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Crosstalk between circRNAs and the PI3K/AKT signaling
pathway in cancer progression
Chen Xue1, Ganglei Li2, Juan Lu1 and Lanjuan Li1✉

Circular RNAs (circRNAs), covalently closed noncoding RNAs, are widely expressed in eukaryotes and viruses. They can function by
regulating target gene expression, linear RNA transcription and protein generation. The phosphoinositide 3-kinase (PI3K)/AKT
signaling pathway plays key roles in many biological and cellular processes, such as cell proliferation, growth, invasion, migration,
and angiogenesis. It also plays a pivotal role in cancer progression. Emerging data suggest that the circRNA/PI3K/AKT axis
modulates the expression of cancer-associated genes and thus regulates tumor progression. Aberrant regulation of the expression
of circRNAs in the circRNA/PI3K/AKT axis is significantly associated with clinicopathological characteristics and plays an important
role in the regulation of biological functions. In this review, we summarized the expression and biological functions of PI3K-AKT-
related circRNAs in vitro and in vivo and assessed their associations with clinicopathological characteristics. We also further
discussed the important role of circRNAs in the diagnosis, prognostication, and treatment of cancers.
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INTRODUCTION
The complexity of cancer and the variability of its clinical features
are derived from its complex etiology, involving DNA, RNA,
protein, and other factors.1–3 Cancer has become an important
public health concern affecting people’s lives.4–6 In the past 10
years, the number of studies on cancer has increased rapidly,
providing many novel clues for the treatment of cancer.7,8 The
emergence of targeted therapy and immunotherapy has greatly
improved the survival rate of cancer patients.9,10 However, cancer
treatment remains a major scientific challenge.
Circular RNAs (circRNAs), a newly discovered type of noncoding

RNA, have a covalently closed structure and high stability.11–13

CircRNAs are mainly formed by pre-mRNA a back-splicing and are
widely expressed in eukaryotes and viruses.14,15 The regulatory
role of circRNAs in physiological processes is still not very clear.16

However, accumulating evidence indicates that circRNAs are
significantly associated with many diseases and play an important
role in the occurrence and development of cancer. A common
circRNA-mediated mechanism is that circRNAs act as competitive
endogenous RNAs (ceRNAs) of microRNAs (miRNAs) in tumor
progression. Circ101237 facilitates the expression of MAPK1 to
suppress tumor progression by sponging miR-490-3p in non-small
cell lung cancer (NSCLC).17 CircRNA also regulates cancer
development and progression by interacting with protein.
CircRNA cIARS suppresses cell autophagy via binding with RBP
ALKBH5.18

Phosphoinositide 3-kinase (PI3K), a member of the lipid kinase
family, is an important regulator of signaling and intracellular
vesicular trafficking.19 Several studies have found that the PI3K/
AKT pathway is aberrantly activated in cancer20–22 and controls

core cellular functions, such as proliferation and survival.23,24 The
PI3K/AKT pathway plays a pivotal role in the progression of
cancer. Clinical trials targeting PI3K have also attracted increas-
ing attention.25,26 Emerging evidence suggests that circRNAs
interact with the PI3K/AKT pathway to regulate cancer progres-
sion. Importantly, circRNAs related to the PI3K/AKT pathway have
become potential targets in the treatment of cancer. In this
review, we summarized the current studies of the role of
crosstalk between circRNAs and the PI3K/AKT pathway in the
initiation and progression of cancer (Fig. 1). We also presented
the clinical applications of PI3K/AKT-related circRNAs in patients
with cancer.

THE PI3K/AKT SIGNALING PATHWAY IN TUMORIGENESIS
PI3K
Phosphoinositide 3-kinase (PI3K), a member of the lipid kinase
family,27,28 was first identified 3 decades ago.29 It can be divided
into 3 types (class I–III) in mammals.19,30,31 Class I PI3Ks have
gained much attention in the cancer-related field. PI3K is
composed of one catalytic (p110) domain and one regulatory
(p85) domain.32,33 p85, which contains the Src homology 2 (SH2)
and SH3 protein-binding domains,34,35 can interact with target
proteins with corresponding binding sites. The activation of PI3K
mainly involves the binding of the substrate near the inner side of
the plasma membrane.36,37 PI3K can be activated in two ways.
One is that PI3K interacts with connexin or growth factor receptors
with phosphorylated tyrosine residues, and then induces a
conformational change of dimer.38–40 It also can be activated by
the direct binding of p110 and Ras.41–43
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PI3K can be activated by multiple growth factors and signaling
complexes, such as G-protein coupled receptors, B-cell receptors,
vascular endothelial growth factor (VEGF), fibroblast growth factor
(FGF), insulin and receptor tyrosine kinases (RTKs) (Fig. 2).20,44–48

These factors induce autophosphorylation through the activation

of RTKs and then activate PI3K.49 The p85 subunit provides
docking sites for autophosphorylation. In some cases, this process
is mediated by the recruitment of adapter proteins. For example,
the insulin receptor activates PI3K via insulin receptor substrate-1
(IRS-1).50,51 Activated PI3K increases the conversion of PIP2 to PIP3,

Fig. 1 CircRNAs interact with the PI3K/AKT pathway to regulate cancer progression. Image created with BioRender (https://biorender.com/)

