
ARTICLE OPEN

Single-cell immune profiling reveals distinct immune response
in asymptomatic COVID-19 patients
Xiang-Na Zhao1, Yue You 2,3, Xiao-Ming Cui4, Hui-Xia Gao5, Guo-Lin Wang 4, Sheng-Bo Zhang 2,3, Lin Yao4, Li-Jun Duan4,
Ka-Li Zhu4, Yu-Ling Wang5, Li Li5, Jian-Hua Lu5, Hai-Bin Wang5, Jing-Fang Fan5, Huan-Wei Zheng5, Er-Hei Dai5✉, Lu-Yi Tian 2,3✉ and
Mai-Juan Ma 4✉

While some individuals infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) present mild-to-severe disease,
many SARS-CoV-2-infected individuals are asymptomatic. We sought to identify the distinction of immune response between
asymptomatic and moderate patients. We performed single-cell transcriptome and T-cell/B-cell receptor (TCR/BCR) sequencing in
37 longitudinal collected peripheral blood mononuclear cell samples from asymptomatic, moderate, and severe patients with
healthy controls. Asymptomatic patients displayed increased CD56briCD16− natural killer (NK) cells and upregulation of interferon-
gamma in effector CD4+ and CD8+ T cells and NK cells. They showed more robust TCR clonal expansion, especially in effector CD4+

T cells, but lack strong BCR clonal expansion compared to moderate patients. Moreover, asymptomatic patients have lower
interferon-stimulated genes (ISGs) expression in general but large interpatient variability, whereas moderate patients showed
various magnitude and temporal dynamics of the ISGs expression across multiple cell populations but lower than a patient with
severe disease. Our data provide evidence of different immune signatures to SARS-CoV-2 in asymptomatic infections.
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INTRODUCTION
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2),
the causative agent of the coronavirus disease 2019 (COVID-19),
has rapidly caused a worldwide pandemic with ever-increasing
cases and COVID-19-related deaths.1 COVID-19 patient exhibit a
broad spectrum of clinical manifestations, ranging from mild or
even asymptomatic infection to severe disease or death.2 There-
fore, understanding the host immune response involved in the
disease course is of supreme importance to developing effective
therapies.
In severe COVID-19 patients, hyper-inflammation responses

referred to as cytokine storm3,4 and lymphopenia5,6 have been
considered risk factors associated with the detrimental progression
of COVID-19 patients. Elevated pro-inflammatory cytokines (e.g., IL-
1β, IL-6, and TNF-α) and inflammatory monocytes and neutrophils,
and a sharp decrease in lymphocytes have also been reported in
severe patients.3,5–12 Further, single-cell RNA sequencing (scRNA-
seq) studies in peripheral blood mononuclear cells (PBMCs) or
bronchoalveolar lavages of moderate and severe patients have
revealed that moderate disease was associated with more protective
T cell-dependent response, with exacerbated systemic inflammation
and less effect T cells in severe disease.9,13–17 Longitudinal immune
responses of moderate and severe COVID-19 patients have been
analyzed by flow cytometry,10 while unbiased longitudinal single-
cell transcriptome profiling is still missing. On the other hand, the
contribution of asymptomatic individuals to the transmission of
SARS-CoV-2 raises a significant public health concern.18 Despite the

clinical and immunological assessment of asymptomatic indivi-
duals,19 transcriptome profiles of asymptomatic individuals are
lacking, which might help us understand the nature of the
asymptomatic COVID-19 disease.
To explore characteristics that might lead to immunopathology

in asymptomatic and moderate COVID-19, we performed scRNA-
seq together with single-cell V(D)J sequencing using longitudinal
PBMCs from 16 hospitalized COVID-19 patients and three healthy
controls (HCs) to identify immunological profiles between distinct
immune phenotype and disease severity.

RESULTS
Single-cell transcriptomes profiling of PBMCs from COVID-19
patients
A total of 16 laboratory-confirmed COVID-19 patients by real-
time reverse transcription-polymerase chain reaction (rRT-PCR)
and three HCs were enrolled. The demographics and clinical
features of these subjects are shown in Table S1. Of the 16
patients, seven patients were asymptomatic (Pa), eight presented
moderate (Pm) disease, and one exhibited severe (Ps) disease.
Their ages ranged from 17 to 62 years old, and 12 of them were
male. No significant differences in age were found between
patient’s groups. A total of 37 blood samples were collected from
16 patients, and eight of 16 patients provided more than or
equal to three blood samples at different time points during
hospitalization (Fig. 1a).
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To explore the immunological changes in patients with
asymptomatic, moderate, and severe disease, we analyzed the
immune profiles of PBMCs from 16 patients and three HCs by
scRNA-seq using the 10× Chromium platform (Fig. 1a). A total of
88,374 cells were included for analysis, including 77,168 cells from

16 patients and 11,206 cells from three HCs. On average, there
were 2300 cells for each PBMCs sample (Fig. 1b). We identified 16
major cell types (Fig. 1c–e; Supplementary Fig. 1a–c), including
mucosal-associated invariant T (MAIT) cells (IL17R+), innate T cells
(TRGV9+), effector T cells (GZMK+), naive CD8+ T cells (CCR7+
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SELL+), memory CD8+ T cells (GPR183+), naive CD4+ T cells (CCR7+

