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Dynamic landscape mapping of humoral immunity to SARS-
CoV-2 identifies non-structural protein antibodies associated
with the survival of critical COVID-19 patients
Linlin Cheng1, Xiaomei Zhang2, Yu Chen1, Dan Wang2, Dong Zhang1, Songxin Yan1, Hongye Wang2, Meng Xiao 1, Te Liang2,
Haolong Li1, Meng Xu2, Xin Hou1, jiayu Dai2, Xian Wu1, Mingyuan Li2, Minya Lu1, Dong Wu1, Ran Tian1, Jing Zhao1, Yan Zhang1,
Wei Cao1, Jinglan Wang1, Xiaowei Yan1, Xiang Zhou 1, Zhengyin Liu1, Yingchun Xu1, Fuchu He2✉, Yongzhe Li1✉, Xiaobo Yu 2✉ and
Shuyang Zhang1✉

A comprehensive analysis of the humoral immune response to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is
essential in understanding COVID-19 pathogenesis and developing antibody-based diagnostics and therapy. In this work, we
performed a longitudinal analysis of antibody responses to SARS-CoV-2 proteins in 104 serum samples from 49 critical COVID-19
patients using a peptide-based SARS-CoV-2 proteome microarray. Our data show that the binding epitopes of IgM and IgG
antibodies differ across SARS-CoV-2 proteins and even within the same protein. Moreover, most IgM and IgG epitopes are located
within nonstructural proteins (nsps), which are critical in inactivating the host’s innate immune response and enabling SARS-CoV-2
replication, transcription, and polyprotein processing. IgM antibodies are associated with a good prognosis and target nsp3 and
nsp5 proteases, whereas IgG antibodies are associated with high mortality and target structural proteins (Nucleocapsid, Spike,
ORF3a). The epitopes targeted by antibodies in patients with a high mortality rate were further validated using an independent
serum cohort (n= 56) and using global correlation mapping analysis with the clinical variables that are associated with COVID-19
severity. Our data provide fundamental insight into humoral immunity during SARS-CoV-2 infection. SARS-CoV-2 immunogenic
epitopes identified in this work could also help direct antibody-based COVID-19 treatment and triage patients.
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INTRODUCTION
The coronavirus disease 2019 (COVID-19) was declared a
pandemic on 11 March 2020, by the World Health Organization
(WHO).1–3 By 21 June 2021, a total of 178,423,323 cases of
infection and 3,864,419 deaths were reported. COVID-19 is
characterized by symptoms of viral pneumonia, such as fever,
fatigue, dry cough, and lymphopenia. According to a report by the
Chinese Center for Disease Control and Prevention that followed
72,314 COVID-19 patients, symptoms were mild, moderate, severe,
or critical for 40%, 40%, 15%, or 5% of cases, respectively. Patients
classified as “critical” have the most severe symptoms, with
complications that include respiratory failure, shock, and/or
multiorgan failure. Moreover, the mortality rate of critical patients
is as high as 49%.4 Thus, identifying predictive biomarkers of
survival in critical patients would be invaluable in providing the
proper treatment for this group of patients.
COVID-19 is caused by infection with the severe acute

respiratory syndrome coronavirus 2 (SARS-CoV-2). Antibodies to
SARS-CoV-2 proteins, which are generated within a week of
exposure, are important in identifying prior viral infection,

evaluating humoral immunity, and performing epidemiological
and vaccine studies.5–8 The SARS-CoV-2 genome encodes ten
proteins: an ORF1ab polyprotein, four structural proteins (envel-
ope, E; membrane, M; nucleocapsid, N; spike, S) and five accessory
proteins (ORF3a, ORF6, ORF7a, ORF8, ORF10) (Supplementary
Text).9–11 Notably, the ORF1ab polyprotein is cleaved into 15 or 16
non-structural proteins (nsps).11 The S protein plays a critical role
in viral entry and, as such, is the major target for developing
vaccines and neutralizing antibodies.12 Like the S protein, the nsps
play important roles in viral transcription, replication, and
assembly,13–16 and can elucidate immunological responses.8,17,18