Fig. 2 The activation process of PI3K/AKT signaling pathway. PI3K, composed of one catalytic (p110) domain and one regulatory (p85), can be
activated by G-protein coupled receptor, RTK, IGF-R, and B-cell receptor. Activated PI3K facilitates the conversion of PIP2 to PIP3. PIP3 activates
PDK1, and then PDK1 phosphorylates AKT at Thr308. AKT can be also phosphorylated, and activated by PDK2 at Ser473. Activated AKT can
regulate mangy cellular biological functions by interacting with numerous downstream signaling molecules, such as p21, p27, TGFβ, ataxin-1,
GABA receptors, Bad, NF-κB, and mTOR. Image created with BioRender (https://biorender.com/)
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which activates PDK1 and AKT.52,53 However, AKT is not the only
target molecule of PI3K. PI3K regulates multiple signaling path-
ways by interacting with BTK, PDK1, and Rac.54

AKT
AKT, also called protein kinase B (PKB),55,56 is the cellular homolog
of the oncogene v-Akt. AKT is a serine/threonine kinase that
belongs to the AGC kinase family.57–59 There are three different
AKT isoforms (AKT1, AKT2, and AKT3), which are widely expressed
in most human tissues.60–62 AKT can link the interaction between
receptors and PI3K to cellular anabolic pathways. AKT acts as a
central regulator of cellular metabolism downstream of insulin
signaling that is responsible for the regulation of glucose
metabolism.63,64 In vivo experiments support that AKT2 plays a
key role in the regulation of glucose metabolism.65,66 Researchers
have found that germline mutations of AKT occur during the
tumorigenesis and progression of some cancer.67,68

AKT plays a key role in multiple cellular processes, such as cell
survival, proliferation, migration, apoptosis, and angiogenesis.69–72

AKT prevents TSC1/TSC2 complex formation and activates mTOR
pathway, thereby regulating cell growth.73–75 It also regulates the
expression of cyclin D1 and p53 to affect the cell cycle or the
proliferation of various cell types through interacting with CDK
inhibitors including p21 and p27.76 AKT boosts cell survival via
inactivating the pro-apoptotic factors Bad and the transcription
factor of the Forkhead (FKHR) family.77 The expression levels of
GABA receptors and ataxin-1 are also regulated by AKT.78,79 Some
studies observed that AKT regulates the TGFβ signaling pathway
by binding with Smad.80 The present findings show that AKT is an
important target for the treatment of cancer, diabetes, stroke, and
neurodegenerative diseases.81–83

The activation of PI3K/AKT pathway
The PI3K/AKT signaling pathway plays key role in many biological
and cellular functions.84,85 We have already elaborated on the
activation of PI3K when introducing PI3K. The inositol ring of PI
has five potential phosphorylation sites. PI3K activation could
catalyze the phosphorylation of phosphatidylinositol (PI) at the 3′-
position of the inositol ring.86 The phosphorylated products have a
critical influence on cellular functions. PIP3 could enhance cell
migration,87 and PI 3,4-bisphosphate regulates B cell activation
and insulin sensitivity.88 AKT and PDK1, which contain PH domains
can bind to PIP3. PIP3 activates PDK1,89 and then PDK1
phosphorylates AKT at Thr308.90,91 AKT can be also phosphory-
lated and activated by PDK2 at Ser473.92,93 Activated AKT
regulates cell proliferation, differentiation, migration, and apop-
tosis by activating or inhibiting downstream target proteins, such
as Bad,94 Caspase9,95 NF-κB,96,97 GSK-3,98 FKHR,99,100 p21,101

p53102 and FOXO1.103,104 Aberrant activation of PI3K/AKT pathway
has been found in a variety of cancers,105 such as lung cancer,106

esophageal cancer,107 gastric cancer,108 breast cancer,109 laryngeal
cancer,110 gallbladder cancer,111 and prostate cancer.112

PTEN is a widely mutated tumor suppressor gene that inhibits
the oncogenic PI3K/AKT pathway.113–115 PTEN antagonizes the
PI3K/Akt pathway by dephosphorylating PIP3 to PIP2,116,117 then
induces changes in a variety of cellular biological functions.118,119

Carboxyl-terminal modulator protein (CTMP) could block the
transmission of downstream signaling pathways by inhibiting AKT
phosphorylation.120,121 PP2A has been found to dephosphorylate
AKT-Thr308 and AKT-Ser473 to inhibit the activation of AKT.122,123

CIRCRNAS AND CANCER
CircRNAs were initially found in RNA viruses at the end of the 20th
century and were considered transcriptional background
noise.124–126 With the application of high-throughput RNA
sequencing and bioinformatics approaches, circRNAs have
attracted much attention from researchers.13,127,128 CircRNAs,

covalently closed noncoding RNAs, are widely expressed in
eukaryotes and viruses.11,129–131 Linear pre-mRNAs generate
circRNAs through exon skipping or back-splicing events.132,133

The circular form of circRNAs protects them from degradation by
exonucleases, causing them to show greater stability.11,12

CircRNAs can function by regulating target gene expression,
linear RNA transcription, and protein generation.13,134,135 More-
over, circRNAs are involved in the occurrence and development of
several cancers.129,136–139 Different circRNAs play distinct roles in
diverse cancer types. The circRNA cSMARCA5 has tumor-
suppressive properties in the progression of hepatocellular
carcinoma.136 However, circMAPK4 suppresses cell apoptosis by
regulating specific pathways in gliomas.140

There are mainly four mechanisms by which circRNAs can act in
cancer progression: miRNA sponging, protein binding, regulation
of gene transcription, and regulation of protein translation.
CircRNAs function as natural miRNA sponges that regulate miRNA
activity.141–143 miRNAs are essential players in almost all carcino-
genic processes.144–146 Increasing evidence suggests that circRNAs
modulate cancer progression by regulating the expression of
miRNA targets.147–151 For example, cTFRC facilitates tumor
progression by sponging miR-107 in bladder carcinoma.152 In
addition, circRNAs regulate cancer development and progression
by directly modifying the transcription of related genes. Zhang
et al.153 reported a novel class of intron-derived circRNAs that is
widely distributed throughout the nucleus. Intron-derived cir-
cRNAs can interact with RNA polymerase II to enhance the
transcription of its target genes.154,155 CircRNAs could also act as
protein decoys, and regulate RNA-binding proteins (RBPs) activity
by combining with RBPs.156,157 The expression of circZKSCAN1
attenuates HCC cell stemness by targeting RBP fragile X mental
retardation protein.158 Moreover, some circRNAs containing the
AUG start codon and IRES can control gene expression at the
translational level.159,160 However, this effect has not yet been fully
elucidated in cancer.

