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Targeting ubiquitin signaling for cancer immunotherapy
Xiaofei Zhou 1 and Shao-Cong Sun 1,2

Cancer immunotherapy has become an attractive approach of cancer treatment with tremendous success in treating various
advanced malignancies. The development and clinical application of immune checkpoint inhibitors represent one of the most
extraordinary accomplishments in cancer immunotherapy. In addition, considerable progress is being made in understanding the
mechanism of antitumor immunity and characterizing novel targets for developing additional therapeutic approaches. One active
area of investigation is protein ubiquitination, a post-translational mechanism of protein modification that regulates the function of
diverse immune cells in antitumor immunity. Accumulating studies suggest that E3 ubiquitin ligases and deubiquitinases form a
family of potential targets to be exploited for enhancing antitumor immunity in cancer immunotherapy.
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INTRODUCTION
Targeted therapy and immunotherapy are two advanced strate-
gies of cancer treatment.1 Strategies in targeted therapy are based
on cell-autonomous mechanisms of tumor growth and survival to
directly target tumor cells. While these methods generate clinical
responses in most cancer patients carrying the specific genetic
mutations, they often lack durability due to acquisition of
resistance by tumor cells.1 Immunotherapy does not directly
target tumor cells but rather acts through mobilization of patients’
own immune system to attack the tumors. A major advantage of
immunotherapy is the possible generation of long-lasting
antitumor effects in addition to relatively minor side effects.2 In
particular, therapies based on immune checkpoint inhibitors (ICIs),
monoclonal antibodies targeting the T cell coinhibitory receptors
cytotoxic T-lymphocyte-associated protein 4 (CTLA4) and pro-
grammed cell death protein 1 (PD1), have revolutionized cancer
treatments.2 However, since the response rate of many types of
cancers to single ICI therapies is still low, extensive efforts are
being made to develop combination strategies and characterize
new therapeutic targets, such as the costimulatory receptors of
T cells. In addition, targeting intracellular signaling molecules
provides an additional opportunity for improving antitumor
immunity.
Ubiquitination has become a well-recognized signaling mechan-

ism that regulates diverse aspects of immune system functions.
Ubiquitination is a posttranslational mechanism of protein modifica-
tion involved in diverse biological processes, including proteasomal
protein degradation, receptor endocytosis, DNA repair, gene
transcription, kinase activation, protein-protein interaction and
assembly of signaling complexes.3 Ubiquitination involves covalent
conjugation of monoubiquitin or polyubiquitin chains onto lysine (K)
resides of target proteins, which is catalyzed by sequential actions of
ubiquitin-activating (E1), ubiquitin-conjugating (E2) and ubiquitin-
ligating (E3) enzymes.4 Polyubiquitin chain formation involves
connection of ubiquitin molecules via different internal K residues
or the N-terminal methionine (M1) residue, leading to generation of

a large variety of ubiquitin chains with distinct functions.5 For
example, K48-linked ubiquitin chains target proteins to the
proteasome for degradation, whereas K63-linked and M1-linked
(also called linear) ubiquitin chains are best known for mediating
protein-protein interaction and enzymatic activation in signal
transduction. The process of protein ubiquitination is counteracted
by deubiquitinases (DUBs), a large family of proteases that cleaves
ubiquitin chains.3 Mammalian cells express more than 600 E3 ligases
and about 100 DUBs, which display substrate specificities and
regulate specific cellular functions.3,5 An increasing number of E3s
and DUBs have been identified as important regulators of immune
responses, providing exciting opportunities for developing novel
drugs for cancer immunotherapy. In this review, we will discuss
recent studies regarding the roles of ubiquitination in regulating
immune cell functions and their potential in cancer immunity.

UBIQUITIN REGULATION OF DENDRITIC CELL FUNCTIONS
Dendritic cells (DCs) are professional antigen-presenting cells
(APCs) that mediate T cell activation and play a vital role in
immune responses against infections and cancer.6 In tumor
microenvironment, DCs uptake antigens released from dying
tumor cells and migrate to draining lymph nodes, where DCs
present the tumor antigens to the TCR of tumor-specific T cells,
triggering T cell activation and differentiation, and the generated
effector T cells traffic to the tumors to mediate tumor cell
destruction.7 Among the different DC subsets, conventional DCs
(cDCs) are specialized in antigen presentation for T cell activation,
and the cDCs can be further divided into type 1 cDC (cDC1) and
type 2 cDC (cDC2) subsets characterized by expression of CD8α
and CD11b, respectively.8 The cDC1 subset is particularly efficient
in presenting cancer antigens to CD8 T cells for mediating
anticancer immunity. Understanding the mechanisms that reg-
ulate DC functions is crucial for rational design of cancer vaccines
and other therapeutic agents to improve the efficacy of cancer
immunotherapy.6,9
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Antigen processing and presentation form an integral part of
DC functions, which involves processing of endogenous proteins
and internalized exogenous proteins into small peptides and
presentation of the peptide antigens by major histocompatibility
complex (MHC) molecules.10 MHC class I (MHC I) typically presents
peptides generated through proteasomal degradation of endo-
genously synthesized cytosolic proteins. However, MHC I in
professional APCs, particularly DCs, can also present peptides
from internalized exogenous proteins via a process known as
cross-presentation, which is crucial for CD8 T cell responses
against infections and tumorigenesis.11,12 In this process, the
exogenous proteins are either transported from the endosomal
vesicles into the cytosol for proteasomal processing or directly
processed within the endosomal compartments. MHC class II
(MHC II) present peptides derived from lysosomal degradation of
extracellular proteins.10 The antigens presented by MHC I and II
are recognized by the TCR of CD8 and CD4 T cells, respectively. In
response to infections or tumorigenesis, DCs undergo a process of
maturation, involving upregulation of costimulatory molecules
and chemokine receptors, which is required for their migration to
the draining lymphoid organs and function in T cell priming.10

Ubiquitination plays a crucial role in regulating both antigen
processing and maturation of DCs, highlighting new opportunities
for DC manipulations in cancer immunotherapy.

ANTIGEN PROCESSING AND PRESENTATION
The involvement of ubiquitination in MHC I-restricted antigen
processing was initially suggested by the finding that fusion of viral
proteins with ubiquitin enhances antigen presentation to CD8
T cells.13 A more direct evidence came from a study using cells with
a temperature-sensitive defect in ubiquitin conjugation.14 Similarly,
overexpression of a dominant-negative ubiquitin mutant lacking all
of the lysine residues in mammalian cells abrogates polyubiqui-
tination and potently inhibits MHC I-restricted processing of
endoplasmic reticulum (ER)-targeted proteins.15 Accumulating
evidence suggests that MHC I-restricted processing of exogenous
proteins for cross-presentation involves ER-associated degradation
(ERAD),16–19 a mechanism mediating retrotranslocation of mis-
folded proteins from the ER back to the cytoplasm for proteasomal
degradation.20 ERAD also mediates processing of extracellular
proteins involved in antigen cross-presentation.19 Thus,
approaches to enhance ER entry of protein antigens, such as
Grp170 chaperone-based vaccine adjuvant system, improve the
efficiency of cross-presentation and induction of CD8 T cell
responses in cancer immunotherapy.19,21

Ubiquitination has a vital role in ERAD-dependent protein
processing. It is thought that ubiquitination of ERAD substrates
facilitates their binding by the ERAD molecular machinery
required for their retrotranslocation to the cytoplasm.22 A major
E3 ubiquitin ligase participating in the process of ERAD is the ER-
resident transmembrane protein HRD1, which forms a complex
with several partner proteins, including SEL1L, HERP, DERLIN-1,
OS-9 or XTP3, and BiP, to mediate ubiquitination of ERAD
substrates.15,22 The E3 action of HRD1 in ERAD is counteracted
by a DUB, USP25, which deconjugates the ubiquitin chains from
specific ERAD substrates to prevent their retrotranslocation and
proteasomal degradation.23,24 Another mechanism of HRD1
regulation is through controlling its steady-state levels by
ubiquitin-dependent proteasomal degradation, a process that is
protected by a DUB USP19.25 While HRD1 has been implicated in
the regulation of ERAD and MHC I-restricted antigen processing, a
recent gene-targeting study suggests that HRD1 also plays
an important role in promoting MHC II-restricted antigen
presentation to CD4 T cells.26 In this function, HRD1 promotes
transcriptional expression of the MHC II gene via a mechanism
that involves ubiquitin-dependent degradation of B lymphocyte-
induced maturation protein 1 (BLIMP1), a transcriptional

suppressor known to inhibit expression of the MHC class II
transactivator (CIITA).26 These studies suggest that manipulating
HRD1 expression and ERAD events may be an approach to
improve antigen presentation and T cell responses in cancer
immunotherapy.
Another E3 ubiquitin ligase regulating ERAD is the ER-resident

ring finger protein RNF5.27 RNF5, together with the E2 Ubc13,
mediates ubiquitination of JNK-associated membrane protein
(JAMP), an ER membrane protein facilitating ERAD-dependent
degradation of unfolded proteins.27,28 RNF5-mediated JAMP
ubiquitination inhibits the association of JAMP with ERAD
molecular components, thereby limiting ERAD-mediated protein
degradation.27 Thus, unlike the positive role of HRD1, RNF5
negatively regulates ERAD, although it remains to be examined
whether RNF5-mediated ERAD regulation has a role in regulating
antigen processing and T cell activation. Nevertheless, a role of
RNF5 in regulating antitumor immunity has been linked to a
function of RNF5 in regulating another ER-protective process,
unfolded protein response (UPR).29 UPR is a mechanism that
restores normal function of the ER in response to ER stress and has
been linked to important functions of immunity and inflamma-
tion.30 RNF5 deficiency in mice attenuates UPR and reduces
antimicrobial peptide expression in intestinal epithelial cells,
which in turn alters gut microbiota composition and, thereby,
promotes the recruitment and activation of DCs for T cell
activation.29 Consequently, the RNF5-deficient mice display
stronger antitumor immunity in a microbiota-dependent manner.
Another immunoregulatory function of RNF5 is to mediate
ubiquitin-dependent degradation of stimulator of interferon
genes (STING) and negatively regulate antiviral innate immune
responses.31 Of note, STING is a central DNA sensing component
that mediates DC activation in tumor microenvironment and has
been actively exploited in cancer immunotherapy.32,33 Whether
RNF5 deletion in DCs promotes DC activation and T cell priming in
antitumor immunity is yet to be investigated.
Ubiquitination also regulates the surface expression and

recycling of MHC molecules. Early studies suggest that proteins
encoded by some viruses, such as HIV, KSHV, downregulate
surface MHC I by inducing its endocytosis and degradation.34,35