SELL+), activated CD4+ T cells (IL7R+ CCR7−), proliferative T/natural
killer (NK) cells (MKI67+), NK cells (NKG7+), progenitor cells (CD34+

GATA2+), B cells (CD79A+ MS4A1+), plasma B cells (CD38+ MZB1+),
monocytes (CD14+ monocytes: LYZ+; CD16+ monocytes:
FCGR3A+), platelet (PPBP+), monocyte-derived dendritic cells
(Mono DC: CD1C+), and erythroid cells (ALAS2+). Further
comparison of the proportions of 15 cell types among PBMCs
that the proportions of T cell subsets were highly heterogeneous
among different stages in moderate and asymptomatic patients,
including activated CD4+ T cells and memory CD8+ T cells
consistently lower abundance in severe and HCs (Fig. 2a, b;
Supplementary Fig. 2a, b). We observed that one severe patient
had an increased proportion of NK cells, plasma B cells, and
platelets (Fig. 2b). There is no obvious difference in the abundance
of major cell types between asymptomatic and moderate patients,
except moderate patients had a higher proportion of plasma B
cells.

Immune profiles of T cells and NK cells in COVID-19 patients
To further characterize the T and NK subsets, we extracted the
data from T and NK cells. Fourteen cell subtypes were identified,
including four CD4+ (naïve–CCR7+, central memory–GPR183+

CCR7+, effector memory–CCR7−SELL−GZMA+, and effector–
GZMA+ GZMB+) and three CD8+ (naïve–CCR7+, central memory–
GPR183+, and effector–GZMA+ GZMB+) T cell subsets, seven innate
immune subsets (MAIT–SLC4A10+ TRAV1–2+, gamma-delta T (γδT)
cells–TRGV9+ TRDV2+, immature NK cells, iNK–KIT+, CD56briCD16−

NK cells, CD56dimCD16+NK cells, proliferative T/NK population–
MKI67+), and a previously uncharacterized Th2-like lymphoid
population (CD4−CD8A−PTGDR2+) (Fig. 3a, b, Supplementary
Fig. 3).

We next compared the abundance of each cell type across
disease conditions and stages (Fig. 3c; Supplementary Fig. S4b).
We observed a decreased proportion of effector CD8+ T cells in
asymptomatic patients compared to early-stage (<10 days post
symptom onset) of moderate patients, and asymptomatic patients
had a decreased proportion of central memory CD4+ T compared
to early-stage of moderate patients and HCs (Fig. 3c). Of interest,
the abundance of CD56briCD16− NK cells were significantly higher
in asymptomatic patients than in severe and early stage of
moderate patients, and there was an increasing trend in moderate
patients over time (Fig. 3c). In contrast, the CD56dimCD16+ NK, the
most abundant NK subset, was substantially enriched in the
severe patient. Like CD56briCD16− NK, its precursor iNK also
increased in asymptomatic patients compared to moderate
patients. These results indicated that asymptomatic patients had
distinct T and NK cell responses during infection.
Next, we sought to identify the specific signature of the NK cells

with distinct distribution in asymptomatic and severe conditions.
We found that CD56briCD16− NK cells have high expression of
XCL1, XCL2, and IFNG (Fig. 3d, f), consistent with our knowledge
that these cells are efficient cytokine producers.20 The Th2-like
lymphoid cells were TCR−CD3−CD4−CD8− but expressed Th2
markers such as PTGDR2 and GATA3; they were classified mainly as
Th2-like cells (Supplementary Fig. 5a). We also found that
TNFRSF19 is uniquely expressed in the Th2-like cells in this dataset
(Supplementary Fig. 5b). However, TNFRSF19 is absent in most
immune cells according to previous study21 and the human lung
cell atlas database.22 It is highly expressed in epithelial cells such
as ciliated cells, which express ACE2 and are considered as entry
cells of SARS-CoV-2 (Supplementary Fig. 5c).
To further investigate the difference of transcriptomes for each

cell type of T and NK cells across different conditions, we

Fig. 1 Single-cell RNA sequencing of peripheral blood cells from COVID-19 patients. a Timeline of blood sample collection in the
19 subjects (seven asymptomatic, eight moderate, one severe patient, and three healthy controls) and schematic outline of the study design.
The days were recorded based on the time after symptom onset for moderate and severe patients and the first positive RT-PCR test for SARS-
CoV-2 for asymptomatic patients. b Bar plot shows the log10 transformed cell number of each sample for each subject at different time points.
Green, orange, blue, and red represent samples collected from healthy controls, asymptomatic, moderate, and severe patients, respectively.
The same color palette was used throughout the study. c Cell type UMAP representation of all merged samples. Sixteen cell types were
identified by cluster gene signatures and color-coded. Each dot represents an individual cell. d Canonical cell markers that are used to
annotate clusters as represented in the UMAP plot. Colored according to expression levels and legend labeled in log scale. e Dot plots of
average expression and percentage of expressed cells of marker genes in each labeled cell type