THE CIRCRNA/PI3K/AKT AXIS IN CANCER
CircRNA plays a critical role in the initiation and development of
human cancer.161–165 The studies on circRNA are changing our
view of cancer genesis, progression, and treatment.166,167

CircRNAs alone may be insufficient for driving cancer progression.
Similarly, traditional signaling pathways or signaling molecules
alone may also be ineffective. Interestingly, studies have found
that circRNAs are often interrelated with the PI3K/AKT signaling
pathway. The PI3K/AKT signaling pathway plays key roles in many
biological and cellular functions, such as cell proliferation, growth,
invasion, migration, and angiogenesis.85,168 It also plays a pivotal
role in the progression of cancer.27,169,170 Recently, a great deal of
research regarding the interaction of circRNA and PI3K/AKT
signaling pathways has attracted significant research interest.
CircRNAs regulate cellular functions and control the occurrence
and development of cancer via interactions with the PI3K/AKT
pathway. Based on the current study, the mechanism/pattern of
interaction between circRNA and PI3K/AKT pathway is primarily
the ceRNA mechanism, which involves the activation or repression
of downstream pathways by sponging miRNA. Research on the
circRNA/PI3K/AKT axis is still in its infancy. With the deepening of
research about the structure and function of circRNAs, the
mechanism will add clarity regarding the circRNA/PI3K/AKT axis.

CLINICAL FEATURES AND CELL BIOLOGICAL FUNCTIONS
RELATED TO THE CIRCRNA/PI3K/AKT AXIS
A large number of circRNAs have been found to be involved in the
PI3K/AKT signaling pathway. The circRNA/PI3K/AKT axis modulates
the expression of cancer-associated genes and thus regulates
tumor progression. The circRNA/PI3K/AKT axis plays important role
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in the initiation and progression of several types of cancer. Current
studies may lay the foundation for further research on the
mechanisms of cancer progression and provide insights into
circRNA-based clinical applications. In this section, we will
summarize the expression, biological functions in vitro (Table 1),
and associations with clinicopathological characteristics of cir-
cRNAs related to the PI3K/AKT signaling pathway (Table 2).

DIGESTIVE SYSTEM NEOPLASMS
Esophageal cancer
The expression of circVRK1 and circLARP4 is significantly down-
regulated and circLPAR3 levels are increased in esophageal
squamous cell carcinoma (ESCC).171–173 Low circVRK1 expression
predicts poor overall survival in patients with ESCC.172 Elevated
circLPAR3 levels are markedly associated with lymph node
metastasis (LNM) and advanced TNM stage.171 In addition,
researchers have also observed alterations in biological functions
of the circRNA/PI3K/AKT axis by in vitro functional assays.
Silencing of the circRNA cZNF292 inhibits the activity of tumor
cells and promotes cell apoptosis in ESCC.174 Upregulation of
circVRK1 suppresses cell proliferation, increases the radiosensitiv-
ity of ESCC cells, and attenuates epithelial–mesenchymal transi-
tion (EMT).172 CircLARP4 inhibits cell apoptosis and promotes cell
proliferation in ESCC.173 Furthermore, cZNF292, circVRK1, and
circLARP4 all inhibit ESCC cell migration. Contrary to the
aforementioned investigations, circLPAR3 functions as a tumor
oncogene and enhances the malignant phenotype of ESCC
tumors.171 Mechanistically, circLPAR3 increases the expression of

the MET gene to enhance the RAS/MAPK and PI3K/Akt pathways
by sponging miR-198 in ESCC. Knockdown of cZNF292 induces
inactivation of the PI3K/AKT pathway and upregulation of AMPK
signaling to exert effects in ESCC.174 CircVRK1 functions as a tumor
suppressor gene by upregulating PTEN and inhibiting the PI3K/
AKT axis.172 Similarly, circLARP4 promotes the expression of PTEN
and inactivates the PI3K/AKT pathway to suppress the progression
of ESCC.173

Gastric cancer
PI3K/AKT pathway-related circRNAs (circPIP5K1A, circ0010882,
circ0023409, ciRS-7, circMAN2B2, and circPVT1) are all obviously
upregulated in gastric cancer.175–180 The levels of circ0010882 and
circ0023409 are positively associated with tumor size and
histological grade in gastric cancer patients.176,177 In addition,
higher expression of circ0010882 or ciRS-7 is associated with
shorter overall survival. Circ0023409 promotes LNM in gastric
cancer. In terms of biological function, increased circPIP5K1A,
circ0010882, and circ0023409 expression reduces gastric cancer
cell proliferation, migration, and invasion.175–177 High expression
of circPVT1 may enhance the sensitivity of gastric cancer cells to
cisplatin (DDP).180 We also found that circMAN2B2 upregulates cell
viability and the surviving cell fraction by cell transfection
experiments.179 Silencing of circ0010882 attenuated gastric
cancer cell growth and motility in vitro.176 In terms of the
mechanism, circPIP5K1A sponges miR-671-5p to facilitate tumor
progression by upregulating the KRT80 and PI3K/AKT pathways in
gastric cancer.175 Circ0010882 regulates biological functions by
promoting PI3K/AKT/mTOR signaling.176 Further studies have

Table 2. Relationship between circRNA/PI3K/AKT axis and clinical features in cancer

Cancer type CircRNA Expression Related features Refs.