Ubiquitin provides a signal for MHC I incorporation into
intralumenal vesicles of multivesicular bodies (MVBs), a subpo-
pulation of late endosomes fusing with lysosomes.36 Members of
the membrane-associated RING-CH (MARCH) E3 ubiquitin ligases
have been shown to mediate endosomal trafficking and
degradation of immune receptors, including MHC molecules.37

MARCH4 and MARCH9 mediate MHC I ubiquitination to promote
its endocytosis and lysosomal degradation, whereas MARCH1 and
MARCH8 mediate ubiquitin-dependent degradation of MHC
II.38,39 Studies using MARCH1-deficient DCs reveal that although
MARCH1-mediated MHC II ubiquitination does not affect MHC II
endocytosis, it prevents recycling of the internalized MHC II/
peptide complexes and promotes their degradation.40,41 Thus,
MARCH1-deficient DCs have drastically increased levels of MHC II/
peptide complexes on the cell surface. Interestingly, lipopolysac-
charide (LPS)-induced DC maturation is associated with down-
regulation of MARCH1 expression and attenuation of MHC II
ubiquitination, coupled with increased MHC II surface stabiliza-
tion.41,42 Conversely, the immunosuppressive cytokine IL-10
induces the expression of MARCH1 and, thereby, downregulates
MHC II surface expression, contributing to IL-10-mediated
suppression of antigen presentation.43–45 The role of ubiquitina-
tion in MHC regulation has also been demonstrated through the
study of DUBs. Ubiquitin C-terminal hydrolase-L1 (UCH-L1) has
been shown to positively regulate MHC I recycling and antigen
cross-presentation to CD8 T cells, although it is unclear whether
UCH-L1 directly deubiquitinates MHC I.46 Another DUB, USP14,
facilitates MHC I-restricted direct antigen presentation, particu-
larly the peptides derived from defective ribosomal products
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(DRiPs).47 These findings suggest that targeting E3 ubiquitin
ligases and DUBs represents a potential strategy to modulate
MHC expression and antigen presentation in vaccine develop-
ment and other approaches of cancer immunotherapy.

DC MATURATION AND ACTIVATION
DCs normally exist in an immature state in peripheral tissues, and
their T cell-priming function requires a process of maturation
characterized by upregulation of MHC II, costimulatory molecules
such as CD80 (also called B7-1) and CD86 (also called B7-2), and
chemokine receptors.48 DC maturation is stimulated by signals
from different immune receptors, including pattern-recognition
receptors (PRRs) that respond to pathogen-associated molecular
patterns (PAMPs) or host-derived damage-associated molecular
patterns (DAMPs).5,48 Exposure of DCs to PRR ligands also activate
DCs to secrete cytokines that regulate the differentiation of
activated T cells to generate specific subsets of effector T cells.
DCs and other innate immune cells express several families of
PRRs, which include toll-like receptors (TLRs), cytosolic DNA
sensors, RIG-I-like receptors (RLRs), NOD-like receptors (NLRs), and
C-type lectin receptors (CLRs).49 PRR signals function by triggering
cascades of signaling events, including activation of MAP kinase
(MAPKs), IkB kinase (IKK), and the IKK-related kinase TBK1, which
mediate activation of transcription factors AP1, NF-κB, and IRF3,
respectively.5 The MAPK and IKK pathways are crucial for PRR-
stimulated DC activation and proinflammatory cytokine produc-
tion involved in T cell activation and differentiation, whereas the
TBK1 pathway mediates induction of type I interferons (IFNs). In
addition to regulating antiviral innate immunity, type I IFNs have
a pivotal role in inducing DC maturation and anticancer
immunity.50,51 DCs lacking type I interferon receptor 1 (IFNAR1)
are defective in polyI:C-stimulated maturation in vivo, as shown
by impaired induction of costimulatory molecules and MHC II.50

On the other hand, type I IFN production in DCs is not required
for DC maturation, since nonhematopoietic cells are the main
source of type I IFN stimulated by polyI:C.50 In fact, DC-conditional
TBK1 deficiency promotes DC maturation and anticancer T cell
responses due to a negative role of TBK1 in regulating
IFNAR1 signaling.52 TBK1 acts by phosphorylating and promoting
the function of STAT3, a negative regulator of IFNAR1 signaling.
Thus, the PRR-stimulated signaling pathways play important,
although distinct, roles in the regulation of DC maturation and
activation involved in antitumor immunity.

Ubiquitination regulates both the upstream common signaling
steps and the downstream specific pathways of the PRR signaling.5

Several E3 ubiquitin ligases, including cIAP1, cIAP2, Peli1, TRAF6,
TRIM31, and TRIM56, have been shown to conjugate K63-linked
polyubiquitin chains to various PRR signaling adapters, such as
RIP1, RIP2, TRAF6, MAVS, and STING, thereby facilitating the
recruitment and activation of downstream kinases.5,53–55 K63
ubiquitination also has a more direct role in regulating down-
stream signaling events, particularly IKK activation. An early study
suggests that ubiquitination of the regulatory subunit of IKK, NF-κB
essential modulator (NEMO), is required for DC maturation and
activation.56 DCs derived from patients with ectodermal dysplasia
with immune deficiency (EDI), which carries a point mutation in the
C-terminal zinc finger domain of NEMO (C417R), display a defect in
CD40-stimulated ubiquitination of NEMO and activation of an NF-
κB member, c-Rel, associated with attenuated induction of
costimulatory molecules and a key immunostimulatory cytokine,
IL-12, as well as T cell-priming function.56 A20, an ovarian tumor
(OTU) family DUB known to regulate IKK/NF-κB signaling and TNF-
induced cell death,57,58 has been shown to negatively regulate the
maturation, proinflammatory cytokine production, and immunos-
timulatory functions of DCs59,60 (Fig. 1). A20 knockdown in murine
and human DCs enhances the induction of costimulatory
molecules and proinflammatory cytokines by ligands of TLR3 and
TLR4, rendering DCs hyper-active in priming T cell responses (Fig.
1). In line with these studies, gene targeting studies demonstrate
that A20 functions as a checkpoint in DC activation and survival,
which involves inhibition of LPS-stimulated IKK and MAPK
signaling pathways.61,62 The A20-deficient DCs undergo sponta-
neous maturation under homeostatic conditions, characterized by
aberrant expression of the costimulatory molecules. Consistently,
the peripheral lymphoid organs of DC-conditional A20 knockout
mice have an increased frequency of effector/memory-like T cells
indicative of spontaneous T cell activation under steady condi-
tions.61,62 Signal transduction from TLRs, with the exception of
TLR3, relies on a common signaling adapter, MyD88, whereas
TLR3 signals through another adapter protein, TRIF.5 Deletion of
MyD88 in DC-conditional A20 knockout mice does not prevent
spontaneous DC maturation or aberrant T cell activation, suggest-
ing that A20 restricts MyD88-independent signals to prevent
spontaneous DC maturation and aberrant T cell activation under
homeostatic conditions.62 However, MyD88 deletion prevents A20-
deficient DCs from hyper-production of cytokines, including IL-6
and TNF, that drive T cell proliferation. Therefore, A20 restricts
MyD88-dependent signals in DCs to suppress IL-6 and TNF
production, thereby preventing aberrant T cell expansion.62 A20
knockdown studies reveal that A20 downregulation in DCs impairs
their function in stimulating regulatory T (Treg) cells, thereby
further enhancing effector T cell responses59 (Fig. 1). The potential
therapeutic value of targeting A20 has been demonstrated using a
mouse model of DC-based cancer therapy.59 When adoptively
transferred into tumor-bearing mouse, the A20-silenced DCs are
much more potent than wildtype DCs in suppressing growth of the
established tumors, associated with increased infiltration of
effector T cells with enhanced resistance to Treg-mediated
suppression59 (Fig. 1). These studies suggest that A20 controls
DC functions in T cell priming and effector function as well as in
Treg regulation, implicating A20 targeting as a potential approach
for improving the efficacy of cancer immunotherapy, particularly
DC-based therapy (Fig. 1).
The function of NF-κB signaling in DCs is also subject to

ubiquitin-dependent regulation at the epigenetic level, as
demonstrated through the study of a A20-related DUB, Trabid
(also called Zranb1).63 Trabid is required for TLR-stimulated
expression of two proinflammatory cytokines, IL-12 and IL-23,
which in turn are crucial for generation of Th1 and Th17 subsets of
CD4 effector T cells. Although Trabid is dispensable for the
induction of NF-κB nuclear translocation, Trabid is required for

Fig. 1 A20 knockdown or knockout in DCs promotes T cell
activation and antitumor immunity. DCs with A20 knockdown or
knockout display enhanced maturation, proinflammatory cytokine
expression and T cell-stimulatory function. A20-silenced DCs are
much more potent than wildtype DCs in promoting antitumor T cell
responses and suppressing tumor growth
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recruitment of NF-κB members, particularly c-Rel and p50, to the
promoters of Il12a, Il12b, and Il23a genes. Ubiquitination targets
the degradation of Jmjd2d, a histone methylase mediating histone
modifications at the Il12/Il23 promoters required for binding by
p50 and c-Rel, and the ubiquitin-dependent Jmjd2d degradation
is counteracted by Trabid-mediated deubiquitination.63 Trabid-
mediated DC regulation plays an important role in autoimmune
responses. Since IL-12 family of cytokines have an important role
in regulating antitumor T cell and natural killer (NK) cell
responses,64 it is important to examine whether Trabid also plays
a role in regulating antitumor immunity.