Fig. 2 Differences in major cell types compositions across disease conditions. a Proportion of cell types in PBMCs of healthy controls
(HCs, n= 3), moderate (n= 8), severe (n= 1), and asymptomatic patients (n= 7). Colored according to cell type information. b Boxplots
showing the percentages of each cell type to total cell number per PBMC sample in four disease conditions (HCs, asymptomatic, moderate,
and severe) and stages. Boxes are colored according to disease conditions and stages of the moderate condition. The PBMC samples from
moderate patients were classified into 3 stages (<10 days, 10–20 days, and >20 days) based on the days after symptom onset. Boxplots
indicate the median and interquartile range (IQR); the whiskers represent 1.5 times the IQR. Each circle represents the proportion of each
PBMC sample. Two-sided Kruskal–Wallis test was used for analysis, and a p value < 0.05 is considered significant. *p < 0.05, **p < 0.01, ***p <
0.001. No asterisk indicates no statistical significance
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Fig. 3 Identification and characterization of the subpopulation of T and innate immune cells in COVID-19 patients. a UMAP of T and NK
cells by Seurat. Cell types were identified by the marker genes. Each circle represents an individual cell. A total of seven T cell subtypes and
seven innate immune cell subtypes were identified and color-coded. b Dot plot of average expression and percentage of expressed cells of
selected canonical markers in each labeled cell subtype. c Boxplot showing the proportions of cell subtypes to the number T and NK cells in
each PBMC sample in different disease conditions. Boxes are colored according to disease conditions and stages of the moderate condition.
The PBMC samples from moderate patients were classified into 3 stages (<10 days, 10–20 days, and >20 days) based on the days after
symptom onset. Boxplots indicate the median and interquartile range (IQR); the whiskers represent 1.5 times the IQR. Each circle represents
the proportion of each sample. Two-sided Kruskal–Wallis test was used for analysis, and a p value < 0.05 is considered significant. d Dot plot
showing the average expression and percentage of expressed cells of selected differentially expressed genes (DEGs) between three NK
subtypes and Th2-like subset. e Volcano plots of top DEGs between asymptomatic and healthy samples for CD56briCD16− (left) and
CD56briCD16 + (right) NK cell subtypes. Genes with a log fold change above 1 and false discovery rate (FDR, Benjamini–Hochberg) less than
0.05 were selected. f Dot plot showing the expression of IFNG on NK and effect T cells for different disease severity and stages. *p < 0.05,
**p < 0.01, ***p < 0.001. HC healthy control. No asterisk indicates no statistical significance
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performed systematic differential gene expression (DGE) analysis
(Data S1). We found distinct signatures expressed in severe
and asymptomatic patient samples in NK cells and effector T
cells (Supplementary Fig. 6a–d). IFNG was upregulated in
CD56dimCD16+ NK and CD56briCD16− NK cells in asymptomatic
conditions compared to HCs (Fig. 3d–f; Supplementary Fig. 6c, d).
We also found IFNG expression showed stage-specific expression
in moderate samples, with the highest expression at 10-20 days
after symptom onset.
To further explore the IFN-I pathway activity at the single-cell

level, we analyzed the stage-dependent expression patterns and
explored related gene sets based on both NK cells and effector
T cells of moderate patients. We identified four stage-dependent
expression patterns (Fig. 4a) and their related gene sets (Fig. 4b,
Data S2). We found upregulation of genes such as EGR1 and
NR4A1 (Data S2) in later stages as shown in cluster 3 and is
known to be induced by TCR stimulation and enhance T cell
functions.23,24 Genes expression in cluster 2 decreases with time,
and one enriched gene set contains genes downregulated with
PTEN knockdown, and PTEN was demonstrated with function

promoting type 1 interferon responses and antiviral innate
immunity.25 Meanwhile, we found that type 1 interferon (IFN-I)-
related genes, ISG15, MX1, and XAF1, expressed more severe and
moderate patients at the early stage (Fig. 4c), and a group of
widely upregulated signatures in disease states are genes in IFN-
I signaling pathway, especially in severe condition (Fig. 4d, e,
Data S3). We then summarized IFN-I pathway activities per cell
and found heterogeneous results among different patients (Fig.
4f, Supplementary Fig. 7a). Apart from HCs who show the stable
low activity of IFN-I pathway and cells from severe patients with
the highest activity on average, the moderate and asymptotic
patients have a wide spectral of IFN-I activity ranging from HCs
to severe conditions. In addition to intra-patient variability, the
IFN-I pathway activity also varies on time, decreases in later
stages in moderate patients, suggesting a recovery of disease
(Fig. 4g, Supplementary Fig. 7b). The disease progression stage
is hard to define for asymptomatic patients. However, the highly
heterogeneous IFN-I activity suggests the asymptomatic
patients that we profiled in this study were in different disease
stages.