Bladder cancer circZNF139 Upregulated Disease-free survival 220

Liver cancer circIGF1R Upregulated Tumor size 185

Liver cancer circRNA0072309 Downregulated 5-year survival 186

Liver cancer circ0004001, circ0004123, and
circ0075792

Upregulated TNM stage, and tumor size 188

Thyroid cancer circ0067934 Upregulated Survival period and AJCC stage 238

Glioma circPIP5K1A Upregulated Survival time, tumor volume, and tumor stage 200

Glioblastoma circ0067934 Upregulated Disease-free survival and overall survival 206

Colorectal cancer circ0008285 Downregulated Lymph node metastasis, TNM stage, and tumor size 183

Oral squamous cell carcinoma circ043621 Upregulated Clinical stage, lymph node metastasis, and
differentiation degree

257

Oral squamous cell carcinoma circ102459 Downregulated Clinical stage, lymph node metastasis, and
differentiation degree

257

Prostate cancer circMBOAT2 Upregulated Gleason score, pathological T stage, and disease-free
survival

227

Breast cancer circPRMT5 Upregulated Overall survival 263

Breast cancer cirCHIPK3 Upregulated Overall survival 264

Breast cancer circ001569 Upregulated Lymph node metastasis, pathological stage, and overall
survival

266

Breast cancer circ0000199 Upregulated Tumor size, TNM stage, ki-67 level, and 3-year survival 267

Esophageal cancer circLPAR3 Upregulated Lymph node metastasis and TNM stage 171

Esophageal cancer circVRK1 Downregulated Overall survival 172

Gastric cancer circ0010882 Upregulated Tumor size, histological grade, and overall survival 176

Gastric cancer circ0023409 Upregulated Tumor size, histological grade, and lymph nodes metastasis 177

Gastric cancer ciRS-7 Upregulated Overall survival 178

Pancreatic cancer circNFIB1 Downregulated Lymph node metastasis 194

Pancreatic cancer circBFAR Upregulated TNM stage, overall survival, and disease-free survival 196

Endometrial cancer circ0002577 Upregulated Overall survival, histological grade, lymph node metastasis,
and lymph vascular space invasion

232
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demonstrated that circ0023409, ciRS-7, circMAN2B2, and circPVT1
regulate the PI3K/AKT pathway by acting as sponges of miRNAs in
gastric cancer.177–180 For example, circ0023409 activates the PI3K/
AKT pathway by sponging miR-542-3p to increase IRS4 levels.177 In
addition, researchers have established in vivo xenograft nude
mouse models to further explore the relationship between gastric
cancer and the circRNA/PI3K/AKT axis. The expression of
circPIP5K1A facilitates tumor growth in gastric cancer in vivo.175

Colorectal cancer (CRC)
The expression level of circ0001313 is dramatically upregulated
while the levels of circCDYL and circ0008285 are decreased in
CRC.181–183 Circ0008285 expression is positively associated with
LNM, tumor-node-metastasis (TNM) stage, and tumor size in
patients with CRC.183 Functionally, circCDYL inhibits CRC cell
migration and invasion.182 Circ0001313 and circCDYL significantly
reduce cell apoptosis in CRC.181,182 Silencing the expression of
circ0008285 enhances cell proliferation and migration in CRC.183

The expression of circ0001313 increases the level of AKT2, thus
contributing to CRC progression by downregulating miR-510-5p
expression.181 CircCDYL inactivates PI3K/AKT and JAK/STAT
signaling by decreasing miR-150-5p levels in colon cancer.182

Circ0008285 expression reduces migration and proliferation via
regulation of the miR-382-5p/PTEN/PI3K/AKT axis in CRC.183

Liver cancer
A series of circRNAs related to the circRNA/PI3K/AKT axis has been
found to be closely related to the occurrence and progression of
hepatocellular carcinoma (HCC). These circRNAs with aberrant
expression are listed in Table 1.184–190 Tumor size positively
correlates with the expression of circIGF1R, circ0004001,
circ0004123, and circ0075792 in HCC.185,188 High expression of
circ0072309 is related to better 5-year survival in patients with
HCC.186 Decreased circCDK13 levels enhance cell motility while

low levels of circIGF1R inhibit cell growth in HCC.184,185 High
expression of circ0072309 impairs cell growth and motility,
affecting cell viability, colony formation, invasion, and migra-
tion.186 Mechanistically, circCDK13 inhibits HCC progression by
regulating the PI3K/AKT and JAK/STAT pathways (Table 1).184

Circ0072309 functions as a sponge of miR-665 to negatively
regulate the PI3K/AKT and Wnt/β-catenin pathways in the
pathophysiologic processes of HCC.186 The expression of cir-
cEPHB4 impedes HCC progression by negatively regulating the
HIF-1α/PI3K/AKT axis and HIF-1α/ZEB1 pathway.189 Hepatoblas-
toma is the most common primary malignant hepatic tumor in
children.191,192 The expression of circHMGCS1 is significantly
upregulated in hepatoblastoma cell lines compared to normal
hepatocyte cells and HCC cells.193 circHMGCS1 also promotes cell
proliferation and inhibits apoptosis in hepatoblastoma cell lines.
CircHMGCS1 markedly upregulates the IGF2/IGF1R/PI3K/AKT axis
to regulate proliferation by sponging miR-503-5p.193 The expres-
sion of circEPHB4 was negatively associated with tumor weight,
size, and metastatic foci in vivo.189 A higher level of circ0079929
predicted decreased tumor size and weight in nude mouse
models.187 CircCDK13 is an important negative regulator in the
development and progression of HCC.184