UBIQUITIN REGULATION OF T CELL RESPONSES
T cells form a central component of adaptive immune responses
against infections and cancer. T cell activation occurs in lymphoid
tissues that drain the sites of infections or tumorigenesis, where
naïve CD4 and CD8 T cells encounter APCs displaying antigens on
MHC II and MHC I, respectively. Upon engagement by the antigen/
MHC complex, TCR delivers a primary signal for T cell activation. T
cell activation also requires costimulatory signals, which in naïve
T cells is primarily mediated through ligation of the costimulatory
receptor CD28 by its ligands, CD80 or CD86, on APCs.65 T cells also
express costimulatory receptors of the TNF receptor (TNFR)
superfamily, many of which are induced along with T cell
activation and are required for long-lasting T cell responses and
generation of effector and memory T cells.66 In addition, signals
stimulated by cytokines and growth factors contribute to the
activation and differentiation of T cells. The TCR and costimulatory
signals are opposed by signals from a variety of inhibitory
receptors, most notably members of PD1 family of co-inhibitory
receptors.67 Ubiquitination regulates different aspects of signaling
events involved in the activation and function of T cells.

TCR SIGNALING
Upon engagement by an antigen, TCR initiates receptor-proximal
signaling events, including activation of the protein tyrosine

kinase Lck and phosphorylation of the immunoreceptor tyrosine-
based activation motifs (ITAMs) in CD3 and ζ chains of the TCR
complex. Phosphorylation of the ITAMs leads to recruitment and
activation of an ITAM-binding protein tyrosine kinase, ZAP70,
which in turn amplifies the TCR signal by phosphorylating scaffold
proteins, including LAT and SLP76.68 These phosphorylated
scaffold proteins mediate recruitment and activation of key
signaling components that target different downstream signal
cascades, leading to activation of transcription factors of the NFAT,
AP1 and NF-κB families that cooperatively induce the expression
of genes involved in T cell activation, survival, proliferation, and
differentiation (Fig. 2).
The TCR-proximal signaling events are tightly controlled by

ubiquitination, which mediates degradation or functional inactiva-
tion of key components of the TCR signaling pathway, such as
CD3ζ, ZAP70, phospholipase C gamma 1 (PLCγ1), PI3 kinase (PI3K),
and protein kinase C theta (PKCθ).5 A well-characterized E3 ligase
involved in the regulation of TCR signaling is Cbl-b, which targets
PI3K and the guanine nucleotide exchange factor VAV and is
crucial for maintaining T cell tolerance and preventing auto-
immunity69,70 (Fig. 2). Cbl-b deficiency reduces the activation
threshold of T cells and renders T cells hyper-responsive to TCR
stimulation even in the absence of CD28 ligation, causing
development of autoimmune diseases in mice.71,72 Consistently,
Cbl-b-deficient CD8 T cells display markedly enhanced activity in
rejecting transplanted and spontaneous tumors.73,74 Cbl-b defi-
ciency also renders T cells resistant to inhibition by Treg cells and
the immune checkpoint PD-L1.75–77 Because of the enhanced
activation and antitumor responses of Cbl-b-deficient T cells, Cbl-b
has become a focus for understanding the mechanisms of
antitumor immunity and an attractive cancer immunotherapy
target being exploited in preclinical studies and clinical trials.78,79

Another E3 ubiquitin ligase Grail (RNF128) has been shown to
negatively regulate T cell activation and maintain T cell anergy
and tolerance.80,81 Grail inhibits TCR-proximal signaling by
targeting CD3ζ for ubiquitin-dependent degradation of CD3ζ,
and Grail deficiency impairs T cell tolerance and sensitizes mice for
autoimmune diseases82 (Fig. 2). In CD8 T cells, Grail also mediates
ubiquitin-dependent degradation of IL-21 receptor (IL-21R),
and Grail-deficient CD8 T cells show enhanced antitumor reactivity
and functionality, involving enhanced IL-21R expression and
signaling.83

Non-degradative ubiquitination of ZAP70 is a mechanism that
negatively regulates its activation and TCR signaling84,85 (Fig. 2).
The E3 ubiquitin ligase NRDP1 conjugates K33-linked polyubiqui-
tin chains to ZAP70, which facilitates recruitment of ubiquitin-
binding tyrosine phosphatases, Sts1 (Ubash3b) and Sts2 (Uba-
sh3a),84 known to dephosphorylate and inactive ZAP70.86 A DUB,
Otud7b, deubiquitinates ZAP70 to prevent its association with
Sts1 and Sts2, thereby positively regulating TCR signaling.85

NRDP1 deficiency selectively promotes CD8 T cell activation and
cytokine production.84 Since CD8 T cells play a central role in
tumor immunity, it will be important to examine whether
targeting NRDP1 promotes antitumor immunity and can be
exploited as an approach for cancer immunotherapy.
Ubiquitination also regulates signaling steps involved in

activation of individual downstream pathways.5 In this regard,
the NF-κB signaling pathway has been extensively studied for
ubiquitin-dependent regulation. Non-degradative ubiquitination,
particularly K63 ubiquitination, positively regulates TCR-stimulated
activation of IKK and its downstream transcription factor NF-κB.
TCR-stimulated activation of PKCθ triggers the assembly of an
intermediate signaling complex, composed of the scaffold protein
CARMA1 (CARD11), the adapter Bcl10, and the paracaspase
MALT1; this so-called CBM complex activates an E3 ubiquitin
ligase that functions together with a dimeric E2 enzyme, Ubc13/
Uev1A, to catalyze conjugation of K63-linked polyubiquitin chains
onto BCL10, MALT1, as well as components of IKK and its

NFAT

Fig. 2 Regulation of T cell signaling by E3 ligases and DUBs. Grail
and Cbl-b mediate ubiquitin-dependent degradation of TCR ζ chain
and upstream signaling factors, VAV and PI3K, to negatively regulate
TCR and CD28 signaling. Non-degradative ubiquitination of ZAP70,
a negative mechanism of its regulation, is catalyzed by the E3 Nrdp1
and counteracted by the DUB Otud7b. MDM2 and Peli1 mediates
ubiquitin-dependent degradation of NFAT1 and NF-kB c-Rel,
respectively, to control these downstream pathways. The DUB
USP15 stabilizes MDM2 in activated T cells and functions together
with MDM2 in NFAT1 regulation. The CBM complex, composed of
CARMA1, BCL10, and MALT1, associates with the K63-specific E2
Ubc13 and an E3 and catalyze K63 ubiquitination required for
activation of IKK. This signaling step is negatively regulated by the
DUBs CYLD and A20. The DUB Otub1 inhibits K63 ubiquitination
and activation of AKT and controls a major metabolic signaling
pathway of T cells. E3 ligase Fbxo38 mediates ubiquitin-dependent
degradation of the coinhibitory receptor PD1, thereby promoting T
cell responses in cancer immunity
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activating kinase TAK1.5,87,88 The ubiquitin chains conjugated to
BCL10 and MALT1 serve as a platform that facilitate the
recruitment and activation of TAK1 and IKK.5 The ubiquitin-
dependent activation of IKK/NF-κB signaling is subject to tight
regulation by DUBs, including CYLD and A2089–91 (Fig. 2). CYLD
deficiency causes spontaneous IKK/NF-κB activation, associated
with aberrant T cell activation and development of intestinal
inflammation.89 T cell-conditional deletion of A20 sensitizes CD8
T cells for activation, and the A20-deficient CD8 T cells display
increased production of effector cytokines and heightened
antitumor activity.92,93 In addition to controlling NF-κB signaling,
A20 also functions in a DUB-independent manner to prevent cell
death induction by TNF.57

NF-κB signaling is also subject to negative regulation by K48
ubiquitination. In response to TCR/CD28 costimulation, the E3
ubiquitin ligase Peli1 catalyzes K48 ubiquitination and proteaso-
mal degradation of an NF-κB member, c-Rel, thereby controlling T
cell activation and preventing autoimmunity94 (Fig. 2). The Peli1-
deficient CD4 and CD8 T cells are hyper-responsive to TCR/
CD28 stimulation for production of IL-2 and IFNγ and display
reduced sensitivity to inhibition by Treg cells and TGFβ.94 The
Peli1-deficient mice display stronger tumor-suppressive ability
compared to wildtype control mice, associated with enhanced
tumor infiltration with CD8 effector T cells (unpublished data).
Another E3 ligase, MDM2, negatively regulates TCR-stimulated
NFAT activation through targeting NFATc2 (NFAT1) for ubiquitin-
dependent degradation.95 MDM2 deletion or pharmacological
inhibition promotes NFATc2 activation and IFNγ production in
T cells. Interestingly, MDM2 itself is also mediated by ubiquitin-
dependent degradation in activated T cells, and this process is
counter-regulated by an MDM2-binding DUB, USP15. By deubi-
quitinating and stabilizing MDM2, USP15 facilitates the function of
MDM2 in NFATc2 regulation95 (Fig. 2). Therefore, USP15 deficiency
promotes NFATc2 activation, causes increased T cell responses
and function in antitumor immunity.95 Several other E3 ubiquitin
ligases and DUBs have been shown to regulate TCR signaling.5,96