Fig. 4 Increased IFN-1 signaling pathway in severe and early stage moderate patients. a Gene clusters generated by Mfuzz R package
based on genes’ expression pattern along the progression of the disease in moderate patients using NK cells and effector T cells. b Top gene
sets in gene set enrichment analysis for the gene in each cluster in panel (a). Gene sets are colored by log10 transformed p-values representing
genes in the overlap. c Violin plots of selected DEGs generated by comparing different conditions. HC, healthy control. d Bar plots of top ten
enriched GO terms from genes upregulated in severe conditions in CD56dimCD16+ NK cells. e The percentage of IFN-1 related genes found in
four clusters in (a). f Box plots of the IFN-1 pathway activity score calculated across patients on NK and effector T cells. Colors denote disease
conditions. g Boxplots of the IFN-1 pathway activity score for each moderate patient and summarised at each stage. Colors denote defined
disease stages
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Clonal expansion in T cells and usage of V(D)J genes COVID-19
patients
To evaluate the relationship of clonal expansion among individual
T cells and usage of V(D)J genes across different conditions, we
analyzed single-cell TCR sequencing data and reconstructed high-
quality TCR sequence in 70.5% of the T cells with various degrees
of clonal expansion. We observed that both effector CD8+ and
CD4+ T cell subsets displayed more TCR clonal expansion (Fig. 5a;
Supplementary Fig. 8a). Both asymptomatic and moderate
patients had high clonal expansion compared to the severe
patient and HCs (Fig. 5b). We performed a quantitative analysis of
TCR clonal abundance and diversity to mitigate the difference in
sample size between different conditions. The TCR expansion
decreases in moderate patients from early (<10 days) to late-stage
(>20 days), indicating recovery of the disease. We found more TCR
expansion in asymptomatic patients than moderate patients at
the early stage (Fig. 5c). We summarized the distribution of top

clone types per condition and found that most of them are COVID-
19 specific (Fig. 5d). The clustering of the CDR3 sequence showed
a similar sequence enriched in multiple patients, suggest they are
reactive to the SARS-CoV-2 virus (Supplementary Fig. 8b). The
UMAP visualization of these TCR clones showed that the most
abundant clones in asymptomatic and moderate patients have
larger clone sizes, consistent with the TCR diversity analysis. It also
highlighted the different cell populations in different conditions
that enriched for most abundant TCR clones (Fig. 5e). We found
that asymptomatic patients have significantly more CD4+ effector
T cells with the most abundant TCR clones, while most of the
abundant TCR clone types were in CD8+ effector T cells for
moderate and severe patients (Fig. 5f). We then compared the
usage of V(D)J genes across disease conditions and disease stages
of moderate patients (Supplementary Fig. 8c–e). The preferred
TRBJ gene in asymptomatic patients was TRBJ2–2, TRBJ2–1 for
moderate patients, and TRBJ2–7 for one severe patient

Fig. 5 Expanded TCR clones and selective usage of V(D)J genes. a Bar plots showing the cells from T and NK cell subtypes whether they
have TCR and their TCR clonal status. b The percentage of the clonal status of T cells with TCR. The clonal status was defined by clone size in
four disease conditions. c TCR abundance and diversity on CD4+ and CD8+ T cells across disease conditions and stages generated by
alakazam package. The 95% confidence interval is estimated via bootstrapping (B= 200). d Heatmap of log10-transformed clone sizes of top
three abundant clonotypes within each condition (not including healthy controls [HC]) across patients. e UMAP of T cells derived from PBMCs
for different conditions. Clusters are denoted by colors labeled with TCR clones with the top 5 largest clone sizes in each condition.
f Proportions of cell types that produce the top five abundant clonotypes within each condition. Color denotes cell types
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(Supplementary Fig. 8c). Collectively, the different patterns of TCR
clonal expansion and diversity and the selective usage of V(D)J
genes indicated that different immunodominant epitopes may
drive the molecular composition of T cell responses and may be
associated with SARS-CoV-2-specific infection.

Features of B cells and expansion and specific rearrangements of V
(D)J genes
We extracted single-cell B cells sequencing data and identified
three B cell subsets according to the expression of canonical B cell
markers, including naïve B cells (MS4A1+ IGHD+), memory B cells
(CD27+), and plasma B cells (MZB1+ CD38+) (Fig. 6a, b). Moderate
patients at an early stage (<10 days after symptom onset) had a
higher proportion of plasma B than HCs and asymptomatic
patients, and a declining trend of the plasma B proportion was
observed over time for the samples of moderate patients (Fig. 6c).
We further reconstructed high-quality BCR sequences in more
than 80% of the B cells using single-cell BCR sequencing data and
found asymptomatic patients displayed less BCR clonal expansion.
In contrast, an obvious BCR clonal expansion was observed in
moderate patients at the early stage but decreased over time,
suggesting humoral immune responses declined at the convales-
cent stage (Fig. 6d). The severe patient has even more clonal
expansion, suggesting a strong humoral immune response (Fig.
6d). Further analysis of the distribution of IgG, IgM, IgD, and IgA at
different disease conditions and stages revealed that asympto-
matic and moderate patients had lower IgM compared to HCs (Fig.
6e). The IgG was highly variable at the early moderate patient

sample and returned to similar levels of HCs at the late stage
(>20 days post symptom onset).
We then assessed V(D)J rearrangements of the BCR and analyzed

the usage of V(D)J genes across different disease conditions and
stages (Supplementary Fig. 9b). We found different skewing of BCR
usage in different conditions. The top two paired V–J frequencies in
asymptomatic patients were IGHV3–23/IGHJ4 and IGLV1–44/IGLJ3,
whereas IGLV1–44/IGLJ3 and IGLV2–14/IGLJ2 for moderate patients
and IGLV1–51/IGKJ3 and IGHV3–33/IGHJ4 for the severe patient
(Supplementary Fig. 9b). Collectively, increased B cell clonality from
asymptomatic to severe condition and skewed usage of the IGHV
and IGKJ genes in different disease conditions suggest that SARS-
CoV-2 infection perturbs V(D)J rearrangements of B cells.
To further investigate transcriptomic changes of B cells after SARS-