Pancreatic cancer
The level of circNFIB1 is markedly decreased while circEIF6 and
circBFAR expression levels are elevated in pancreatic cancer.194–196

High expression of circNFIB1 restrains lymphatic metastasis of
pancreatic cancer.194 Upregulated levels of circBFAR predict high
TNM stage and poor prognosis.196 Functionally, we found that the
expression of circEIF6 promotes cell proliferation, increases cell
migration and invasion, and inhibits cell apoptosis by performing
siRNA-mediated knockdown experiments in pancreatic cancer
cells.195 Mechanistically, circNFIB1 induces VEGF-C inhibition and
attenuates LNM by sponging miR-486-5p and inhibiting the PI3K/

Fig. 3 The specific mechanism of glioma progression between circRNAs and PI3K/AKT pathway. Circ0014359 exerts its effects by inhibiting
the level of miR-153 and regulating the PI3K/AKT axis. CircDICER1 in combination with MOV10 plays a critical role in glioma angiogenesis via
regulation of miR-103a-3p (miR-382-5p)/ZIC4. CircHIPK3 regulates biological functions to improve sensitivity to temozolomide through
suppression of the miR-524-5p/KIF2A-mediated PI3K/AKT pathway. circRNAs can also facilitate glioma tumorigenesis and progression by
regulating the circPIP5K1A/miR-515-5p/TCF12/PI3K/AKT axis in glioma. Image created with BioRender (https://biorender.com/)

Crosstalk between circRNAs and the PI3K/AKT signaling pathway in cancer. . .
Xue et al.

8

Signal Transduction and Targeted Therapy           (2021) 6:400 

https://biorender.com/


AKT pathway in pancreatic ductal adenocarcinoma.194 CircEIF6
regulates biological functions by upregulating miR-557 expression,
downregulating SLC7A11 levels, and inactivating the PI3K/AKT
pathway in pancreatic cancer.195 CircBFAR facilitates
mesenchymal–epithelial transition by sponging miR-34b-5p and
upregulating the MET/PI3K/AKT axis in pancreatic ductal adeno-
carcinoma.196 In vivo experiments showed that downregulation of
circBFAR or circEIF6 expression can lead to lower tumor weight
and volume in pancreatic ductal adenocarcinoma.195

NERVOUS SYSTEM NEOPLASMS
Glioma
PI3K/AKT axis-associated circRNAs are significantly upregulated in
glioma (Table 1).197–202 Elevated circPIP5K1A expression is
positively correlated with shorter survival time, larger tumor
volume, and higher tumor stage in patients with glioma.200

CircHIPK3, circPIP5K1A, circ104075, and circ0000215 increase
glioma cell proliferation in vitro.197,199,200,202 Cic0014359, cir-
cHIPK3, circPIP5K1A, and circ0000215 facilitate cell motility in
glioma.197,199,200,202 Furthermore, circDICER1 markedly attenuates
the angiogenesis of glioma-exposed endothelial cells.198 Down-
regulated expression of circHIPK3 induces a significant upregula-
tion of temozolomide sensitivity in glioma.199 Mechanistic studies
have revealed that circ0014359 exerts its effects by inhibiting the
level of miR-153 and regulating the PI3K axis in glioma197 (Fig. 3).
CircDICER1 in combination with MOV10 plays a critical role in
glioma angiogenesis via regulation of miR-103a-3p (miR-382-5p)/
ZIC4.198 CircHIPK3 regulates biological functions to improve
sensitivity to temozolomide through suppression of the miR-
524-5p/KIF2A-mediated PI3K/AKT pathway.199

A series of studies have shown that circRNAs can facilitate glioma
tumorigenesis and progression by regulating the circPIP5K1A/miR-
515-5p/TCF12/PI3K/AKT and circ0000215/miR-495-3p/CXCR2/PI3K/

AKT pathways200,202 (Fig. 3). Glioblastoma (GBM) is the most
malignant glioma and has an extremely poor prognosis.203–205

CircAKT3 is overexpressed while circ0067934 and circPVT1 expres-
sion are significantly downregulated in GBM.62,206,207 A higher level
of circ0067934 portends shorter disease-free survival and decreased
overall survival rates in GBM.206 Inhibition of circ0067934 expression
may be a promising strategy for improving GBM prognosis. The
upregulation of circAKT3 suppresses GBM cell proliferation and
increases sensitivity to radiation.62 The expression of circ0067934
facilitates cell proliferation and metastasis and inhibits cell
apoptosis in GBM by upregulating the PI3K-AKT pathway.206

Neuroblastoma (NB) and pituitary tumor
NB is the most common extracranial solid tumor in childhood.208–210

The expression of circ0002343 was found to be involved in the
regulation of EMT in NB.211 circ0002343 significantly affects EMT by
regulating the RAC1/PI3K/AKT/mTOR axis. Pituitary tumors are
some of the most common benign neoplasms of the central
nervous system.212,213 The levels of circ0054722, circ0012346, and
circ0007362 are significantly increased while the expression of some
circRNAs (circ0062222, circ0016403, circ0033349, and circ0049730) is
downregulated in invasive nonfunctioning pituitary adenomas
compared with the levels in noninvasive nonfunctioning pituitary
adenomas.214