COSTIMULATORY AND COINHIBITORY SIGNALING
While the TCR provides a primary and antigen-specific signal for T
cell activation, costimulatory signals are also required for initial
activation and recall responses of T cells. CD28 is a major
costimulatory receptor for naïve T cell activation, which potenti-
ates the TCR signaling and lowers the threshold of T cell
activation.65 CD28 has two ligands, CD80 (B7-1) and CD86 (B7-2),
which are expressed on activated APCs particularly DCs. Both
CD28 and B7 form a large family of structurally related proteins
with costimulatory or coinhibitory functions.97 CTLA4 and PD1 are
members of the CD28 family that serve as key coinhibitory
receptors and are also known as immune checkpoints.2 Major
breakthrough in cancer immunotherapy came from the successful
treatment of advanced cancer patients with the ICIs anti-CTLA4
and anti-PD-1.67 Recent studies have also provided new insight
into the mechanisms that regulate the fate and function of these
immunosuppressive receptors. In particular, an E3 ubiquitin ligase,
Fbxo38, has been reported to interact with PD1 and mediate its
K48 polyubiquitination and subsequent proteasomal degrada-
tion.98 T cell-conditional knockout of Fbxo38 results in increased
surface expression of PD1 in T cells and impairs antitumor
immunity, leading to more rapid tumor growth98 (Fig. 2). Another
E3 ligase, c-Cbl, has been shown to interact with the cytoplasmic
tail of PD1 and mediate ubiquitin-dependent PD1 degradation in
the tumor microenvironment.99 Ubiquitination and deubiquitina-
tion also regulate the stability of PD1 ligand 1 (PD-L1) in tumor
cells, which contributes to the regulation of T cell function and
antitumor immunity.100,101

Another family of T cell costimulatory/coinhibitory receptors
includes members of the TNFR superfamily, many of which are

induced along with T cell activation and play a particularly important
role in regulating effector and memory T cell responses.102–104

Among the costimulatory receptors of the TNFR superfamily are
OX40 (TNFRSF4), 4-1BB (CD137, TNFRSF9), GITR (CD357, TNFRSF18),
CD27 (TNFRSF7), and TNFR2 (TNFRSF). Engagement of these
receptors by their ligands from the TNF superfamily enhances
effector T cell generation and functionality and facilitates memory
development and recall responses. Most, if not all, of the TNFR
family of costimulatory receptors also trigger the activation of
noncanonical NF-κB pathway, which is integral for the effector and
memory T cell responses.105 Agonistic monoclonal antibodies for
these receptors, particularly OX40 and 4-1BB, promote antitumor T
cell responses either alone or in combination with other cancer
immunotherapy strategies, such as immune checkpoint blockade,
cytokine therapy, and radiation therapy.106,107 In addition to
extensive preclinical studies, several early phase cancer immu-
notherapy clinical trials are being conducted to test the efficacy of
anti-OX40 and anti-4-1BB in combination therapies.106,107

Signal transduction of the TNFR costimulatory receptors
involves recruitment of TNFR-associated factors (TRAFs), which in
turn target activation of NF-κB and MAPK pathways.103 A hallmark
of TRAF-mediated signaling is the critical involvement of protein
ubiquitination, particularly the non-degradative K63 and linear
ubiquitination.108 Two functionally redundant E3 ubiquitin ligases,
cIAP1 and cIAP2, catalyze K63 ubiquitination in the TNFR signaling
complex, which cooperates with the linear ubiquitin ligase LUBAC
to mediate canonical NF-κB activation and prevent cell death
induction.57 The role of K63 ubiquitination in mediating T cell
costimulation by TNFRs has been well demonstrated in the 4-1BB
pathway. T cell co-stimulation with a 4-1BB agonist antibody
triggers K63 ubiquitination of 4-1BB-associated TRAF2, which is
crucial for NF-κB activation and induction of antitumor immu-
nity.109 Conversely, the 4-1BB signaling is negatively regulated by
two DUBs, CYLD and A20, which physically associate with the 4-
1BB/TRAF2 complex.110 Overexpression of either CYLD or A20
inhibits NF-κB activation by the 4-1BB agonist antibody, whereas
silencing these DUBs enhances NF-κB activation mediated by 4-
1BB costimulation in human CD8 T cells.110 The role of K63
ubiquitination in 4-1BB-mediated CD8 T cell costimulation is
further supported by the finding that CD8 effector and memory
T cells expressing a dominant-negative mutant of the E3 ligase
cIAP2 (cIAP2H570A) have attenuated 4-1BB signaling and impaired
survival, demonstrated using a viral infection model.111

The expression or signaling function of TNFRs is also negatively
regulated by degradative ubiquitination. The E3 ligase NEDD4
mediates ubiquitination and degradation of GITR and negatively
regulates T cell-mediated antitumor immunity.112 Roquin 1 (Rc3h1)
and its paralog Roquin 2 (Rc3h2), E3 ubiquitin ligases and RNA
binding proteins, repress the expression of OX40, as well as the
CD28 family costimulatory receptor ICOS, by promoting degrada-
tion of their mRNAs.113–115 Roquins play a crucial role in regulating
differentiation of Tfh cells and pathogenesis of autoimmune and
inflammatory diseases, but it is unclear whether they also play a
role in regulating antitumor immunity.116 Ubiquitination also
negatively regulates the noncanonical NF-κB pathway. In contrast
to its K63-specific E3 function in facilitating TNFR-mediated
canonical NF-κB activation, cIAP (cIAP1 or cIAP2) negatively
regulates noncanonical NF-κB pathway by catalyzing K48 ubiqui-
tination and degradation of the noncanonical NF-κB-inducing
kinase NIK.105 This function of cIAP also requires TRAF2 and TRAF3,
which function in the assembly of the cIAP-TRAF2-TRAF3 complex
and recruitment of NIK. TNFR-stimulated noncanonical NF-κB
activation involves ubiquitin-dependent degradation of TRAF3 or
TRAF2.105 Importantly, pharmacological inhibition of cIAPs or
genetic ablation of TRAF2 or TRAF3 causes constitutive activation
of noncanonical NF-κB.117 Consistently, small molecule inhibitors of
cIAPs (or smac mimetics) promote T cell activation and effector
function and augment antitumor immunity.118–120 These studies
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implicate cIAP inhibitors as new therapeutic agents in combinator-
ial cancer immunotherapy.
Noncanonical NF-κB activation by T cell costimulation via

TNFRs also plays a role in CD4 T cell differentiation, as
demonstrated for the induction of Th9 cells by OX40 costimula-
tion.121 Th9 cells form a subset of CD4 effector cells characterized
by production of the cytokine IL-9. Although Th9 cells have been
extensively studied for their involvement in autoimmunity and
inflammation, recent evidence suggests that they also serve as a
major subset of CD4 effector T cells mediating antitumor
immunity.122–125 OX40 ligation potently induces the expression
of TRAF6, which is required for noncanonical NF-κB activation and
Th9 cell generation.121 Since TRAF6 is a K63-specific E3 ligase, it is
possible that TRAF6 may activate cIAP via K63 ubiquitination,
which allows cIAP to mediate K48 polyubiquitination and
degradation of TRAF2 or TRAF3 leading to NIK stabilization and
noncanonical NF-κB activation. Ubiquitination also regulates the
differentiation of antitumor Th9 cells via autophagy, a catabolic
mechanism that removes unnecessary and dysfunctional cellular
components.126 PU.1, an important transcription factor involved
in Th9 cell differentiation, undergoes K63 ubiquitination and
degradation through selective autophagy. Selective autophagy
employs specific cargo adapters to target proteins, protein
complexes, or organelles for degradation.127 One major cargo
adapter of selective autophagy is p62 (also called SQSTM1), which
targets ubiquitinated cargos for autophagic degradation.127

Silencing of p62 or genetic deletion of major autophagy
components in CD4 T cells enhances PU.1 expression and
promotes Th9 differentiation and antitumor immunity in different
mouse cancer models.126

CYTOKINE SIGNALING
In addition to the TCR and costimulatory signals, cytokines play
an important role in regulating the nature, magnitude, and
persistence of T cell responses. In particular, the common gamma
chain (γc or CD132) family of cytokines, especially IL-2, IL-7, IL-15,
and IL-21, have been actively explored for improving the efficacy
of cancer immunotherapies.128 The receptors of these cytokines
share the γc subunit that forms dimeric or trimeric receptor
complexes mediating signaling that promotes the survival,
proliferation, effector/memory generation and maintenance of
T cells.128,129 Among the γc family cytokines, IL-15 is unique in
that it requires a transpresentation mechanism to engage its
receptor for signal stimulation.130 IL-15 receptor (IL-15R) is
composed of three submits: IL-15Rα, IL-15Rβ (also called IL-2Rβ
or CD122), and γc. When produced in supporting cells, such as
monocytes and dendritic cells, IL-15 forms a complex with IL-
15Rα on the cell surface and is presented to the IL-15Rβγ
heterodimer on target cells, particularly CD8 T cells and NK cells,
to trigger signaling.130 Major signaling events stimulated by IL-15
include activation of the transcription factors STAT5 and the PI3K/
AKT survival pathway.131 Exogenously administered IL-15 sensi-
tizes the TCR for antigen stimulation, promotes CD8 T cell
proliferation and effector function, and also rescues tolerant CD8
T cells in cancer immunotherapy.132–134 Recombinant IL-15,
particularly IL-15 superagonists (IL-15/IL-15Rα complexes), have
shown promise in preclinical experiments and clinical trials of
cancer immunotherapies when used in combination with other
agents, such as ICIs.135