Previous studies suggest that the level of SARS-CoV-2 antibodies is
associated with COVID-19 severity, where most humoral anti-
bodies target structural (N, S) and accessory (ORF3b, ORF8)
proteins.7,8,11,17,19 However, a proteome-wide analysis of humoral
immunological responses to the SARS-CoV-2 proteome in critical
COVID-19 patients has not yet been performed.
In this work, we performed a longitudinal analysis of antibodies

that are produced in response to SARS-CoV-2 infection in
104 serum samples of 49 critical COVID-19 patients across
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1–83 days post symptom onset. The spatial distribution of
antibody epitopes on SARS-CoV-2 proteins was thoroughly
analyzed by epitope mapping and structural analyses. Further-
more, the antibodies associated with the survival of critical COVID-
19 patients were identified and validated in an independent
group of serum samples.

RESULTS
SARS-CoV-2 antibody epitope detection with a peptide-based
microarray
A schematic illustration of our longitudinal analysis of SARS-CoV-2
proteome antibodies in critical COVID-19 patients is shown in Fig.
1a. All critical COVID-19 patients were diagnosed according to the
Diagnosis and Management Plan of Pneumonia with New
Coronavirus Infection (trial version 7) (National Health Commission
& State Administration of Traditional Chinese Medicine; 3 March
2020) (Fig. 1b, Supplementary Tables 1 and 2). The SARS-COV-2
proteome microarray was printed using a tiled library of 966
peptides representing the wild-type sequence (Wuhan-Hu-1,
GenBank: MN908947.3), in which each peptide was 15 amino
acids long with a 5 amino acid overlap (Supplementary Table 3).
Full-length recombinant N and E proteins and five S truncated
recombinant proteins were also printed.11 All spots were printed
in duplicate. After patient serological IgM and IgG antibodies
bound to the peptide or protein spots on the microarray,
fluorescently conjugated anti-human IgM or IgG detection
antibodies were added. The fluorescent signal, proportional to
the amount of patient antibody bound to the array, was measured
using a compatible laser scanner (Supplementary Fig. 1).
The SARS-CoV-2 proteome microarray detects antibodies with

high reproducibility, with intra- and inter-array correlations of 0.99
and 0.99, respectively (Fig. 1c). Antibody binding in a clinical
cohort of 104 serum samples from 49 critical COVID-19 patients
was assessed with the SARS-CoV-2 proteome microarray (Supple-
mentary Table 1). Representative array images of antibody
detection using serum from a critical COVID-19 patient are shown
in Fig. 1d. As expected, the number of IgM antibody signals
decreased while the number of IgG antibody signals increased
between 18 and 38 days post symptom onset. These results
support the use of our microarray to detect SARS-CoV-2 antibodies
in COVID-19 patients.

Dynamic landscapes of humoral immunological responses to
SARS-CoV-2 proteins
The longitudinal changes of antibody responses to the SARS-CoV-
2 proteome in critical COVID-19 patients 1–83 days post symptom
onset are illustrated in Fig. 2a. IgM and IgG antibodies were
generated to most SARS-CoV-2 proteins throughout this time
span. While IgM antibodies preferentially bound to ORF1ab-
derived nsps, the IgG antibodies primarily targeted N, S, and two
accessory proteins, ORF3a and ORF8 (Fig. 2a).
One hundred and eighteen (118) IgM and sixty-nine (69) IgG

antigenic epitopes with a z-score higher than 1.96 (95% confidence
interval) in at least three serum samples were identified as “hits”
using sequence alignment as previously described (Fig. 2b).11,20 We
then confirmed that 91.7% (11/12) and 60% (3/5) of these epitopes
were associated with disease severity using VirScan and peptide-
based ELISA, respectively (Fig. 2c).17,21 Moreover, 66.7% (4/6) of the
immunodominant epitopes were previously identified in a COVID-
19 convalescent population (Fig. 2c).22 The peptide epitopes
identified in our study constitute the largest database of IgM and
IgG antibody epitopes in critical COVID-19 patients to date (Fig. 2c,
Supplementary Tables 4 and 5). These data, in conjunction with
work from previous studies, indicate that antibodies produced in
more severe COVID-19 cases target a larger breadth of binding
epitopes than less severe cases (Supplementary Tables 4 and 5,
Supplementary Figs. 2–3).11,17,23–28

