breast cancer. The overall
response of patients treated with BYL-719 plus fulvestrant was
better than that of patients treated with the placebo plus
fulvestrant. However, patients treated with BYL-719 plus fulves-
trant had higher rates of hyperglycemia, rashes and diarrhea than
those treated with the placebo.
GDC-0032 exhibits the same activity against p110α, p110γ and

p110δ, but its inhibitory effect on p110β is 30-fold lower.206 Due
to the stronger selectivity of GDC-0032, this drug has shown better
efficacy in the treatment of PI3KCA-mutant tumors, with a
response rate of 36% among breast cancer patients with
PI3KCA-mutant tumors.207 In a phase III clinical trial, GDC-0032
was more effective than fulvestrant,208 and the results showed
that the main adverse events after GDC-0032 administration were
diarrhea and hyperglycemia. In some patients, the moderate
improvement in progression-free survival after GDC-0032 admin-
istration occurred at the cost of significant toxicity, and GDC-0032

was thus not suitable for use in these patients. In terms of
symptoms after administration, GDC-0032 produced more side
effects than BYL-719, possibly because of its stronger specificity
and exertion of a more obvious inhibitory effect on p110α.206

Dual pan-PI3K and mTOR inhibitors. Since both mTOR and PI3K
have a p110 subunit with similar structures, treatment with dual
pan-PI3K and mTOR inhibitors may exert an improved therapeutic
effect due to the more efficient inhibition of the PI3K/Akt/mTOR
signaling pathway. The current pan-PI3K and mTOR inhibitors
mainly include SF1126, dactolisib (Bez235), voxtalisib (XL765) and
GSK1059615.30 Although this type of inhibitor is less specific than
isotype-specific inhibitors, it has the potential to treat a variety of
tumors with a wide range of genetic abnormalities; however, it
also has many unknown toxicities and side effects.
Another advantage of these inhibitors is that they completely

inhibit the p110 subunit; however, they should not be used in
conjunction with other PI3K and Akt inhibitors.6 Key factors
affecting this class of inhibitors include whether the dose at which
all p110 subunits are completely suppressed is tolerable in
patients and whether the use of these inhibitors is at the expense
of other inhibitor targets.6 mTORC1 inhibitors tend to activate the
PI3K signaling pathway through feedback inhibition.209 Therefore,
the advantages of dual pan-PI3K and mTOR inhibitors in inhibiting
feedback inhibition are highlighted, and they have obvious
therapeutic advantages.

Akt inhibitors
Due to the existence of three Akt subunits, most current inhibitors
of Akt are pan-Akt inhibitors,74 and the research and development
of specific inhibitors against the three subunits of Akt will be very

Table 2. Novel agents targeting PI3K signaling in cancer

Class Inhibitor Phase Toxic effects Reference

Pan‑PI3K inhibitors GDC-0941 I Neutropenia、Neuropsychiatric effects (confusion, depression, anxiety)、
Hepatotoxicity、Diarrhea

254

BKM-120 II Hyperglycemia 255

BAY-80-6946 Approved Nausea
High blood sugar

256

XL-147 I Rash 257

PX-866 II Diarrhea
ALT/AST elevation

258

Isoform-selective PI3K
inhibitors

BYL-719 I Hyperglycemia 259

GDC-0032 I Rash、Diarrhea、Pneumonitis 206

IPI-145 Approved Hyperglycemia、Rash、Diarrhea、Hypertension 260

SAR-260301 Preclinical Nausea、Vomiting、Diarrhea 261

MLN-1117 I Nausea 262

Dual pan‑PI3K and mTOR
inhibitors

BEZ-235 I/II Fatigue/asthenia、Thrombocytopenia 263

SF-1126 I/II Hyperglycemia 264

GDC-0980 I Maculopapular　rash
Symptomatic hyperglycemia

265

PF-04691502 II Fatigue
Loss of appetite、Nausea、High blood sugar、Rash、Vomiting

266

XL-765 I Stomatitis 267

GSK-2126458 I Diarrhea 268

PF-05212384 II Fatigue 266

GSK-1059615 Preclinical Immunosuppression 269

BGT-226 I/II Diarrhea
Nausea
Loss of appetite
Vomiting
Fatigue

270
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challenging. Several inhibitors of Akt are currently being
investigated in clinical trials, such as MK-2206, GSK-2141795,
GSK-2110183, AZD5363 and GDC0068 (Table 3).
MK-2206, an allosteric pan-Akt inhibitor, shows synergistic