Genitourinary tumors
Kidney cancer and bladder cancer. Kidney cancer is not a single
disease but comprises different types of cancer that occur in the
kidney.215–217 Renal carcinoma-associated transcripts (circ0072309
and circC3P1) are significantly downregulated in renal carcinoma
tissues compared to corresponding normal tissues.218,219 These
circRNAs significantly suppresses cell proliferation, migration, and
invasion and promote cell apoptosis in kidney cancer. Circ-
0072309 sponges miR-100 to inhibit the PI3K/AKT and mTOR

Fig. 4 The specific mechanism of circRNAs and PI3K/AKT pathway in different cancers. a Circ-0072309 sponges miR-100 to inhibit the PI3K/
AKT/mTOR pathway in kidney cancer. CircC3P1 inhibits kidney cancer progression via regulation of miR/PTEN pathways and the PI3K/AKT
pathway. b Circ0001085 regulates prostate cancer progression through the PI3K/AKT pathway by sponging miR-196b-5p and miR-451a.
c Overexpression of circ0002577 enhances the IGF1R/PI3K/AKT axis to increase the migration, invasion, and proliferation of endometrial
cancer cells. d CircCSPP1 expression inhibits cervical cancer cell apoptosis and promotes cell proliferation and migration via the miR-361-5p/
ITGB1/PI3K/AKT axis in cervical cancer. Image created with BioRender (https://biorender.com/)
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pathways in kidney cancer.218 CircC3P1 exerts diverse biological
functions by inhibiting the PI3K/AKT and NF-κB pathways by
regulating the miR-21/PTEN axis219 (Fig. 4a). The overexpression of
circZNF139 is markedly associated with disease-free survival in
bladder cancer.220 circZNF139 overexpression also attenuates
bladder cancer cell proliferation, colony formation, migration, and
invasion by regulating the PI3K/AKT pathway.

Prostate cancer (PCa). PCa is a major cause of male cancer-
related mortality worldwide.221–224 The level of circNOLC1 is
increased while circITCH expression is obviously downregulated in
PCa.225,226 CircMBOAT2 is overexpressed in PCa and contributes to
poor prognosis.227 Moreover, increased circMBOAT2 levels are
positively correlated with Gleason score and pathological T stage.
Functionally, circNOLC1, circITCH, and circMBOAT2 govern multi-
ple cellular processes, such as cell proliferation, migration, and
invasion, via the circRNA/PI3K/AKT axis in PCa.225–227 Circ0001085
induces EMT in PCa cells in vitro.228 Circ0001085 regulates PCa
progression through the PI3K/AKT pathway by sponging miR-
196b-5p and miR-451a (Fig. 4b). CircMBOAT2 clearly promotes
tumorigenesis and metastasis in PCa in vivo.227

Female reproductive system cancers. Ovarian, endometrial, and
cervical cancer are three major malignant tumors causing a severe
threat to women’s health.229,230 The downregulation of cir-
cRHOBTB3 not only attenuates cell proliferation and metastasis
but also inhibits glycolysis by suppressing the PI3K/AKT pathway
in ovarian cancer.231 Circ0002577 expression is markedly
increased in endometrial cancer.232 Circ0002577 expression is
positively correlated with the histological grade of the tumor,
LNM, and lymph vascular space invasion. Studies have revealed
that patients with high expression of circ0002577 have a poor
prognosis. The overexpression of circ0002577 enhances the
IGF1R/PI3K/AKT axis to increase the migration, invasion, and
proliferation of endometrial cancer cells (Fig. 4c). Silencing of
circ0002577 expression significantly inhibits the growth and
metastasis of tumors in nude mouse models of endometrial
cancer.232 The expression of circCSPP1 is markedly upregulated in
cervical cancer tissues.233 CircCSPP1 expression inhibits cervical
cancer cell apoptosis and promotes cell proliferation and

migration via the miR-361-5p/ITGB1/PI3K/AKT axis in cervical
cancer (Fig. 4d).

TUMORS OF THE ENDOCRINE SYSTEM
Thyroid cancer is the most common malignancy occurring in the
endocrine system.234–237 The expression of circ0067934 and
circpsd3 is upregulated whereas circ0007694 expression is down-
regulated in thyroid tumors.238–240 High circ0067934 expression is
associated with a shorter survival period of thyroid cancer
patients.238 The expression of circ0067934 and circ0007694 affects
diverse cell biological functions, such as cell proliferation,
migration, invasion, and apoptosis, in thyroid cancer via the
PI3K/AKT signaling pathway.238,239 During the regulation of
different cellular biological processes, circ0067934 acts as an
oncogene, but circ0007694 may function as a tumor suppressor
gene in the progression of thyroid cancer. Increased circ0007694
expression effectively suppresses the growth of papillary thyroid
carcinoma in vivo.239

TUMORS OF THE RESPIRATORY AND MUSCULOSKELETAL
SYSTEMS
Lung cancer
Lung cancer is one of the leading causes of cancer-related death
worldwide, with NSCLC accounting for 85% of all lung cancers.241–244

The expression of circGFRA1 and circ0018818 is significantly
upregulated in NSCLC tissues compared to normal counter-
parts.245,246 Silencing of circ0018818 expression inhibits proliferation,
invasion, and EMT and promotes cell apoptosis.246 In addition,
circGFRA1 activates the PI3K/AKT pathway by downregulating the
expression of miR-188-3p in lung cancer. Knockdown of circ100876
reduces cell proliferation, migration, and invasion and facilitates
NSCLC cell apoptosis by regulating the miR-636/RET axis and PI3K/
AKT signaling.247 The circ0018818/miR-767-3p/NID1/PI3K/AKT axis
also plays a key role in the progression of lung cancer (Fig. 5).