The role of ubiquitination in regulating signal transduction
stimulated by the γc cytokines is poorly studied. Nevertheless, a
recent study demonstrated a ubiquitin-dependent mechanism
that mediates IL-15-stimulated activation of AKT signaling and
CD8 T cell responses in antitumor immunity.136 AKT activation is
known to be mediated by PI3K, which catalyzes the conversion of
the membrane phosphatidylinositol 4,5-bisphosphate (PIP2) to
phosphatidylinositol 3,4,5-trisphosphate (PIP3), the latter of which

recruits AKT to the membrane compartment for activation by
upstream kinases, PDK1 and mTORC2. The PI3K/AKT pathway
integrates the TCR/CD28 and IL-15R signals and is negatively
regulated by the DUB Otub1 (Fig. 2). IL-15 not only activates PI3K
but also induces K63 ubiquitination of AKT, and the ubiquitination
enables AKT to bind PIP3 for membrane translocation and
activation136 (Fig. 3a). Notably, AKT ubiquitination occurs in its
pleckstrin homology (PH) domain, which is known to mediate PIP3
binding. Since inactive AKT exists in a closed conformation
involving intramolecular interaction between its kinase domain
and PH domain,137 it is likely that ubiquitination causes AKT
conformational changes leading to exposure of the PH domain for
PIP3 binding (Fig. 3a). IL-15-stimulated AKT activation is negatively
regulated by Otub1, which physically interacts with AKT and
prevents its K63 ubiquitination and membrane translocation.136

Interestingly, in IL-15-exposed cells, Otub1 is relocated to the
membrane compartment, a mechanism that enables Otub1 to
inhibit AKT ubiquitination and activation induced by both IL-15
and TCR signals (Fig. 3b). Otub1 deficiency greatly enhances
antigen-specific CD8 T cell responses and promotes their
metabolic reprogramming and effector function in antitumor
immunity.136 These studies suggest that IL-15 primes CD8 T cells
for antigen-specific responses, which is controlled by a check-
point, Otub1 (Fig. 3b). The potential for targeting Otub1 in cancer
immunotherapy is demonstrated by the finding that inducible
deletion of Otub1 in tumor-bearing mice profoundly enhances
tumor rejection through unleashing the activity of CD8 T cells as
well as NK cells.136 Furthermore, analysis of human skin cutaneous
melanoma database reveals a remarkable inverse correlation
between Otub1 expression levels and the abundance of CD8
effector T cell gene signature and patient survival.136

Fig. 3 Otub1 serves as a checkpoint of IL-15-mediated CD8 T cell
priming by deubiquitination of AKT. a, IL-15 stimulates PI3K
activation and AKT K63 ubiquitination, both being required for
AKT activation. AKT ubiquitination facilitates its binding to PIP3,
probably through a conformational change leading to exposure of
the PH domain of AKT, which recruits AKT to the membrane
compartment, where AKT is phosphorylated and activated by the
kinases PDK1 and mTORC2. Otub1 negatively regulates AKT
activation through inhibiting its ubiquitination. b, IL-15 signal
primes CD8 T cells for antigen stimulation, which is controlled by
Otub1. In response to IL-15 stimulation, Otub1 is recruited to the
membrane compartment, where it inhibits AKT activation induced
by both IL-15 and TCR/CD28 signals. Otub1 thus functions as a
checkpoint molecule regulating IL-15-mediated CD8 T cell priming.
Deficiency in Otub1 causes increased AKT signaling and enhanced
CD8 T cell responses in cancer immunity
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UBIQUITINATION REGULATION OF TREG FUNCTION AND
IMMUNE TOLERANCE
Treg cells are a subset of CD4 T cells that express the lineage
transcription factor Foxp3 and have potent immunosuppressive
functions.138 The majority of Treg cells are developed in the
thymus (thymus-derived Treg or tTreg), but Treg cells can also
be generated in the periphery (pTreg) or induced in vitro from
naïve CD4 T cells (iTreg) cells.138 While Treg cells maintain
peripheral immune tolerance to prevent the development of
autoimmunity, they also serve as a major cell population that
suppresses antitumor immunity in the tumor microenviron-
ment.139 Treg depletion has been shown to promote antitumor
immune responses in preclinical studies, and additional Treg-
targeting methods have been actively explored for improving
the efficacy of cancer immunotherapy.139 Rapid progresses have
also been made in understanding of the molecular basis of Treg
regulation, providing insight for further improving therapeutic
approaches. Ubiquitination has been established as a crucial
mechanism that regulates the development and immunosup-
pressive function of Treg cells.5,96

NONDEGRADATIVE UBIQUITINATION
A role for nondegradative ubiquitination in regulating Treg
development was initially suggested by the finding that mice
deficient in CYLD, a DUB cleaving K63 and linear ubiquitin chains,
have profoundly increased frequencies of thymic and peripheral
Treg cells.140,141 Similar results were obtained with mice expres-
sing a nonfunctional CYLD splice variant, CYLD(ex7/8).142 This
function of CYLD involves, in part, inhibition of ubiquitin-
dependent NF-κB signaling,140 which is known to promote tTreg
development.143 In addition, CYLD regulates signaling from IL-2R
and TGFβR known to be crucial for Treg generation.140,141 A20,
another DUB that controls NF-κB signaling via inhibition of K63
ubiquitination, also regulates thymic development of tTreg
cells.144 Nondegradative ubiquitination also regulates the function
of transcription factors involved in induction of Foxp3 expression.
One example is ubiquitination of TGFβ-inducible early gene 1
(TIEG1), a Foxp3 transactivator involved in iTreg cell develop-
ment.145 Itch-mediated monoubiquitination of TIEG1 appears to
promote its transcriptional activity in Foxp3 gene induction.
K63 ubiquitination plays a critical role in mediating the

stability and immunosuppressive function of established tTreg
cells. Treg-specific deletion of a K63-specific E2 ubiquitin-
conjugating enzyme, Ubc13, impairs in vivo immunosuppressive
function of Treg cells and causes aberrant T cell activation and
autoimmune symptoms.146 The Ubc13-deficient Treg cells are
sensitized for acquiring Th1- and Th17-like inflammatory T cell
phenotypes under lymphopenic and inflammatory conditions.
The function of Ubc13 in Treg cells is mediated through
ubiquitin-dependent activation of IKK and involves induction of
SOCS1, a pivotal suppressor of proinflammatory cytokine
receptor signaling.146 TRAF3, a potential K63 ubiquitin ligase, is
also involved in the regulation of Treg function. Treg-specific
TRAF3 deletion in mice partially impairs the immunosuppressive
function of Treg cells, causing an increase in the frequency of
Th1-like effector T cells under homeostatic conditions. TRAF3 is
also important for antigen-stimulated generation of follicular
Treg cells, a subset of Treg cells that functions in germinal
centers to suppress Tfh and B cells and, thereby, inhibit antibody
responses.147 TRAF3 is required for ERK MAPK activation,
although it is unclear whether this function involves its K63 E3
ligase activity. Another TRAF family member, TRAF6, also plays an
important role in regulating Treg function.148 TRAF6 conjugates
K63 ubiquitin chains to Foxp3, which mediates proper localiza-
tion of Foxp3, thereby facilitating its transcriptional function in
Treg cells.148 Importantly, Treg-conditional TRAF6 knockout mice
display increased antitumor immunity, although it remains to be

examined whether deletion of Ubc13 or TRAF3 in Treg cells also
promotes antitumor immunity.
In addition to K63 ubiquitination, linear ubiquitination regulates

signal transduction by nondegradative mechanisms.149 Linear
ubiquitination is specifically catalyzed by linear ubiquitin chain
assembly complex (LUBAC), a multi-subunit E3 composed of HOIL-
1L (also called RBCK1), HOIP (also called RNF31), and SHARPIN. A
role for linear ubiquitination in regulating Treg function is
suggested by a study employing Treg-conditional RNF31 knockout
mice.150 Treg-specific deletion of RNF31 causes massive loss of
Treg cells and development of severe autoimmune and inflam-
matory pathology. Despite the demonstrated function of LUBAC in
preventing TNF-induced apoptosis and necroptosis,149 the mas-
sive loss of Treg cells in Treg-conditional RNF31 knockout mice
cannot be rescued by antibody-mediated TNF neutralization,
suggesting a yet-to-be defined mechanism in RNF31-mediated
Treg maintenance.150 A more recent study shows that RNF31 is
also required for maintaining human Treg cell stability and
function.151 Treg cells with RNF31 knockdown acquires a Th1-like
phenotype, characterized by IFNγ production. RNF31 interacts
with and stabilizes Foxp3 and catalyzes conjugation of multi-
monoubiquitination chains onto Foxp3, suggesting an atypical
function of RNF31.151 It remains to be investigated how
monoubiquitination stabilizes Foxp3 and how LUBAC-mediated
linear ubiquitination regulates Treg cell survival and function.