CoV-2 infection, we performed a DGE analysis comparing different
conditions in each B cell subsets (Fig. 6f). We found an increased
expression of activation maker gene CD69 in patients, regardless of
disease severity, compared to HCs. Like T and NK cells, we observed
an increased expression of IFITM1, ISG15, XAF1, STAT1, and IFI44L
involving the IFN-I signaling pathway in the severe and moderate
patients, but moderate patients displayed relative low-level expres-
sion (Fig. 6f and Supplementary Fig. 9b). By contrast, asymptomatic
patients displayed a lack or less expression of these genes.

DISCUSSION
Although the immune responses to SARS-CoV-2 infection have
been studied in patients with moderate and severe disease,13–17

Fig. 6 Subpopulation analysis of B cells. a UMAP projection of B cells. Each dot represents a single cell, colored according to cell type. b Dot
plot of canonical cell markers used to annotate clusters in the UMAP plot. c Boxplots showing the differences in percentages of each cell type
to the number of B cells comparing different disease conditions to healthy controls (HCs). Boxes are colored according to disease conditions
and stages of the moderate condition. The PBMC samples from moderate patients were classified into 3 stages (<10 days, 10–20 days, and
>20 days) based on the days after symptom onset. Boxplots indicate the median and interquartile range (IQR); the whiskers represent 1.5
times the IQR. Each circle represents the proportion of each sample. Two-sided unpaired Mann–Whitney U test was used for analysis, and a p
value < 0.05 is considered significant. d The percentage of clonal status in B cells that have BCR, across disease conditions and stages.
e Boxplots show the proportion of IgG, IgM, IgD, and IgA, comparing different disease conditions to HCs. Boxes are colored according to
disease conditions and stages of the moderate condition. The PBMC samples from moderate patients were classified into 3 stages (<10 days,
10–20 days, and >20 days) based on the days after symptom onset. Boxplots indicate the median and interquartile range (IQR); the whiskers
represent 1.5 times the IQR. Each circle represents the proportion of each sample. Two-sided Kruskal–Wallis test was used for analysis, and a p-
value < 0.05 is considered significant. f Violin plots showing the gene expression levels of selected DEGs generated genes in B cells by
comparing different conditions. *p < 0.05, **p < 0.01, ***p < 0.001. No asterisk indicates no statistical significance
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the mechanisms under asymptomatic infection of COVID-19 are
less studied. In this study, we performed scRNA-seq and V(D)J-
sequencing on longitudinal PBMCs from asymptomatic individuals
of COVID-19 and systematically compared their immunological
characteristics with moderate and severe COVID-19 patients. Our
study confirms previously published data on increased type-I
interferon (IFN-I) response26,27 and the increased plasma B cells
and decreased T subsets in severe patient,10,13–17 but not for
monocytes, which we did not observe might due to the sampling
time that only early stage severe samples.28 In addition to that, we
found that the asymptomatic condition is not just an intermediate
state between healthy and moderate but has unique immunolo-
gical features. Overall, PBMCs in asymptomatic patients had lower
IFN-I related gene expression than in severe and early-stage
moderate conditions. In contrast, moderate patients at the early
stage of infection had an increased IFN-I response, but less than
the severe condition and declined over time. However, the
heterogeneous IFN-I activity was observed among different
patients that 11 patients (4 asymptomatic and 7 moderate
patients) had IFN-I activity blow or close to the average level of
0, and the rest of the patients showed more IFN-I activity,
reflecting the heterogeneous response of IFN-I induction in
patients and even their heterogeneous pathogeneses.29 Impor-
tantly, a rapid decrease of IFN-I activity is associated with a more
rapid recovery of the disease. IFN-I has direct antiviral activity, and
their immunopathological role was also previously reported.30 The
IFN-I response induced the accumulation of pathogenic inflam-
matory monocytes–macrophages and vascular leakage, leading to
death in a BALB/c mice model of acute respiratory distress
syndrome (ARDS).31 Moreover, a delayed but considerable IFN-I
response was proposed that is critical for the development of
ARDS and increased lethality during pathogenic human corona-
virus infection.32,33 Therefore, our data suggest that early
moderate IFN-I response might effectively control viral replication
and prevent severe COVID-19.
Effector CD4+ T cells play a key role in regulating the antiviral

inflammatory response and mediating viral clearance through
direct cytotoxic effects on virus-infected cells.34 Although we
observed similar frequencies of effector CD4+ T cells among
different conditions, the effector CD4+ T cells in asymptomatic
patients had upregulated IFNG compared to other disease
conditions (Fig. 3f). Of note, a recent study has shown that the
magnitude of T cell responses to SARS-CoV-2 was similar between
asymptomatic infections and symptomatic COVID-19 patients,35

but SARS-CoV-2-specific T cells produced a higher level of IFN-γ
and IL-2 in asymptomatic patient,35 which is in line with our study.
A previous study also showed that SARS-CoV-2-specific CD4+