activity with cytotoxic compounds such as doxorubicin, gemcita-
bine, docetaxel and carboplatin in lung cancer.75 In addition, MK-
2206 inhibits the phosphorylation of Akt mediated by carboplatin
and gemcitabine, thereby enhancing the therapeutic effect of the
drug by inhibiting tumor survival laterally.210 MK-2206 also
enhances erlotinib activity in erlotinib-sensitive patients and
erlotinib-resistant NSCLC cell lines.211 Recently, MK-2206 entered
preclinical studies to determine its effects on acute myeloid
leukemia (AML). Data obtained from mouse models in preclinical
studies indicate that weekly administration is effective for the
treatment of AML, which supports its use in subsequent clinical
trials.212 A preclinical study on the inhibitor MK-2206 in
nasopharyngeal carcinoma (NPC) is also ongoing.213 HGF was
used to resensitize drug-resistant cells to the drug, revealing the
therapeutic efficacy of MK-2206.211 The efficacy of MK-2206 was
also reported in a phase I clinical trial in which the tumors of
patients with PTEN-deficient pancreatic cancer regressed after
treatment with MK-2206 alone. MK-2206 also exerts a mild
therapeutic effect on patients with melanoma and endocrine
tumors.214

AZD5363 is an inhibitor targeting the kinase activity of the three
Akt subtypes (Akt1, 2, and 3).215 AZD5363 inhibits cancer cell
proliferation and phosphorylates GSK3β and the downstream
channel protein S6 in vitro. In vivo, AZD5363 inhibits tumor
growth in xenograft tumor models and maintains pharmacody-
namic activity for at least 24 hours.215 Preclinical sensitivity to
AZD5363 is strongly associated with the presence of PIK3CA, and
this trend has also been observed for other inhibitors of the PI3K/
Akt/mTOR pathway.216

mTORC1 and mTORC2 inhibitors
Studies have shown that mTOR, a classical downstream effector of
the PI3K oncogenic pathway, has activity ranging from 40-90% in
various solid tumors.217 Therefore, the use of mTOR as a target for
cancer treatment has become a research hotspot.

Rapamycin. Rapamycin and its analogs (temsirolimus, everoli-
mus, and deforolimus) are allosteric inhibitors of mTOR and
constitute the first generation of mTOR inhibitors.218 Rapamycin
binds to mTOR and FKBP-12 to form a ternary complex and
specifically inhibits the phosphorylation of the mTORC1 protein
kinase S6K1, thus inhibiting mTORC1 activity.218 Rapamycin is
produced by Streptomyces sp. and possesses antifungal properties.
In the 1980s, rapamycin was reported to have anticancer activity,
but its clinical application was limited due to its poor water
solubility and stability.218

Although rapamycin inhibits mTOR with high specificity, its
efficacy in different environments depends on its dosage. Clinical
doses of rapamycin may vary due to the differential sensitivities of
cancer cells to rapamycin. The amount of rapamycin required to
phosphorylate the substrate also differs for different mTOR
substrates, which is caused by the competitive inhibition of mTOR
by phosphatidic acid and rapamycin.219

ATP-competitive mTOR inhibitors. Strategies involving the target-
ing of mTORC1 and mTORC2 have been developed to inhibit
mTOR more completely, and many ATP-competitive mTOR
inhibitors have been exploited. ATP-competitive mTOR inhibitors
are a class of small-molecule ATP analogs that compete with ATP
to occupy mTOR kinase active sites.218 Unlike rapamycin analogs,
these ATP analogs ensure the complete blockade of mTORC1 and
mTORC2, thereby preventing Akt phosphorylation caused by
mTORC2 and the observed resistance to rapamycin analogs. In
vitro studies have shown that ATP-competitive inhibitors exert a
greater inhibitory effect than rapamycin analogs.218 AZD8055, one
of the most recent and potent ATP-competitive mTOR inhibitors,
functions by inhibiting the phosphorylation of Akt and its
downstream proteins and has been shown to induce autophagy
in cancer cells and inhibit tumor growth in vivo.220 In conclusion,
inhibitors targeting the PI3K/Akt pathway are promising for cancer
therapy, and numerous PI3K/Akt pathway inhibitors have been
developed (summarized in Table 4).