Among the proteins encoded by the SARS-CoV-2 genome, nsp3
and nsp12 had the largest number of IgM epitopes (23) (Fig. 2d,
Supplementary Table 4) while the nsp3 and S proteins had the
largest number of IgG epitopes (10) (Fig. 2d, Supplementary Table
5). We further defined the peptide-based immunogenicity (PBI) for
all SARS-CoV-2 proteins by calculating the percentage (%) of the
sum total length of the IgM or IgG epitopes relative to the full-
length of the protein (Figs. 3a and b). The results show that nsp12
had the strongest IgM antibody PBI (15.56%) (Fig. 3a). The N
protein had the strongest IgG antibody PBI (29.83%) (Fig. 3b).
Notably, no IgM or IgG antibodies bound to ORF6- or E-related
peptides in this study; as such, these proteins were assigned as
non-immunogenic proteins.

Structural analyses of antibody epitopes on SARS-CoV-2 nsps
The structural analyses of the antibody epitopes on the SARS-CoV-
2 structural and accessory proteins are shown in Supplementary
Figs. 4–7, 16–20, and Supplementary Table 6. The spatiotemporal
resolution of antibody epitopes to S and N, two proteins that have
been previously well-characterized, are shown in Supplementary
Figs. 4–7. Notably, the locations of all antibody epitopes identified
in this study do not overlap with amino acids that are known to be
glycosylated (Supplementary Fig. 8).29 Since the peptide array
identifies linear binding epitopes, our data indicate that linear
epitopes may not be glycosylated in vivo.
The SARS-CoV-2 nsps are essential to viral invasion, transcrip-

tion, and replication.14,15,30 The systematic profiling of antibody
epitopes within SARS-CoV-2 nsps proteins would help understand
the adaptive immune response to COVID-19 and may help identify
targets for generating antibodies to treat COVID-19 (Figs. 3–6,
Supplementary Figs. 9–15).31 Nsp1 is a major virulence factor that
inhibits the translation of host messenger RNA (mRNA) by binding
to the ribosomal mRNA channel through its C-terminus.32,33 Our
data identified two IgG epitopes within nsp1 (nsp1_116-130,
nsp1_156-170) (Fig. 3c, Supplementary Table 5). One of these
epitopes (nsp1_156-170) at the C-terminus contains residues K164
and H165, which are necessary for the nsp1 binding to the
ribosome. The epitope also is located within two C-terminal
helices (residues 153–160 and 166–178) that interact with proteins
involved translation initiation (i.e., uS5, Us3, h18).32,34 Antibody
binding of this epitope may therefore enable host protein
translation (Fig. 3d).33,34

Nsp3 is a large, multidomain protein that includes an ADP-
ribose phosphatase domain (ADRP) and a papain-like protease
domain (PLpro).35,36 The ADRP domain binds ADP ribose and
interferes with the host immune response by removing ADP
ribose from ADP-ribosylated proteins or RNA.37 The PLpro is a
protease that is essential in producing a functional replicase
complex that enables viral replication. In this work, 23 IgM
epitopes and 10 IgG epitopes to nsp3 were identified (Figs. 2d, 4a,
Supplementary Tables 4 and 5). An epitope targeted by both IgM
and IgG antibodies (nsp3_248-252) is located within the β2–α2
(K248-V253) loops of the ADRP domain that binds ADP ribose (Fig.
4b). The IgM and IgG epitope (nsp3_828-842) that contains a
catalytically important residue, W838, is located within the PLpro
domain while the epitope (nsp3_968-972) is located within the
Zinc binding site of PLpro and contains two of the four important
zinc finger residues, C969 and C971 (Fig. 4c).
The nsp5 protein is also known as the 3C-like protease (3CLpro),