T cells in severe but not mild COVID-19 displayed low avidity.36 In
addition, while we observed fewer effector CD8+ T cells in
asymptomatic patients than moderate and severe patients at the
early stage of the infection, the effector CD8+ T cells in
asymptomatic patients expressed a higher level of IFNG but not
in severe patient and moderate patients until ten days post-
symptoms onset. Because most PBMC samples from asympto-
matic patients were collected <10 days after the first positive RT-
PCR testing of SARS-CoV-2, we speculated that higher expression
of IFNG in T cells plays an important role in antiviral infection,
especially during the early stage of infection. These data suggest
that early activation of effector CD4+ and CD8+ T cells expressing
a higher level of IFNG may play an important role in protecting
SARS-CoV-2 infection in asymptomatic patients.
Despite the difference in adaptive immune response, we also

identified profound differences in innate immune responses in
asymptomatic patients compared to moderate and severe
patients. Asymptomatic patients had significantly increased
CD56briCD16− NK cell fractions than moderate and severe patients
at the early stage. We found CD56briCD16− NK subsets had
upregulated cytokine-related genes such as XCL1, XCL2, and IFNG,

consistent with our knowledge that these regulatory cells act as
potent cytokine and chemokine producers. In addition to the
difference in abundance, there were significant differences in
gene expressions between asymptomatic and moderate condi-
tions, with cytokine-related genes such as IFNG upregulated in
asymptomatic conditions, but not severe patient and moderate
patients until ten days post-symptoms onset. CD56briCD16− NK
cells have been linked to virus infection. Infection of influenza A
Virus-induced NK cell hyperresponsiveness and cytokine produc-
tion, particularly in the CD56briCD16− NK subset.37 An asympto-
matic hemophiliac patient co-infected with HIV/HCV also had
increased CD56briCD16− NK cells.38 These results suggest that the
CD56briCD16− regulatory NK cells may play a critical role in
protecting SARS-CoV-2 infection in asymptomatic patients.
TCR and BCR repertoire profiling are important to reflect the

disease’s adaptive immune status and develop new therapeutics
for infectious disease. Therefore, another central part of our study
is to assess the repertoire diversity of TCR and BCR and especially
their clustering, enabling us to deduce COVID-19-relevant TCR or
BCR signatures. Of note, we found more TCR clonal expansion in
asymptomatic patients compared to moderate patients (also
highly diverse than severe patient) at the early stage and severe
patient, which is in line with previous studies that in patients with
a moderate14,39 or mild36,40 clinical course and but not patients
with a severe clinical course, T cell repertoires displayed high
clonality. Moreover, the most abundant TCR clones were observed
in CD4+ effector T cells of asymptomatic patients and CD8+

effector T cells of moderate and severe patients. These results
indicate that the effective TCR diversification on CD4 or CD8 T cells
may contribute the outcome and immune control in COVID-19.
While asymptomatic COVID-19 patients displayed more abun-

dant TCR diversity, on the contrary, they showed less BCR clonal
expansion compared to moderate and severe patients. which is in
line with the previous studies28,40,41 and are likely to be associated
with antibody-secreting B cells that produce antibodies to
neutralize the infecting pathogen.41,42 We found that patients
with different conditions shared a common IGLV1/2 and IGLJ2/3
usage pattern and IGHV3 and IGHJ4 usage. Moreover, we found a
higher proportion of IGHV3 and IGHJ4 usage in asymptomatic
patients. In agreement with our study, IGHV3 and IGHJ4 usage
were identified in clusters specific for antibody-positive individuals
with COVID-1940 and moderate to severe patients.14 Notably, a
high proportion of IGHV3 and IGHJ4 usage was also observed in
HCs.14 Previous studies have shown extensive class switching to
IgG and IgA subclasses with limited somatic hypermutation.40,43

Because our study produced few B cells (~300 cells per sample)
and a low percentage of clonal BCR, we could not perform
clustering antibody class switching, somatic hypermutation other
analyses. Despite our study and other studies that have provided a
relationship between BCR repertoire and disease infection,
detailed work on BCR repertoire is needed to reveal its role in
disease progression in asymptomatic patients.
There are several limitations to this study. One of the major

limitations is only one patient with severe COVID-19 and paucity
of later samples from the severe patient. These blood samples
from patients with severe COVID-19 are challenging to obtain
since very few newly diagnosed patients were reported in China
when our study was initiated. Although the results from one
severe patient are consistent with previous studies, it will be
essential to gather such samples further to identify the immune
characteristic between asymptomatic and severe COVID-19.
Second, because of frequent blood draws of patients during their
hospitalization for clinical lab testing, they only provide small
volume blood samples, resulting in insufficient PBMCs to detect
virus-specific T cells and B cells by flow cytometry to assess their
relationship with results of scRNA-seq.
Our data clearly show the immune profiles in asymptomatic

COVID-19 patients and highlight the difference of immune
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response toward disease progression. The specific signatures in
asymptomatic patients will increase understanding of COVID-19
disease severity and guide early prediction and therapeutics.