DEGRADATIVE UBIQUITINATION
The development and function of Treg cells are also subject to
regulation by degradative types of ubiquitination. Ubiquitination
is a major mechanism that regulates the stability of Foxp3, a
master transcription factor of Treg cells.152,153 Ubiquitin-
dependent degradation of Foxp3 is strongly induced when Treg
cells are exposed to proinflammatory cytokines, the TLR4 ligand
LPS, or heat shock stress conditions, which induce the recruit-
ment of Foxp3 to the E3 ubiquitin ligase Stub1 for K48
ubiquitination.154 Stub1 knockdown stabilizes Foxp3 and
increases the suppressive function of Treg cells, whereas Stub1
overexpression impairs the suppressive function of Treg cells
both in vitro and in vivo.154 Stub1, together with Cbl-b, also
mediate ubiquitin-dependent degradation of Foxp3 in thymic
Treg precursor cells, thereby negatively regulating the develop-
ment of tTreg cells.155 Cbl-b deficiency partially rescues the tTreg
development defect in CD28-knockout mice. It is thought that in
response to TCR/CD28 stimulation, Stub1 initiates Foxp3 ubiqui-
tination, and the ubiquitin chains of Foxp3 facilitate the
recruitment of Cbl-b via its ubiquitin-association (UBA) domain,
leading to enhanced Foxp3 ubiquitination.155 In contrast to its
negative role in tTreg regulation, Cbl-b appears to positively
regulate the development of iTreg cells.156 Cbl-b deficiency
impairs the generation of iTreg cells from CD4 T cells due to
attenuated Foxp3 induction by the TCR/CD28 and TGFβ
signals.156 Cbl-b promotes Foxp3 gene induction by facilitating
activation of the Foxp3-inducing transcription factors Foxo3a and
Foxo1; this function of Cbl-b involves inhibition of TCR/CD28-
stimulated activation of AKT, a pivotal negative regulator of
Foxo3a and Foxo1.156 Another E3 ligase, GRAIL, is upregulated in
Treg cells and involved in the regulation of Treg function.82,157

GRAIL deficiency does not affect the generation of tTreg or iTreg
cells, but impairs their suppressive function.82

The tumor suppressor von Hippel-Lindau (VHL) serves as the
substrate-recognition subunit of an E3 ubiquitin ligase complex
that mediates ubiquitin-dependent degradation of hypoxia-
inducible factors (HIFs), including HIF1α and HIF2α.158 In addition
to hypoxia, many other factors can induce the expression of HIFs
in immune cells, such as cytokines and TCR signals.159 HIFs play an
important role in mediating the development, metabolic activity,
and function of conventional T cells.160 In particular, HIF1a has
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been shown to drive CD8 T cell migration and effector function in
antitumor immunity.161,162 VHL deficiency causes HIF1a accumula-
tion in CD8 T cells and enhances their effector functions in anti-
viral and antitumor immunity.161 Interestingly, HIF1a accumulation
in VHL-deficient Treg cells impairs their suppressive function and
causes conversion of Treg cells into Th1-like inflammatory T cells,
which are associated with development of autoimmune and
inflammatory symptoms in mice.163 HIF1a has also been shown to
attenuate Treg development by targeting Foxp3 to the VHL E3
ligase complex for ubiquitin-dependent degradation.152 These
findings suggest that targeting VHL may promote antitumor
immunity by both stimulating the effector T cell function and
attenuating Treg function.
In line with the function of degradative ubiquitination in Treg

regulation, DUBs opposing degradative ubiquitination have been
shown to regulate Treg development or function. A TGFβ-induced
DUB, USP44, deconjugates K48 ubiquitin chains from Foxp3 and
stabilizes Foxp3, which is important for maintaining Treg
function.164 USP44 physically associates with and functionally
cooperates with USP7,164 another DUB known to deubiquitinate
and stabilize Foxp3.165 Mice with Treg-specific USP44 deficiency
display enhanced antitumor immunity, implicating USP44 as a
potential target for cancer immunotherapy.164 Another DUB
required for maintenance of Treg stability and suppressive function
is USP21.166 Treg-specific deletion of USP21 in mice reduces the
level of Foxp3 and perturbs the expression of Treg signature genes,
causing aberrant T cell activation and autoimmune symptoms. The
USP21-deficient Treg cells acquires a Th1-like effector T cell
phenotype capable of producing the proinflammatory cytokine
IFNγ. It is unclear whether USP21 serves as a DUB of Foxp3 or
regulates the level of Foxp3 via an indirect mechanism. In human
Treg cells, USP21 stabilizes GATA3,167 a transcription factor that
mediates Foxp3 expression and is required for the stability and
suppressive function of Treg cells.168 However, USP21 deletion in
murine Treg cells has no obvious effect on GATA3 protein stability
or expression level, indicating functional redundancy in the murine
system.166

UBIQUITIN REGULATION OF NK CELL FUNCTION
Like CD8 T cells, NK cells serve as cytotoxic effector cells mediating
destruction of pathogen-infected cells and tumor cells.169 How-
ever, NK cells are innate lymphocytes that recognize target cells

via mechanisms independent of TCR and not restricted by MHC,
and they complement the function of CD8 cytotoxic T cells. NK
cells express a range of stimulatory and inhibitory receptors, and
whether NK cells kill target cells depends on the relative
expression level of ligands for stimulatory and inhibitory receptors
on target cells. NK cells also act as regulatory cells that modulate
dendritic cell function and promote T cell responses.170 In tumor
microenvironments, NK cells produce the chemokines CCL5 and
XCL1, which facilitates recruitment of cDC1 to tumor sites, where
cDC1 cells take up tumor antigens and cross present the antigens
to tumor-specific CD8 T cells to promote antitumor T cell
responses.171

Ubiquitination plays an important role in NK cell regulation
(Fig. 4). The E3 ubiquitin ligase Cbl-b is a potent negative regulator
of NK cell function in cancer immunity. Genetic ablation of Cbl-b
or targeted inactivation of its E3 ligase activity does not affect NK
cell development but renders NK cells hyper-responsive to
activation and capable of spontaneously rejecting metastatic
tumors.172 Mechanistically, Cbl-b functions in the pathway of the
TAM family of receptor tyrosine kinases, including Tyro3, Axl, and
Mer, known to inhibit NK cell function. Upon ligand stimulation,
TAM receptors become ubiquitinated by Cbl-b, which appears to
regulate TAM receptor internalization, but how ubiquitination
regulates TAM function is unclear.172 A more recent study
suggests that Cbl-b serves as a downstream factor mediating NK
cell inhibition.173 Upon activation by their ligand, TAM receptors
mediate tyrosine phosphorylation and activation of Cbl-b, which
in turn inhibits NK cell activation by mediating degradation of
LAT1, a key signaling adapter downstream of NK cell activating
receptors173 (Fig. 4). These findings suggest that targeting the
TAM/Cbl-b inhibitory pathway provides a new approach to
unleash the function of NK cells and may promote antitumor
immunity.
Like Cbl-b, c-Cbl plays a role in regulating NK cell activation. In

particular, c-Cbl negatively regulates NK cell activation stimulated
by co-ligation of two stimulatory receptors, NKG2D and 2B4174

(Fig. 4). This function of c-Cbl involves ubiquitination of Vav1, a
key signaling factor mediating NK cell co-stimulation by NKG2D
and 2B4. It appears that c-Cbl mediates nondegradative
ubiquitination of phosphorylated (activated) VAV1 and inhibits
VAV1 signaling function.174 Another mechanism of c-Cbl action is
to promote the endocytosis and degradation of NKG2D
stimulated by its ligand, MHC class I-related chain A (MICA).175

Interestingly, this function of c-Cbl is not seen when NK cells are
stimulated by another ligand of NKG2D, UL16-binding protein 2
(ULBP2). Consistently, MICA, but not ULBP2, stimulates c-Cbl
phosphorylation, suggesting ligand-specific function of c-Cbl.
Since NKG2D functions as a complex with its adapter DAP10, it is
unclear whether c-Cbl ubiquitinates NKG2D or DAP10.175 Never-
theless, another study suggests that ubiquitination of DAP10
contributes to the endocytosis and degradation of NKG2D in
human NK cells.176 This study also suggests that although DAP10
ubiquitination facilitates NKG2D endocytosis and lysosomal
degradation, the receptor endocytosis is also required for
activation of ERK signaling and NK cell effector functions,
suggesting paradoxical roles.176

Among other E3s known to regulate NK cell function is NK lytic-
associated molecule (NKLAM), a ring finger protein involved in the
cytolytic function of NK cells.177,178 NKLAM deficiency in mice does
not affect NK cell development or maturation, but impairs the
cytotoxic activity and cytokine production of NK cells, reducing
the ability of mice to control melanoma metastases.179 Precisely
how NKLAM regulates NK cell cytotoxicity is unclear. Although it
has been shown to mediate ubiquitination of uridine kinase like-1,
the functional significance remains unclear.178 A TRIM family E3,
TRIM29, has been shown to be induced along with NK cell
activation by the cytokines IL-12 and IL-18 and negatively regulate
NK cell activation.180 NK cell-specific deletion of TRIM29 enhances

Fig. 4 Regulation of NK cell activation by ubiquitination. Cbl-b is an
E3 that mediates the inhibitory function of TAM family of receptor
tyrosine kinases (RTKs). Upon activation by their ligands, TAM RTKs
phosphorylate and activate Cbl-b, which mediates ubiquitin-
dependent degradation of a key signaling adapter, LAT, thereby
inhibiting activation of several signaling pathways involved in the
induction of cytokines and chemokines. Another E3, c-Cbl,
negatively regulates NK cell activation by two stimulatory receptors,
NKG2D and 2B4, which involves inhibition of VAV1 via non-
degradative ubiquitination and ubiquitin-dependent NKG2D endo-
cytosis and degradation. The DUB Otub1 negatively regulates NK
cell maturation, chemokine production, and antitumor functions by
negatively regulating IL-15-stimulated AKT signaling
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IFNγ production by NK cells and promotes antiviral immunity.180