which mediates the cleavage and subsequent activation of
polyproteins involved in viral replication.38 As such, it has become
a target-of-interest for COVID-19 therapy.39 We identified three
IgM epitopes (nsp5_3-7, nsp5_103-107, nsp5_123-127) and one
IgG epitope (nsp5_93-97) to nsp5 (Fig. 4d, Supplementary Tables 4
and 5). One epitope (nsp5_3-7) is located within the N-terminal
seven residues (“N finger”), which is necessary for nsp5 homo-
dimerization.39 Importantly, the dimer is the catalytically active
form of nsp5, while the monomer is mostly inactive.39 Two
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epitopes (nsp5_3-7, nsp5_123-127) are located at the dimerization
interface of protomer A and B (Fig. 4e). Antibodies that target
these sites may inhibit nsp5 activation. Finally, two epitopes
(nsp5_93-97, nsp5_103-107) are located within domain I and
domain II, respectively (Fig. 4e).
The SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) is

comprised of nsp12 and two accessory subunits, nsp7 and nsp8,
which are used for the replication of the viral genome and
transcription of viral genes.15 In this study, nsp12 had the maximal
number of IgM epitopes, followed by nsp8 and nsp7 (Fig. 5a–c).
The majority of the identified epitopes are distributed on the
surface of the RdRp complex (Fig. 5d and i). Although two IgM
epitopes (nsp8_34-38, nsp8_54-58) of nsp8 are located on the
outside of the RdRp complex, four of the residues (K36, A54, R57,
K58) interact with viral RNA (Fig. 5e).15 Two IgM epitopes
(nsp12_594-608, nsp12_914-918) to the nsp12 protein are located
within the Palm and Thumb domains while two IgM epitopes
(nsp12_504-508, nsp12_574-578) are located within the Fingers
domain (Fig. 5f, g). All of these epitopes come into contact with
viral RNA. Two other IgM epitopes (nsp12_74-78, nsp12_214-218)
are located within the N-terminal nidovirus RdRp-associated
nucleotidyltransferase (NiRAN) domain that binds ADP-
Mg2+ through three residues: H75, G214, and D218 (Fig. 5h). As
for IgG epitopes, three epitopes (nsp12_504-508, nsp12_554-558,
nsp12_594-598) within the Fingers domain bind to RNA through
the residues N507, V557, and Y595 (Fig. 5j).15 Similarly, one IgG
epitope (nsp12_74-78) is located within the NiRAN domain, which
binds ADP-Mg2+ through the residue H75 (Fig. 5k).15

Nsp10 and nsp16 form a nsp10/nsp16 2′-O-methylase complex
that catalyzes the methylation of the penultimate nucleotide of
the viral RNA cap at the ribose 2′-O position. The process is used to
mimic cellular mRNAs and prevent the recognition of viral RNAs
by the host immune system.40 The immunogenicity of nsp10 and
nsp16 was low in this study, with only 5 and 3 epitopes identified,
respectively (Fig. 2d, Fig. 6a and b). However, structural analyses
indicated that the IgM epitope (nsp10_83-87) is located within the
zinc binding site (Fig. 6c) while the IgG epitope (nsp10_93-97) is
located within the interaction site of nsp10 and nsp16 (Fig. 6d).
The antibodies to these two epitopes might inhibit zinc binding,
the stabilized conformation of nsp10, and the formation of the
nsp10/nsp16 complex, thus enabling the recognition of viral RNA
by the immune system.41

SARS-CoV-2 antibodies are associated with the COVID-19 survival
To identify the antibody epitopes associated with COVID-19
prognosis, we compared the epitopes between critical COVID-19
patients who survived and did not survive. Forty-eight (21 IgM, 27
IgG) immunogenic peptides were identified by epitope mapping
with a p-value≦0.05 and z-score > 1.96 in ≥3 serum samples (Fig.
7a, Supplementary Table 7). Due to peptide overlap, 45 of these
peptides were unique, including 21 IgM epitopes and 24 IgG
epitopes (Fig. 7b). No peptide epitope was targeted by both IgM
and IgG antibodies.
Notably, the IgM and IgG epitopes associated with survival are