MATERIALS AND METHODS
Ethics statement
The study was conducted following the Declaration of Helsinki,
and the Institutional Review Board of the Academy of Military
Medical Sciences approved the study protocol (IRB number: AF/
SC-08/02.46). All patients or their surrogates provided written
informed consent.

Patients
Sixteen patients diagnosed with SARS-CoV-2 infection were
enrolled from the Fifth Hospital of Shijiazhuang from March to
April 2020. SARS-CoV-2 RNA was detected in the patient’s
nasopharyngeal swab or sputum specimens by real-time
reverse-transcriptase PCR (RT-PCR) using the SARS-CoV-2 nucleic
acid detection kit (Cat No. DA0930-DA0932, DAAN GENE Ltd.,
Guangzhou, China). Peripheral blood was collected from all
patients during hospitalization, and blood draws from patients
occurred in concert with usual care and the patient’s willingness
to avoid frequent blood sampling and unnecessary personal
protective equipment usage. The patients’ demographic, clinical
features, laboratory findings, and chest radiographs were collected
from their electronic medical records.
According to the diagnostic and treatment guidelines for SARS-

CoV-2 issued by the Chinese National Health Committee (Trail
Version 7), the disease severity was defined as asymptomatic,
moderate, and severe. Asymptomatic infection was defined as an
individual who had a positive SARS-CoV-2 by RT-PCR without any
associated clinical symptoms in the preceding 14 days and during
hospitalization. Moderate was defined according to the following
criteria: (i) fever and respiratory symptoms; (ii) radiological signs of
pneumonia. Severe was defined if satisfying at least one of the
following items: (i) breathing rate ≥30/min; (ii) pulse oximeter
oxygen saturation (SpO2) ≤ 93% at rest; (iii) ratio of the partial
pressure of arterial oxygen (PaO2) to a fraction of inspired oxygen
(FiO2) ≤ 300 mmHg (1mmHg= –0.133 kPa).

Isolation of PBMCs
PBMCs were isolated from whole blood using density gradient
centrifugation with Lymphoprep in SepMate tubes (Stemcell
Technologies) in a biosafety level 2 plus facility according to the
manufactory’s instruction. Briefly, the blood was centrifuged at
1200 × g for 10min. PBMCs were harvested and washed twice
with PBS at 400 × g for 10 min. Isolated PBMCs were frozen in cell
recovery Media containing 10% DMSO (GIBCO), supplemented
with 90% heat-inactivated fetal bovine serum, and stored liquid
nitrogen before assays analyses.

The droplet-based single-cell RNA sequencing
Single-cell suspensions at a density of 1000 cells/μl in PBS plus
0.04% bovine serum albumin were prepared for scRNA-seq using
the Chromium Single Cell 5′ Reagent version 2 kit and Chromium
Controller (10× Genomics, Pleasanton, CA), aiming for an
estimated 4000 cells per library following the manufacturer’s
instructions. Briefly, 9000 cells per reaction were loaded for gel
bead-in-emulsion (GEM) generation and barcoding. GEM-RT, post-
GEM-RT cleanup, and cDNA amplification were performed to
isolate and amplify cDNA for library construction. Libraries were
constructed using the Chromium Single Cell 5′ Reagent kit
(10×Genomics) and Gel Bead Kit, Single Cell V(D)J Enrichment
Kit, Human T Cell (1000005) and a Single Cell V(D)J Enrichment Kit,
Human B Cell (1000016) according to the manufacturer’s protocol.
Library quality and concentration were assessed according to the

manufacturer’s instructions. Libraries were sequenced on an
Illumina PE150.

Single-cell RNA-seq data processing
Reads from each sample were processed with Cell Ranger (3.0.1)
separately. Human reference genome GRCh38 and genome of
SARS-CoV-2 were merged with corresponding GTF files used to
annotate genes. The filtered matrices were then delivered into R
(3.6.2) for downstream analysis. In order to demultiplex samples
pooled into one sequencing run, we applied Souporcell (2.0)44 to
separate them by individuals. Next, we used the shared_samples.
py script in Souporcell to identify individuals. The script uses vcf
files to compare shared variations when overlapping patients
between the two runs and identifies the shared patient.
Quality control was performed using R′s scatter (1.14.6)45 to

remove cells with: (1) more than three median absolute deviations
(MADs) of the log10 read counts below the median; (2) more than
three MADs of the log10 genes detected below the median; and
(3) more than three MADs of the genes coming from mitochondria
above the median. Size factors were then considered for
calculating average counts per feature, and features with average
counts above 0 were kept. COVID-19 genes were removed in this
step as they are not detected in the data. Afterward, we used
Seurat (3.2.0)46 for data normalization and to identify highly
variable genes.