TRIM29 mediates ubiquitin-dependent degradation of TAB2, a
regulatory subunit of the protein kinase TAK1 that is required for
IFNγ induction by IL-12 and IL-18.
Several DUBs have been shown to regulate NK cells. As

discussed above, Otub1 is a DUB that regulates CD8 T cell
homeostasis and antitumor responses through controlling IL-15R
signaling and IL-15-mediated CD8 T cell priming.136 Consistent
with the role of IL-15 in NK cell regulation, Otub1 is also important
for regulating the maturation and activation of NK cells (Fig. 4).
Inducible deletion of Otub1 in adult mice using the CreER system
markedly increases the frequency of mature NK cells.136 Upon
in vitro activation by cytokines, Otub1-deficient NK cells display
increased production of the cytotoxic effector molecule granzyme
B and the chemokine CCL5, the latter of which is known to
mediate cDC1 recruitment. Consistently, the inducible Otub1
ablation greatly enhances antitumor immunity, characterized by
increased numbers of tumor-infiltrating T cells, NK cells, and cDC1,
and the intratumoral cDC1 increase in Otub1-deficient mice is
dependent on NK cells.136 Otub1 regulates NK cell function by
inhibiting IL-15-stimulated AKT ubiquitination and activation.
Another study suggests that AKT promotes granzyme B gene
expression by promoting deubiquitination and stabilization of
XBP1s, a transcription factor that cooperates with T-bet in
mediating granzyme B gene transactivation.181 These findings
implicate Otub1 as an intriguing target to be exploited for cancer
immunotherapy.
Another DUB, A20, is crucial for maintaining the survival and

homeostasis of NK cells.182 NK cell-conditional A20 knockout mice
have severe NK cell lymphopenia, although the residual A20-
deficient NK cells in the spleen are hyper-proliferative and display
an increased level of IFNγ production. The massive loss of NK cells
in NK-conditional A20 knockout mice is partially due to increased
sensitivity of A20-deficient NK cells to TNF-stimulated cell death. In
addition, A20 negatively regulates mTORC1 activation in NK cells,
and the elevated mTORC1 activity, together with enhanced TNF

sensitivity, appear to be responsible for the NK cell death in the
NK-conditional A20 knockout mice.182 A20 contains an DUB
catalytic domain and two ubiquitin-binding zinc fingers (ZFs), and
emerging evidence suggests that ubiquitin binding is a crucial
mechanism mediating A20 function.57 The NK-regulatory function
of A20 is also dependent on its ubiquitin-binding ZFs.182 Given the
crucial role of NK cells in cancer immunity, targeting ubiquitina-
tion pathways represent an attractive approach in cancer
immunotherapy.

UBIQUITIN REGULATION OF MACROPHAGE FUNCTION
Macrophages form a major population of tumor-infiltrating innate
immune cells with important roles in regulating tumor micro-
environment and antitumor immunity.183 Under different condi-
tions, macrophages differentiate into phenotypically different
states that are broadly categorized as classically activated (M1)
and alternatively activated (M2) macrophages. While M1 macro-
phages produce various proinflammatory cytokines and chemo-
kines mediating inflammatory responses, M2 macrophages
produce anti-inflammatory cytokines important for resolving
inflammation and mediating wound healing183 (Fig. 5). Tumor-
associated macrophages typically resemble M2 macrophages that
suppress antitumor immunity via different mechanisms, including
inhibition of T cell responses.183 These M2-like macrophages also
promote tumor progression and resistance to conventional
therapies and immunotherapies, thus serving as an important
target for cancer therapies. Approaches that target macrophage
recruitment, survival, activation and function, have been actively
explored for improving cancer immunotherapy.183,184 These
therapeutic efforts are associated with rapid progress in under-
standing the molecular mechanisms underlying macrophage
polarization and function.
Ubiquitination plays a vital role in regulating macrophage

activation through PRRs, which respond to various PAMPs or
DAMPs.5 Several E3 ubiquitin ligases, including TRAF6 and Peli1,
conjugate K63 ubiquitin chains required for signal transduction
of TLRs. As indicated in an earlier section, TLR signaling relies on
common adapter proteins. The adapter MyD88 transduces
signals from all TLRs, except TLR3, whereas another common
adapter, TRIF, mediates signaling from TLR3 and TLR4.5 TRAF6
mediates signal transduction from MyD88-dependent TLRs by
functioning as both an adapter and an E3 ubiquitin ligase.5

TRAF6 conjugates K63 ubiquitin chains to target proteins as well
as to itself, which is required for recruitment and activation of the
ubiquitin-dependent kinase TAK1 and its downstream targets,
IKK and MAPKs (Fig. 5). The TRAF6-dependent signaling and
proinflammatory gene induction are tightly controlled by DUBs,
such as CYLD and A20.3 Peli1 functions in both peripheral
macrophages and the central nervous system (CNS) resident
macrophages, microglia, to mediate TLR-stimulated expression
of proinflammatory cytokines and chemokines.53,185 Peli1 facil-
itates NF-κB activation by TRIF-dependent TLRs via mediating
K63 ubiquitination of a TRIF-downstream signaling adapter
RIP1.53 In microglia, Peli1 also mediates MyD88 TLR-induced
activation of MAPKs, and this function of Peli1 involves K63
ubiquitination and activation of cIAP, which in turn mediates K48
ubiquitination and degradation of a negative regulator,
TRAF3.185 Peli1 has also been shown to mediate K63 ubiquitina-
tion and activation of the transcription factor IRF5, which
contributes to the induction of M1 macrophage polarization.186

A more recent study suggests that Peli1 negatively regulates IL-
10-induced macrophage polarization to an M2 subtype, M2c, by
mediating K63 ubiquitination of IRAK1. IRAK1 ubiquitination
promotes activation of the transcription factor STAT1, which
suppresses the function of STAT3 in mediating IL-10-induced
gene expression and M2c differentiation.187 Consistently, mye-
loid cell-conditional Peli1 knockout mice display increased tumor

TRAF6
Peli1
Praja2

M1

TRAF2
TRAF3
cIAP

Deletion of TRAF2 or TRAF3
Inhibition of cIAP1 and cIAP2

Macrophage

M2

Anti-inflammatory cytokine production
Tissue remodeling
Inhibiting antitumor immunity
Tumor progression

Proinflammatory cytokine production
Immunostimulation
Promoting antitumor immunity
Tumor cell killing

Deletion of Peli1, TRIM24

Nrdp1

Peli1

IL-10

IRF5
c-Rel

IKK
MAPKs

STAT1

IL-4

CBP

TRIM24
C/EBPTLRs

A20
CYLD

STAT3

Fig. 5 Regulation of macrophage activation and polarization by
ubiquitination. E3 ligases TRAF, Peli1, and Praja2 promote TLR-
stimulated proinflammatory cytokine expression and M1 polariza-
tion of macrophages, which is opposed by the DUBs A20 and CYLD.
TRAF2, TRAF3, and cIAP form an E3 complex mediating ubiquitin-
dependent degradation of IRF5 and c-Rel, transcription factors
mediating induction of proinflammatory cytokine genes and M1
differentiation. E3 ligase Nrdp1 promotes IL-4-induced M2 gene
expression by mediating K63 ubiquitination and activation of the
transcription factor C/EBPβ. TRIM24 inhibits M2 differentiation
through ubiquitinating the acetyltransferase CBP, a mechanism that
facilitating CBP-mediated acetylation and attenuation of the M2-
promoting transcription factor STAT6. In addition to its M1-
promoting function, Peli1 negatively regulates IL-10-induced M2
differentiation. In this function, Peli1 ubiquitinates IRAK1 to trigger
its function in activating STAT1, which in turn counteracts the M2-
stimulated function of STAT3
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growth. These studies suggest that Peli1 is an E3 that promotes
M1 and inhibits M2 macrophage functions (Fig. 5).
Although TRAF family members are known to function as K63-

specific E3s, TRAF2 and TRAF3 have atypical functions in
regulating ubiquitin-dependent signaling.188 Gene targeting
studies reveal that TRAF2 and TRAF3 negatively regulate proin-
flammatory TLR responses in macrophages.189 Myeloid cell-
specific deletion of either TRAF2 or TRAF3 sensitizes mice for
colitis induction by dextran sodium sulfate, and the TRAF3
deficient mice also spontaneously develop organ inflammation
at older ages.189,190 Macrophages deficient in either TRAF2 or
TRAF3 are hyper-responsive to TLR stimulation in the production
of proinflammatory cytokines, including TNFα, IL-1b, IL-6, IL-12,
and IL-23.189 Mechanistically, TRAF2 and TRAF3 appear to form a
K48-specific E3 ubiquitin ligase complex together with cIAP (cIAP1
or cIAP2), which mediate ubiquitin-dependent degradation of
transcription factors, including c-Rel and IRF5, involved in
proinflammatory cytokine gene induction. Importantly, deletion
of TRAF2 in myeloid cells promotes M1-like function of tumor-
infiltrating macrophages, which is associated with increased
tumor infiltration with IFNγ-producing CD4 and CD8 effector
T cells and improved tumor suppression and survival in a mouse
model189 (Fig. 5). These findings suggest a role for TRAF2, TRAF3,
and cIAP in regulating macrophage activation and differentiation
and implicate potential therapeutic targets for manipulating
tumor-associated macrophage function to favor the induction of
antitumor immunity (Fig. 5). The role of Peli1 in facilitating TLR-
stimulated TRAF3 degradation is consistent with the proinflam-
matory function of Peli1.185

Several other E3 ligases have been shown to regulate
macrophage polarization and function. The E3 ligase Praja2
ubiquitinates malignant fibrous histiocytoma amplified sequence
1 (MFHAS1), a protein involved in regulation of TLR2-stimulated
activation of JNK and p38 MAPK pathways.191 Praja2 mediates
nondegradative ubiquitination of MFHAS1, which facilitates TLR2-
stimulated JNK/p38 activation and promotes macrophage polar-
ization to M1 type (Fig. 5). A TRIM family E3, TRIM24, inhibits M2
macrophage differentiation by ubiquitinating the acetyltransfer-
ase CREB-binding protein (CBP) and, thereby, facilitating CBP
association with and inhibition of, STAT6, a transcription factor
mediating induction of M2-associated genes.192 CBP-mediated
STAT6 acetylation attenuates its transcriptional function in M2
gene induction, which in turn represses M2 polarization. Myeloid
cell-specific deletion of TRIM24 promotes tumor infiltration with
M2-like macrophages and impairs infiltration with CD4 and CD8
effector T cells, thus increasing the susceptibility of mice for tumor
growth192 (Fig. 5). Converse to TRIM24, the E3 ligase Nrdp1
promotes M2 macrophage gene induction by IL-4 through
mediating K63 ubiquitination and activation of CCAAT/Enhancer-
binding protein beta (C/EBPβ).193 K63 ubiquitination of macro-
phage scavenger receptor (MSR1) by an unknown E3 also
promotes an anti-inflammatory to proinflammatory shift of IL-4-
activated macrophages.194 The K63 ubiquitinated MSR1 recruits
and activates a signaling complex composed of the ubiquitin-
binding kinase TAK1 and its downstream targets MKK7 and JNK,
and the JNK signaling axis contributes to pro-inflammatory
cytokine induction and phenotypic switch of the IL-4-activated
macrophages.194 An ATP-binding cassette family member, ABCF1,
has recently been shown to function as an E2 conjugating K63
ubiquitination chains to the protein tyrosine kinase Syk and the
TRAF member TRAF3, which promotes TLR4 endocytosis and shift
from MyD88-dependent to TRIF-dependent signaling, thereby
shifting macrophage polarization from M1 to M2.195 Collectively,
these studies demonstrate crucial roles for ubiquitination in
regulating the activation, polarization, and function of macro-
phages, highlighting the significance of targeting ubiquitin
pathways in improving cancer immunotherapy based on modula-
tion of the tumor microenvironment (Fig. 5).