mainly within the nsp3 and nsp5 proteins (Fig. 7b), whereas the
IgM and IgG epitopes associated with non-survival are within the
RdRp and structural proteins (S, ORF3a, N), respectively (Fig. 7b).
To validate these biomarker candidates, we screened the serum

from an independent “validation” cohort containing 56 serum
samples from 11 COVID-19 patients who survived and 11 patients
who did not (Supplementary Table 2). We then performed
statistical analyses using the same criteria as described above.
Five (5) peptide epitopes significantly associated with COVID-19
mortality in the discovery cohort were also observed in the
validation cohort (p value ≤ 0.05; z-score >1.96 in ≥3 serum
samples), including IgM antibodies to nsp3_1918-1922 and IgG
antibodies to nsp2_446-450, ORF3a_176-180, ORF3a_216-220, and
N_226-230 (Fig. 7c).

We further performed the Kaplan-Meier survival analyses of
SARS-CoV-2 antibodies, and identified 3 SARS-CoV-2 antibody
epitopes as potential risk factors to COVID-19 survival (Fig. 7d).
These antibody epitopes are IgG-N_226-230 (HR 4.214, 95% CI
7.147–2.485, p < 0.001), IgM-nsp3_1918-1922 (HR 0.394, 95% CI
0.658–0.236, p < 0.001), and IgG-nsp2_446-450 (HR 0.397, 95%
CI0.657–0.24, p < 0.001) (Supplementary Table 7, Supplementary
text). Notably, the increase of antibodies to two epitopes on nsps
proteins (nsp3_1918-1922, nsp2_446-450) indicates longer survi-
val, whereas the increase of antibodies to an N protein epitope
(N_226-230) is associated with a poor prognosis (Fig. 7d). All these
results demonstrate that SARS-CoV-2 antibodies may serve as
potential risk factors of COVID-19 mortality and should be
investigated in a larger independent cohort in the future.

Global correlation mapping of SARS-CoV-2 antibodies and clinical
variables
A global correlation analysis was performed to determine whether
clinical variables are associated with SARS-CoV-2 antibodies in
critical COVID-19 patients (Supplementary Tables 8 and 9). After
correlating all variables with each other and performing hierarch-
ical clustering, four global correlation maps were constructed
containing 39,204 (survival, IgM); 39,204 (non-survival, IgM);
22,500 (survival, IgG); and 22,500 (non-survival, IgG) Pearson
correlation coefficients (Fig. 8a and Supplementary Figs. 21–24).
Overall, the IgM and IgG global correlation map profiles were

different. However, the largest cluster (C1) in both maps include
antibodies to ORF1ab (Supplementary Fig. 25). The clinical
variables that clustered together as the C2 cluster of the IgM-
survival group correlation map include coagulation [D-dimer,
active partial thromboplastin time (APTT), prothrombin time (PT),
international normalized ratio (INR), mean platelet volume (MPV),
platelet-large cell ratio (P_LCR)], liver and kidney function [lactate
dehydrogenase (LDH), indirect bilirubin (IBIL), total bilirubin (TBIL),
direct bilirubin (DBIL), creatinine (CR), uric acid (UA), Urea,
N-terminal pro b-type natriuretic peptide (NT-proBNP)], heart
function [cTn1, myoglobin (Mb), creatine kinase-MB (CKMB)], and
inflammation [neutrophil (NEUT), the percentage of neutrophils
(NEUTp), C-reactive protein (CRP) and white blood cell (WBC)]. The
different clinical variables observed in our study may reflect the
involvement of multiple organs and systems during COVID-19
infection of critical COVID-19 patients.42 However, the inflamma-
tion variables (NEUT, NEUTp, CRP) separated from the C2 cluster in
the non-survival group. The remaining variables (coagulation, liver
and kidney function, heart function) clustered with IgM antibodies
to seven ORF1ab peptides (Supplementary Fig. 26).
The IgG correlation map representing data from patients who