Data integration and clustering
RunFastMNN47 wrapped in Seurat was performed using the top
2000 highly variable genes to integrate data sets from each
sample. The first 30 MNN dimension reductions were applied to
construct an SNN graph and FindClusters with Louvain algorithms
using a standard Seurat pipeline. UMAP was also generated with
the first 30 MNN dimension reductions to embed the data sets
into two dimensions for visualization. Doublets labeled by
Souporcell and clusters enriched for doublets (>15%) were
removed from further analysis. We removed ribosomal and
mitochondrial genes to explore the subtypes of T/NK cells and B
cells, then performed the integration and clustering again using
the same strategies.

Cell-type annotation
To annotate each cluster, we used FindAllMarkers in Seurat to find
marker genes for each cluster and selected immune cells marker
genes. SingleR (1.0.5)48 was also applied to help interpretation with
Monaco Immune Data49 (Monaco Immune Cell Data (GSE107011))
used as reference data to annotate the Th2-like cell type. We
applied FindMarkers in Seurat to compare the innate immune
subsets that have distinct distribution in asymptomatic conditions.
We searched the expression of ACE2 and TNFRSF19 using the
human lung atlas visualization tool (https://cellxgene.cziscience.
com/d/krasnow_lab_human_lung_cell_atlas_10x-1.cxg/). The heat-
maps that present the proportions of each cell type were generated
using the proportions calculated as detailed above and are scaled
by row to be plotted on the same color scale.

DEG analysis
For subtypes of T cells, NK cells, and B cells with >200 cells, we
aggregated the counts for cells in each sample and generated
pseudobulk samples, following the data analysis workflow
specified by a previous study.50 Non-protein-coding genes and
genes related to sex were removed in the counts before being
analyzed by edgeR (3.28.1).51 glmQLFit and glmQLFTest from
edgeR were used to find marker genes between each condition.
Genes with a log fold change above 1 and FDR (Benjamini-
Hochberg) less than 0.05 were selected. Then, genes with logCPM
above five were shown in heatmaps in Fig. S6. GO analysis was
conducted on upregulated genes using topGO (3.28.1),52 and the
top 10 enriched GO terms were plotted. Mfuzz package53 was
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applied to cluster gene expression patterns on stages in moderate
patients. Cells were aggregated by stages from on CD56briCD16−

NK cells, CD56dimCD16+ NK cells, and CD4/CD8 effector T cells.
Genes with more than 25% are missing values are excluded,
normalized summed counts are standardized. We clustered the
standardized genes into 4 clusters. Genes in each cluster are then
used as identifiers to compute overlaps with C2 curated gene sets
in MsigDB.54 To calculate the percentage of IFN-1 related genes in
the clusters, genes from GO: 0034340 were used. The IFN-1 score
was calculated on CD56briCD16− NK cells, CD56dimCD16+ NK cells,
and effector T cells using genes involved in the pathway as input,
including IFIT1, IFIT2, IFIT3, IRF9, OAS3, RSAD2, USP18, IFI27, ISG15,
MX1, and XAF1. The AddModuleScore function in Seurat was used
to calculate the score.

TCR and BCR analysis
Raw fastq files were processed with the CellRanger (3.0.1) pipeline
with default settings with the reference mentioned above. For TCR
analysis, only cells with at least one TCR alpha chain (TRA) and one
TCR beta chain (TRB) were considered as detection TCR. Moreover,
each unique TRA–TRB pair was defined as a clone type. The
following analyses were based on cells with detected TCR. To
analyses the clonal abundance and diversity of cells from each
stage, we use the alakazam (1.0.2)55 package. For the clonal
abundance curve, the 95% confidence interval was estimated via
bootstrapping. For the diversity curve, special cases of the
generalized diversity index correspond to the most popular
diversity measures in ecology. At q= 0, different clones weigh
equally, regardless of sample size. As the parameter q increase
from 0 to +∞, the diversity index (D) depends less on rare clones
and more on common (abundant) ones. For BCR analysis, only
cells with at least one heavy chain (IGH) and one light chain (IGK
or IGL) were considered high-quality BCR and kept for further
analysis. Furthermore, each unique IGH-IGK/IGL pair was defined
as a clone type. A clone type was considered clonal if it is detected
in more than one cell. iSMART56 was used to perform local
alignment on CDR3 sequences for T cells and B cells separately,
and then those CDR3 sequences were clustered into antigen-
specific groups. We selected the top2 abundant CDR3 clusters
across conditions, and we calculated the proportions of patients
for each CDR3 sequence. Clustal Omega57 was used to align
CDR3 sequences and generated a guide tree. All plots were
generated using ggplot2 (3.3.1),58 and heatmaps were generated
using pheatmap (1.0.12) unless otherwise specified.

Statistical analysis
The two-tailed Kruskal–Wallis test, followed bu Dunn’s post-test
was used for multiple group comparisons. Because the data in this
has a small sample size with large intrapatient variances
contributed from both patient-specific effect and sampling time,
which is hard to align for asymptomatic patients, therefore the
samples were treated as independent. The specific statistical tests
and their resultant significance levels are also noted in each figure
legend. The R packages Seurat, ggplot2 (version 3.1.0) (Wickham,
2016), GraphPad Prism, and Adobe Illustrator were used to
generate figures. P-values were added to the plot by stat_compar-
e_means function in ggpubr (0.3.0) package.
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