Combination therapeutic strategies
Cancer treatment has always been difficult and perplexed humans
for many years, and combination therapy is an inevitable trend. A
logical approach is to combine PI3K-Akt pathway inhibitors with
standard targeted drugs approved for the treatment of specific
malignancies. This approach will also facilitate the inclusion of
PI3K/Akt inhibitors in treatment regimens for patients with early-
stage disease and preclude their use for only patients with
relapsed or refractory tumors. Here, we describe the combination
of PI3K signaling inhibitors with growth factor inhibitors, MAPK
inhibitors, and conventional therapies, such as chemotherapy,
radiation therapy and immunotherapy.

Table 3. Current inhibitors targeting Akt signaling in cancer

Inhibitor Phase Target ClinicalTrials.gov
Identifier:

Reference

Perifosine II AKT1/2/3 271

GSK-690693 I AKT1/2/3 272

VQD-002 I AKT1/2/3 273

AZD-5363 III AKT1/2/3 NCT04493853

GDC-0068 III AKT1/2/3 NCT04650581

GSK-2141795 II AKT1/2/3 NCT01964924

M2698 I AKT1/3 274

GSK-2110183 II AKT1/2/3 NCT01531894

MK-2206 II AKT1/2/3 NCT01370070

Table 4. Therapies targeting PI3K/Akt signaling

Agent Targets Inhibitors

Apoptosis p53 BKM120

CAL-101

GDC0068

p-S6 BYL719

GDC-0068

Rapamycin

p38 GSK2141795

Proliferation p53 Bez235

Temsirolimus

p-S6 XL765

XL147

GSK2121183

LY2780301

Rapamycin

Deforolimus

CDK1 Everolimus

TGF-β1 Bez235

Autophagy LC3B MK2206

p-S6 AZD5363
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Combination with GFR inhibitors. GFR alterations are some of the
most common causes of cancer among various types of tumors.
For example, abnormal HER2 amplification is common in breast
cancer.221 GFR inhibition has several advantages for tumor
therapy, as it not only blocks signal initiation and crosstalk with
complementary pathways but also increases the therapeutic
sensitization of tumor cells to chemotherapy and radiation.221 A
trial of buparlisib in combination with paclitaxel and trastuzumab
for breast cancer with abnormal HER2 amplification showed that
buparlisib can be used in combination with paclitaxel and
trastuzumab.222 Additionally, alpelisib in combination with cetux-
imab can be used for the treatment of head and neck squamous
cell carcinoma.223

Combination with MAPK inhibitors. The PI3K and MAPK signaling
networks have been shown to interact, which creates a potential
pathway for the development of combination therapies (PI3K and
MAPK pathway inhibitors) for cancer. Additionally, complete
inhibition of the PI3K and MAPK signaling pathways is required
for tumor control.224 The results of a clinical trial on treatment with
both PI3K and MAPK signaling inhibitors support this hypothesis,
as PI3K and MAPK therapies used in combination improved the
treatment efficacy compared to that achieved with either inhibitor
alone. However, the disadvantage of this approach is increased
toxicity.225

In a phase I trial, GDC-0941 and SAR245409 were used to target
PI3K in combination with GDC-0973 and AS-703026 to target MEK
and showed promising results in the treatment of KRAS-mutated
tumors.226,227 Further research on combinations of drugs targeting
these two signaling pathways is imperative. PI3K and MAPK
inhibitor combination therapies should include solid tumors that
depend on MAPK pathway activation, such as BRAF-mutant and
KRAS-mutant melanoma, colorectal carcinoma and ovarian
cancer.226–228

Combination with chemotherapy. According to previous studies,
PI3K signaling pathway inhibitors may increase the sensitivity of
tumor cells to chemotherapy by changing the peripheral vascular
system and tumor perfusion, thereby increasing the efficacy of
systemic therapy and inducing apoptosis.229 Early clinical studies
showed that PI3K pathway inhibitors are well tolerated when
administered with chemotherapy; pictilisib, carboplatin, and
paclitaxel have shown good antitumor activity in patients with
NSCLC. Additionally, a phase II clinical trial on ipatasertib was
initiated because of its positive effect on gastric cancer when used
in combination with chemotherapy.230

According to recent studies, PI3K signaling inhibitors increase
DNA damage and sensitize cell lines to poly (ADP-ribose)
polymerase inhibitors.231 Therefore, treatments targeting the
association between the PI3K pathway and DNA repair are
emerging as a therapeutic strategy for BRCA1-deficient tumors.
A phase I trial on buparlisib in combination with olaparib is
underway in patients with triple-negative breast cancer and highly
serous ovarian cancer.232 The results of these trials might further
our understanding of this combination and provide new insights
into strategies for overcoming resistance.