survived COVID-19 also showed that some coagulation variables
[D-dimer, fibrinogen (FG)] clustered with liver function [LDH,
alanine aminotransferase (ALT), aspartate aminotransferase (AST),
alkaline phosphatase (ALP), gamma-glutamyl transferase (GGT)]
and inflammation [high-sensitivity C-reactive protein (hs_CRP),
WBC, NEUTp, NEUT]. In the non-survival group, however, the
clinical variables of coagulation (D-dimer) and inflammation
[(WBC, NEUT, NEUTp, basophil (BASO), percentage of basophils
(BASOp)] associated with higher COVID-19 mortality exclusively
clustered with IgG antibodies targeting peptides from structural
(N, S) and accessory (ORF3a, ORF7a, ORF10) proteins (Fig. 8b).
These results further demonstrate the association between
antibody epitopes within structural proteins and COVID-19
patients with a high mortality rate (Fig. 7).

DISCUSSION
Previous studies have indicated that the immune responses in
critical COVID-19 patients might differ from patients classified as
asymptomatic, mild, moderate, or severe (Supplementary Tables 4
and 5, Supplementary Figs. 2–3).11,17,23–28 In this work, we
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comprehensively analyzed the humoral immune response to
SARS-CoV-2 in critical COVID-19 patients for the first time at amino
acid resolution using a SARS-CoV-2 proteome microarray (Fig. 1a).
We further determined the association between antibody binding
epitopes and COVID-19 survival.
Our data show that the humoral response to the SARS-CoV-2

proteome is dynamic (Fig. 2) and target unique epitopes (Fig. 3a).
The nsps generated from the ORF1ab polyprotein have the largest
number of epitopes that are targeted by both IgM (84.7%, 100/
118) and IgG (58.0%, 40/69) antibodies (Fig. 2d). While the IgM
antibodies targeted more epitopes to nsps than IgG antibodies,
the IgG antibodies targeted epitopes within the structural (N, S)

and accessory (ORF3a, ORF8) proteins (Figs. 2a, d, 3a, b).
Furthermore, the IgM- and IgG-specific epitopes were different,
demonstrating the different mechanisms used for IgM and IgG
antibody production (Supplementary Fig. 6a, red arrow).43

Notably, we previously identified three IgM epitopes (S_816-820,
ORF3a_136-140, N_206-210) and one IgG epitope (S_816-820) as
potential early diagnostic biomarkers of COVID-19 infection.11

Structural analyses indicated that most immunogenic epitopes
tend to be located on the surface of SARS-CoV-2 proteins (Figs. 3–
6, Supplementary Figs. 4–7, 12–13, 15, 17, 19). These data make
sense since amino acids at the surface of SARS-CoV-2 proteins are
more exposed for detection by the adaptive immune response.
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Many of the IgM and IgG epitopes identified in this current study
include residues that are critical for nsps to maintain their
functions (Figs. 3d, 4–6). Thus, the host immune response may
defend against SARS-CoV-2 infection by generating antibodies
that inhibit viral invasion (S), RNA protection (nsp10/nsp16 2′-O-

methylase complex), replication and transcription (RdRp), poly-
protein processing (nsp3 PLpro domain, nsp5 proteases) while
also helping to activate the host’s innate immunity (nsp1, nsp3
ADRP domain) (Figs. 3–6, Supplementary Figs. 4–5).31,44,45 The
hypothesis can be supported by the nanobody that targets the
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nsp9 of the porcine reproductive and respiratory syndrome virus
(PRRSV), which showed antiviral activity by inhibiting viral genome
replication and transcription.46,47