Osteosarcoma (OS). OS is the most common primary malignant
bone tumor in children and adolescents.248,249 The expression of
circRNAs associated with the PI3K/AKT axis is listed in Table 1.250–253

Fig. 5 The mechanism of circRNAs and PI3K/AKT pathway in lung cancer. CircGFRA1 activates the PI3K/AKT pathway by downregulating the
expression of miR-188-3p in lung cancer. Circ100876 affects biological functions via PI3K/AKT signaling by regulating the miR-636/RET axis.
The circ0018818/miR-767-3p/NID1/PI3K/AKT axis also plays a key role in the progression of lung cancer. Image created with BioRender (https://
biorender.com/)

Crosstalk between circRNAs and the PI3K/AKT signaling pathway in cancer. . .
Xue et al.

10

Signal Transduction and Targeted Therapy           (2021) 6:400 

https://biorender.com/
https://biorender.com/


The expression of circEIF4G2 and circITCH affects cell biological
functions, such as cell proliferation, migration, and invasion, in
OS.251,252 Silencing of circ0005909 obviously decreases cell viability
and cell clone capacity in OS cell lines.253 Decreased expression of
circ0001785 reduces cell proliferation and facilitates cell apoptosis in
OS.250 Mechanistically, the expression of circ-ITCH attenuates cell
biological functions because circ-ITCH acts as a competing
endogenous RNA (ceRNA) for miR-22 to inactivate the PTEN/PI3K/
AKT and SP-1 pathways in OS.252 Circ0005909 expression enhances
OS malignant progression by upregulating the MAPK-ERK and PI3K-
Akt signaling pathways by sponging miR-338-3p to inhibit the level
of HGMA1.253

Tumors of other systems
Oral squamous cell carcinoma (OSCC) is a malignant type of head
and neck squamous cell carcinoma.254–256 Circ043621 expression is
remarkably elevated and circ102459 levels are dramatically
decreased in OSCC tissues.256 CircPARD3 and circ043621 expression
levels are relatively associated with clinical stage, LNM, and
differentiation degree in OSCC. In vitro assays have revealed that
increased circ043621 levels and decreased circ102459 expression
can induce arrest in the G0 and/or G1 phase, apoptosis, and
inhibition of cell proliferation by activating the MAPK and PI3K/AKT
pathways.257 Multiple myeloma (MM) is a plasma cell malig-
nancy.258–260 The expression of circ0007841 is significantly upre-
gulated in MM cell lines and bone marrow-derived cells.261 High
circ0007841 expression enhances the malignant behaviors of MM
cells, for example, promoting cell proliferation, cell cycle progres-
sion, and metastasis, by activating the PI3K/AKT pathway.
PI3K/AKT axis-associated circRNAs are aberrantly regulated in

breast cancer262–267 (Table 1). The overexpression of circ0000199 is
significantly associated with tumor size, TNM stage, and Ki-67 level
in patients with breast cancer.267 Higher levels of circPRMT5,
circHIPK3, circ001569, and circ0000199 predict poor prognosis in
breast cancer.263,264,266,267 circ0000199 can affect tumor cell
tolerance of chemotherapy via suppression of the PI3K/AKT/mTOR
pathway and activation of the miR-206/miR-613 axis.267 circ0000199
also enhances cell proliferation, migration, and invasion in breast
cancer. Silencing of circPRMT5 expression attenuates angiogenesis
and proliferation and induces apoptosis.263 CircPRMT5 contributes
to malignant phenotypes by activating the PI3K/AKT/mTOR axis via
regulation of the miR-509-3p/TCF7L2 pathway. High expression of
cirCHIPK3 significantly promotes cell migration, invasion, viability,
and proliferation by targeting the miR-193a/HMGB1/PI3K/AKT
axis.264 High circ0000442 expression induces suppression of cell
viability and cell cycle arrest at the G1 phase and decreases colony
formation in breast cancer.265 circ0000442 knockdown experiments
have further confirmed this result. circ0000442 acts as a sponge of
miR-148b-3p to downregulate the PTEN/PI3K/AKT pathway to
impede tumor progression. Moreover, the knockdown of cirCHIPK3
attenuates breast cancer growth in vivo.264

CircRNAs related to the PI3K/AKT pathway as biomarkers
In recent years, researchers have focused on identifying effective
molecular biomarkers to improve the early detection, monitoring,
and prediction of therapy response in cancer patients.268–270

Technological advances have contributed to an up-to-date
understanding of the roles of circRNAs in the initiation and
progression of cancer. A growing number of circRNAs related to
the PI3K/AKT pathway have been found to be potential
biomarkers for the diagnosis, treatment, and prognostication of
many cancers. In this section, we will further discuss the important
role of circRNAs in clinical applications.

Diagnostic biomarkers
The diagnosis of cancer at an early stage is critical for effective
treatment and monitoring.271,272 A critical factor of early diagnosis
is the identification of diagnostic biomarkers.273–275 Many

circRNAs in the PI3K/AKT pathway have been identified as
aberrantly expressed during the progression of different cancers
(Table 1). For example, the expression of circCSPP1 is markedly
upregulated in cervical cancer tissues.233 The expression of
circGFRA1 and circ0018818 is significantly upregulated in NSCLC
tissues compared to normal tissues.245,246 CircRNAs with signifi-
cantly abnormal expression have diagnostic potential in many
cancers. In addition, the levels of circ0004001, circ0004123, and
circ0075792 in serum are markedly upregulated in patients with
HCC.188 The expression of circ0010882 in serum is obviously
elevated in gastric cancer patients.176

The expression of circ0007841 in serum is significantly
increased in MM patients.261 These results suggest that early
diagnosis based on circRNAs is practical. More studies about the
diagnostic roles of circRNAs in serum are needed.