Combination with radiotherapy. Since the 21st century, radiation
therapy for cancer has been continuously improved, as the
damage to normal patient tissue has been reduced, allowing the
therapeutic dose to be increased, and the cure rate among
patients with cancer has been improved.233 Despite the improve-
ments in radiation therapy for cancer treatment, the survival rate
of patients with squamous cell carcinoma of the head and neck in
the last five years was only 40%.234 With combination therapy,
inhibitors of the PI3K/Akt signaling pathway not only restore the
sensitivity of tumor cell growth but also increase the sensitivity of
the tumor to chemotherapy, radiotherapy and hormone

therapy.235 Moreover, cell cycle arrest was observed after
suppression of the PI3K/Akt pathway.236 A recent study revealed
that buparlisib, a class I PI3K inhibitor, could be safely combined
with radiotherapy and improved the radiotherapeutic outcomes in
patients with NSCLC.237 In conclusion, the combination of PI3K/
Akt signaling pathway inhibitors and radiotherapy is a promising
approach for cancer treatment.

Combination with immunotherapy. Although cancer is a genetic
disease characterized by abnormal cell proliferation, it is also a
chronic immune disease.238 Immunotherapy has recently attracted
increasing attention and has indeed achieved some progress in
treating cancer.238 Studies on the PI3K/Akt signaling pathway in
immune cells have shown that its activation is not based on a
simple on/off mechanism239; as cancer is a chronic immune
disease, immunotherapies should be designed to increase the
ability of immune cells to kill tumor cells such that the body exerts
a direct antitumor effect. Determining whether drugs targeting
the PI3K signaling pathway enhance or inhibit the efficacies of
emerging immunotherapies will be critical for determining
whether they can be combined. Both PI3K and mTOR inhibitors
have been shown to enhance the efficacies of targeted
immunotherapies in mouse tumor xenotransplantation models.240

Traditional adoptive cell therapy (ACT) is performed by isolating
tumor-infiltrating lymphocytes (TILs) from biopsy materials.241

One of the main characteristics of TILs is their long-term
persistence after migration. However, a major difficulty is that
most TILs isolated from tumor tissues are terminally differentiated
and do not form phenotypes with memory ability.187 Recently,
ATC technology has been improved to enable the in vitro
transduction of CD8+ T cells by the chimeric antigen receptor
(CAR), with which the specific treatment of tumor antigens is not
limited by major histocompatibility complex I.242 Recent reports
on the efficacy of CAR-T cells for solid tumors in vivo indicate that
it can be improved by PI3K inhibitors; however, these findings are
preliminary, and the underlying mechanisms remain to be further
elucidated.242

CONCLUSIONS AND REMARKS
In the past few decades, numerous insights into the PI3K/Akt
signaling pathway have revealed its complex networks, including
its mechanism of activation, upstream and downstream targets,
and types of inhibitors, thereby increasing our understanding of
the occurrence and development of different types of human
cancers.
The diverse functions of PI3K/Akt signaling stem from down-

stream factors that link cellular function to stimulated upstream
factors. For instance, extracellular growth factors recruit PI3K to
the cell membrane, and the PI3K p110 subunit then induces the
phosphorylation of PIP2 to PIP3, which promotes the localization
of Akt to the plasma membrane. After activation by PDK1 and
mTORC2, Akt drives the expression of targets associated with the
cell phenotype. A dynamic system exists that comprises many
substrates and crosstalk among them as well as crosstalk with
other major signaling networks. This system exerts significant
effects on modulating the oncogenicity of cancer.
After years of basic research, the development of inhibitors has

undeniably advanced the treatment of cancer, but problems still
persist. The most common problems related to inhibitors is their
toxicity and side effects, such as hyperglycemia, rashes and other
symptoms, and these effects on patients must not be ignored. In
addition, concerns about the efficacy of animal models for
predicting drug toxicity and whether in vivo toxicity can be
predicted by in vitro experiments have been noted. Another
problem is that conventional models, including phase I, II, and III
trials, may not be suitable for testing PI3K inhibitors, which is
detrimental to the determination of therapeutic efficacy. Although
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none of the inhibitors have entered phase III clinical trials, they
show promise in treating cancer.243

Fortunately, most drugs have short half-lives and are easily
managed, enabling early intervention; thus, patients treated with
inhibitors can undergo active and effective intervention while
monitoring for early toxicity identifiers. This pathway can be
effectively manipulated to treat various human diseases caused by
PI3K/Akt signaling dysregulation only when researchers fully
elucidate the underlying mechanisms.
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