Nanobodies, which are comprised of the antibody binding
fragment of the heavy chain (VHH), have been recently investigated
as diagnostic and therapeutic tools for cancer, autoimmune, psoriasis
and infectious diseases.48–53 Their advantages include high affinity
and specificity, small size, thermostability, ability to penetrate deep
tissue, they are easy to engineer.54–57 Several nanobody candidates
have entered clinical trials, including an anti-HER2 nanobody for
detection of HER2 expression in breast cancer ([131I]-SGMIB antiHER2
VHH1),51 a nanobody targeting IL-6 in rheumatoid arthritis (ALX-
0061),58 and a trivalent nanobody that neutralizes respiratory
syncytial virus lower respiratory tract infection (ALX-0171).59 The
nanobody, caplacizumab, treats acquired thrombotic thrombocyto-
penic purpura,52 and was the first nanobody to be approved by the
U.S. Food and Drug Administration (FDA) in 2019. The use of
nanobodies to fight against the spread of SARS-CoV-2 has also been
explored. Two specific nanobodies, Nb91-hFc and Nb3-hFc, demon-
strated antiviral activity by neutralizing SARS-CoV-2 pseudoviruses
in vitro.60 Another nanobody produced by a naïve llama single-
domain antibody library and PCR-based maturation showed
neutralizing activity against live SARS-CoV-2.61 Our data may help
direct the development of nanobodies targeting nsps for COVID-19
therapy.31,44,45,62

SARS-CoV-2 antibodies have been previously associated with
COVID-19 severity.5,7,63 In this work, we identified 45 immunogenic
epitopes indicative of COVID-19 prognosis. Antibodies associated
with increased survival targeted nsp3 and nsp5 proteases, whereas
IgG antibodies associated with increased mortality targeted structural
proteins (N, S, ORF3a) (Figs. 7b, 8). Furthermore, two potential nsps
antibody biomarkers (IgM, nsp3_1918-1922; IgG, nsp2_446-450) of
critical COVID-19 patient prognosis were validated in an independent
patient cohort (Fig. 7). While it is still unclear why antibodies to nsps
could be associated with the survival of COVID-19 patients, the nsps
are involved in critical steps of viral infection, including SARS-CoV-2
RNA protection, replication, and transcription, polyprotein procession,
and in-activation of the host innate immunity. Thus, the generation
of antibodies to nsps may be the immune system’s way to defend
against COVID-19. Further investigation is warranted. Altogether,
these results indicate that the immune response may use different
approaches to fight SARS-CoV-2 infection.
There are several limitations in this study. First, the number of

clinical serum samples in this study is limited, and the results should
be validated in a large different cohort in the future. Second, some
native SARS-CoV-2 epitopes identified by the immune system may
not be detected with our peptide-based array, such as conforma-
tional or post-translational modifications.17,29,64 Finally, some anti-
body epitopes detected by other methods, such as VirScan, were not
identified in this work. Possible reasons for this discrepancy may
include the fact different clinical cohorts, technologies, assay
parameters, and selection thresholds were employed.17,23–28

CONCLUSION
We mapped the dynamic epitope landscape of humoral
antibodies to the SARS-CoV-2 proteome in critical COVID-19
patients. Our data revealed IgM and IgG antibody signatures that
are associated with patient survival. Altogether, our data provide
fundamental insights into the longitudinal humoral immune
response to SARS-CoV-2 infection and a valuable resource to the
COVID-19 scientific community.

MATERIALS AND METHODS
Clinical sample
Seventy-one (71) COVID-19 patients classified as “critical” were
included in this study between February and April 2020. All

patients were recruited from an intensive care unit (ICU) in the
Sino-French New City Branch of Tongji Hospital in Wuhan, China,
which was managed by a multidisciplinary team from Peking
Union Medical College Hospital (PUMCH).
COVID-19 patient diagnosis and classification were determined

according to the Chinese Recommendations for Diagnosis and
Treatment of Novel Coronavirus Infection (trial version 7).65

Patients classified as critical cases had any of the following
features at the time of, or after, admission: (1) respiratory failure
and require mechanical ventilation; (2) shock incidence; or (3)
admission to ICU with other organ failure. All critical patients were
divided into either the non-survival group or the survival group.
The demographic features, comorbidities, symptoms and signs,
laboratory information, treatment, and outcome of the patients
were collected from electronic medical records at the time of
admission (Supplementary Tables 1 and 2). All serum samples
were centrifuged at 12,000 rpm for 10min at 4 °C. The study was
approved by the Research Ethics Commission of PUMCH (ZS-2303)
and the requirement for informed consent was waived by the
Ethics Commission.