Prognosis prediction
Emerging evidence suggests that many circRNAs are reliable for
predicting the prognosis of patients with cancer.196,276,277 which
provides important guidance for cancer therapy. A significant
number of circRNAs have been found to be markedly associated
with survival parameters, such as overall survival, disease-free
survival, and the 5-year survival rate (Table 2). Low circVRK1
expression predicts poor overall survival in patients with ESCC.172

A higher level of circ0067934 portends shorter disease-free
survival and decreased overall survival rates in GBM.206 The
expression of circ0072309 is positively correlated with the 5-year
survival rate in patients with liver cancer.186 In addition, some
circRNAs have been found to be significantly associated with
other clinical features in cancer. Elevated circLPAR3 levels are
markedly associated with LNM and advanced TNM stage in
esophageal cancer.171 The levels of circ0010882 and circ0023409
are positively associated with tumor size and histological grade in
gastric cancer patients.176,177 The elevated expression of cir-
cMBOAT2 has positively correlated with the Gleason score and
pathological T stage in PCa.227 These results provide an important
reference for cancer treatment.

Targeted therapies
Targeted therapy, a recent trend in cancer therapy, is emerging as
a novel therapeutic strategy.278–280 Targeted therapies signifi-
cantly enhance the efficiency of cancer therapy.281,282 CircRNAs
can positively or negatively modulate biological functions and
cancer progression through multiple signaling pathways. Cir-
cLARP4 promotes the expression of PTEN and inactivates the PI3K/
AKT pathway to suppress the progression of ESCC.173 CircPIP5K1A
sponges miR-671-5p to facilitate tumor progression by upregulat-
ing KRT80 and the PI3K/AKT pathway in gastric cancer.175

Circ0067934 facilitates cell proliferation and metastasis and
inhibits cell apoptosis in GBM by upregulating the PI3K-AKT
pathway.206 CircEPHB4 impedes HCC progression by negatively
regulating the HIF-1α/PI3K/AKT axis and the HIF-1α/ZEB1 pathway
in HCC.189 Upregulating or downregulating the expression of
circRNAs may be a feasible way to regulate tumor progression.
Silencing of circ0010882 attenuates gastric cancer cell growth and
motility in vitro.176 Knockdown of circ100876 reduces cell
proliferation, migration, and invasion and facilitates NSCLC cell
apoptosis.247 In addition, a miR-671-5p inhibitor was able to
significantly reduce the level of circPIP5K1A to inhibit the
progression of gastric cancer.175 Rapamycin, an mTOR inhibitor,
blocks the circMBOAT2/PI3K/AKT/mTOR pathway to suppress PCa
progression.227 CircHIPK3 regulates biological functions to
improve sensitivity to temozolomide through suppression of the
miR-524-5p/KIF2A-mediated PI3K/AKT pathway in glioma.199

Circ0000199 can make tumor cells sensitive to chemotherapy
via suppression of the PI3K/AKT/mTOR pathway and activation of
the miR-206/miR-613 axis in breast cancer.267 High expression of
circPVT1 enhances the sensitivity of gastric cancer cells to cisplatin
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(DDP).180 These results provide important information for the
clinical treatment of cancers.

CONCLUSIONS AND FUTURE PERSPECTIVES
CircRNAs are emerging biomarkers in cancer diagnosis and
treatment. Complex circRNA regulatory networks have important
implications in cancer research and have revolutionized our views
on cancer genesis, progression, and treatment. In terms of
circRNA-mediated cellular signaling studies, the most exciting
finding is that circRNAs can function through molecular associa-
tions with the components of classical signaling pathways. The
PI3K/AKT pathway is closely associated with the pathogenesis and
development of cancer. It can regulate cell survival and
proliferation and plays an essential role in cell migration, invasion,
and angiogenesis. The circRNA/PI3K/AKT axis has recently
attracted increasing attention. The modulating effect of tumor
cellular biological functions is of interest for researchers studying
the circRNA/PI3K/AKT axis. In terms of the circRNA/PI3K/AKT axis,
plenty of circRNAs have been extensively studied. The ubiquitous
expression and tumor specificity of circRNAs have ushered in new
opportunities for cancer diagnosis. The expression of circRNAs is
significantly associated with the clinical phenotype and survival
time, indicating that it has important guiding significance for
cancer prognostic evaluation. However, the expression level and
expression stability of circRNAs in circulating body fluids need
further study. Assessment of the expression stability of circRNAs in
circulating body fluids, including urine and blood, has vast
prospects in terms of clinical applications. In addition, considering
the aberrant expression of a large number of cancer-related
circRNAs, it is crucial to identify circRNAs related to certain types of
cancer.
CircRNAs positively or negatively regulate biological functions

in cancer development and progression via the PI3K/AKT signaling
pathway. Thus, we may control the cancer process by regulating
circRNAs in the circRNA/PI3K/AKT axis. The implementation of this
idea relies on in-depth research of pharmacologic therapies. A
promising drug must stably regulate circRNA activity and
efficiently transduce the effect, thus controlling cancer progres-
sion. This necessitates a deeper understanding of the functions
and mechanisms of circRNA related to the PI3K/AKT pathway
under physiological and pathophysiological conditions. At pre-
sent, research on the circRNA/PI3K/AKT axis is still in its infancy.
Structural and functional data for circRNAs related to PI3K/AKT
pathway remain limited. The mechanism of interactions between
circRNAs and the PI3K/AKT pathway has yet to be established.
Without detailed information on the structure and function of
circRNAs, therapeutic options based on PI3K/AKT pathway are
difficult to identify.
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