Preparation of the SARS-CoV-2 proteome microarray
The SARS-CoV-2 proteome microarray containing 966 tiled
peptides, full-length N, full-length E, and truncated S proteins
were prepared as previously described.11 Briefly, the peptide
sequences were derived from the SARS-CoV-2 isolate Wuhan-Hu-1
(GenBank: MN908947.3), in which each peptide was 15 amino
acids long with a 5 amino acid overlap. All peptides were labeled
at the C-terminus with biotin and synthesized by either Guoping
Pharmaceutical Company (Anhui, China) or China Peptides
(Shanghai, China). All SARS-CoV-2 N, E, and S proteins were
purchased from Sino Biological, Inc. (Beijing, China). The peptides
and proteins were printed onto a three-dimensional (3D) modified
slide surface (Capital Biochip Corp, Beijing, China) in parallel and in
duplicate. Negative controls included phosphate-buffered saline
(PBS), bovine serum albumin (BSA, 100 μg/mL) (Sigma-Aldrich,
MO, USA), and hemagglutinin (HA) peptides (500 μg/mL) (China
Peptides, Shanghai, China). Positive controls included biotinylated
BSA (100 μg/mL), human IgG and IgM (10 μg/mL), and Polio
peptides (500 μg/mL) (China Peptides, Shanghai, China). The
peptide microarrays were stored at −20 °C until ready to use.

Detection of serological antibodies in COVID-19 patients using a
SARS-CoV-2 proteome microarray
The SARS-CoV-2 proteome array described above was assembled
in an incubation tray and then blocked with 5% (w/v) milk in 1×
PBS with 0.05% (v/v) Tween-20 (T) for 10min at room temperature.
After washing with PBST three times, the resulting array was
incubated with 100-fold diluted serum in 5% (w/v) milk in PBST for
30min at room temperature with gentle shaking. After washing
again, the array was then incubated for 30min with a mixture
containing Cy3 Affinipure donkey anti-human IgG (H+ L) and
Alexa fluor 647 Affinipure goat anti-human IgM FC5µ antibody
(Jackson ImmunoResearch, USA) (2 μg/mL). Finally, the array was
washed with PBST buffer, dissembled from the tray, and dried via
centrifugation for 2min at 2000 rpm. The array was scanned with a
GenePix 4300 A microarray scanner (Molecular Devices, Sunnyvale,
CA, USA), and signals extracted using GenePix Pro7 software
(Molecular Devices, Sunnyvale, CA, USA). These experiments were
performed in a biosafety level 3 (BSL3) laboratory.

Structural analyses of immunogenic epitopes
The Protein Data Bank (PDB) files were first downloaded from the
structure databases of NCBI (https://www.ncbi.nlm.nih.gov/
structure/?term=). The software VMD 1.9.4 was then used to
perform the 3D structural analyses of immunogenic epitopes of
the viral proteins. Different proteins in the complex or different
domains within one protein were annotated with different
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“ColorID” and with the drawing method of “Ribbons”. The
immunogenic epitopes were annotated by coloring method of
“ColorID” and the drawing method of “CPK” style.

Statistical analysis
The median of continuous variables (interquartile ranges, IQR)
were compared with the t-test or Mann–Whitney U test;
categorical variables were expressed as a percentage and
compared by a Chi-squared test or Fisher’s exact test between
non-survivors and survivors (Supplementary Tables 1 and 2). R
version 3.5.2 was used to perform the statistical analyses.
The raw data for each peptide and protein on the array were

normalized to the z-score. The reactive peptides were defined as
those with p-value < 0.05 and a z-score >1.96 in ≥3 serum samples.
For the differential analysis of each peptide or protein, the
difference of the mean z-score between the survival and non-
survival groups was determined with a t-test. A p-value < 0.05 was
considered as statistically significant. Epitopes with a z-score
difference between survival and non-survival groups >0 were
considered to be related to non-survival, while z-score difference
<0 were considered to be related to survival.
The survival analysis was implemented with the R package

survminer. The hierarchical clustering analysis was implemented
and plotted with the R package pheatmap. The correlation
analysis for the immunogenic peptides and the clinic indicators
was implemented and plotted with the R package corrplot.
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