UBIQUITIN REGULATION OF TUMOR-MEDIATED
IMMUNOSUPPRESSION
Ubiquitination is a well-recognized mechanism that regulates
tumor growth and progression as well as tumor microenviron-
ment.196,197 In addition, accumulating evidence suggests that
ubiquitination also regulates tumor resistance to immune
destruction and tumor-mediated immunosuppression. In particu-
lar, ubiquitination plays an important role in regulating the fate of
PD-L1, a major immune checkpoint molecule that suppresses T
cell function via ligation of PD1 on tumor-infiltrating effector
T cells.198 A cullin-RING E3 family member, cullin3-SPOP, targets
PD-L1 for ubiquitin-dependent degradation in tumor cells.101 This
ubiquitination event is regulated by cyclin D and its catalytic
partner cyclin-dependent kinase 4 (CDK4), which mediates
phosphorylation and degradation of SPOP, the substrate-binding
adapter of the cullin3-SPOP E3 complex.101 Pharmacological
inhibition of CDK4 or loss-of-function mutations in SPOP attenuate
PD-L1 ubiquitination and degradation, resulting in increased PD-
L1 expression and decreased tumor-infiltrating lymphocytes in
both mouse tumor models and human prostate cancer speci-
mens.101 The expression of PD-L1 in cancer cells is also regulated
by CKLF-like MARVEL transmembrane domain containing 6
(CMTM6), which stabilizes PD-L1 and suppresses antitumor T cell
activity.199,200 CMTM6 physically interacts with PD-L1 at the
plasma membrane, although precisely how CMTM6 stabilizes
PD-L1 is incompletely understood. One study reveals that CMTM6
knockout causes increased ubiquitination of PD-L1, which appears
to involve the action of the E3 ligase STUB1,199 and another study
suggests that CMTM6 prevents lysosomal degradation of PD-L1.200

Opposing the action of E3 ligases, specific DUBs mediate PD-L1
stabilization via deubiquitination. A recent study identified
COP9 signalosome 5 (CSN5) as a DUB that mediates deubiquitina-
tion and stabilization of PD-L1 in cancer cells.100 Initially shown to
remove the ubiquitin-like modifier Nedd8 from neddylated
proteins,201 CSN5 was later on found to also possess DUB
activity.202 Interestingly, CSN5 is required for PD-L1 stabilization
and immunosuppression stimulated by the proinflammation
cytokine TNFα. TNFα upregulates CSN5 expression through
activation of the transcription factor NF-κB p65, which directly
transactivates the promoter of the CSN5-encoding gene.100

Another DUB, USP22, also stabilizes PD-L1 in tumor cells via
deubiquitination and suppresses antitumor immunity in mouse
tumor models.203,204 While USP22 interacts with PD-L1 and
inhibits PD-L1 ubiquitination, this DUB binds and stabilizes
CSN5, suggesting that its PD-L1-regulatory function may involve
coordination with CSN5.204

Ubiquitination also regulates the resistance of cancer cells to
immunotherapy. A recent study reveals that a melanoma patient
with resistance to PD-1 blockade carries a loss-of-function
mutation in the E3 ligase FBXW7.205 Consistently, Fbxw7 deletion
or mutation in mouse tumors confers their resistance to anti-PD1
therapy. Fbxw7 is required for double-stranded RNA sensing and
IFN signaling in tumor cells, which in turn is important for
promoting antitumor immunity and immunotherapy.
Fbxw7 stabilizes the cytoplasmic RNA sensors, RIG-I and MDA5,
although the underlying mechanism is unclear.205 Given the role
of ubiquitination in regulating different signaling pathways in
cancer cells, it is likely that more E3s and DUBs are involved in
the regulation of tumor resistance to immune destruction. As
such, targeting ubiquitination pathways in tumor cells represents
an attractive approach to promote antitumor immunity and
cancer immunotherapy.

TARGETING E3S AND DUBS FOR CANCER IMMUNOTHERAPY
E3 ubiquitin ligases, which mediate substrate recognition and
dictate the specificity of ubiquitination reactions, are important
factors for pharmacological targeting in the ubiquitination
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pathways. Small-molecule inhibitors for a number of E3s have
been developed and tested in preclinical models of cancer
immunotherapy or combination therapy. Among these are
antagonists of the IAP family of E3 ligases, including cIAP1, cIAP2,
and X-linked IAP (XIAP), developed as small-molecule mimetics of
the endogenous IAP inhibitor Smac (also called Diablo).206

Originally developed as drugs to target the apoptosis-inhibitory
function of IAPs in cancer cells, the IAP antagonists have now
been shown to also potently stimulate antitumor immunity
through enhancing innate and adaptive immune responses.206

In combination therapies, IAP antagonists significantly increase
the efficacy of cancer treatment by other immunological agents or
cells, including bacillus Calmette-Guérin (BCG), cytokine-induced
killer (CIK) cells, chimeric antigen receptor (CAR) T cells, the NKT
cell inducer α-GalCer, TNFα, and PD1 blockade.207–212 These
preclinical studies highlight the potential for using IAP antagonists
as drugs in human cancer immunotherapy, and this intriguing
possibility is currently being evaluated in several early phase
clinical trials.206

Another E3 ligase that is being explored for pharmacological
targeting in cancer therapy is MDM2, which promotes tumor
growth and progression by mediating ubiquitin-dependent
degradation of the tumor suppressor p53 and p53-independent
functions.213 Recent studies suggest that MDM2 amplification is
correlated with poor clinical outcome and increased rate of
accelerated cancer progression, known as hyperprogression, after
ICI therapy.214–216 Consistently, a small molecule inhibitor of
MDM2, AMG-232, sensitizes tumor cells to T cell-mediated killing
in vitro.217 Another MDM2 inhibitor, APG-115, synergizes with PD1
blockade in a mouse model of cancer immunotherapy through
promoting M1 macrophage polarization and T cell activation.218

The latter finding is consistent with a prior report that MDM2
negatively regulates antitumor T cell responses.95 Another
important E3 ligase to be targeted for cancer immunotherapy is
the VHL E3 complex, which mediates ubiquitin-dependent
degradation of HIF1α and controlling metabolic activities and
effector function of T cells.160 A small molecule inhibitor has been
developed to block the binding of VHL to its substrate HIF1α,
although its effect on cancer immunotherapy has not been
tested.219 Since VHL-mediated HIF1α degradation suppresses the
migration and antitumor function of CD8 effector T cells,161,162 it is
likely that VHL inhibitors will promote CD8 T cell functions in
tumor microenvironment.
Small molecule inhibitors for several DUBs have also been

developed, and some of them have been shown to inhibit tumor
growth in animal models.220–223 The most extensively explored
DUB for drug development is USP7 with a large number of small
molecule inhibitors being developed.224 In addition to its well-
known function in mediating deubiquitination and stabilization
of MDM2,222 USP7 stabilizes Foxp3 and a histone acetyl
transferase, Tip60, thereby maintaining the function of Treg cells
in the immune system.165,225 Treatment of mice with different
USP7 inhibitors impairs the immunosuppressive functions of Treg
cells and promote antitumor immunity.225–227 Recently, an
anticancer chemotherapy drug, mitoxantrone, has been shown
to inhibit USP15, but the potency of USP15 inhibition by this
compound is low, and in vivo studies have not been
performed.228 Given the recent advances in small-molecule
screening technologies and DUB structural biology, it is
anticipated that specific inhibitors for more DUBs as well as E3s
will become available in the coming years.

CONCLUDING REMARKS
Ubiquitination has become a well-recognized mechanism that
regulates signal transduction involved in a broad range of
immune system functions, ranging from antigen processing and
presentation, T cell activation and tolerance, and NK cell function

to innate immune functions mediated by macrophages. A large
number of E3 ubiquitin ligases and DUBs have been characterized
in different immune cell types, as well as cancer cells, as pivotal
regulators of antitumor immunity and tumor-mediated immuno-
suppression. An increasing number of preclinical studies have
demonstrated the effectiveness of targeting these ubiquitin-
associated factors for improving the efficacy of cancer immu-
notherapy. Given the existence of more than 600 E3s and around
100 DUBs in mammalian cells, the ubiquitin-dependent therapeu-
tic approach offers plenty of opportunities in drug development
for cancer treatment. Therefore, targeting ubiquitin-dependent
signaling represents an attractive new approach that comple-
ments the currently available approaches in cancer immunother-
apy, such as the ICIs.
For future studies, it is important to characterize novel E3s and

DUBs involved in the regulation of antitumor immunity and
elucidate the mechanisms of their functions. In addition to animal
models, human primary cells provide an important experimental
system for assessing the role of the identified factors in regulating
human immune cell functions. For further translating the
laboratory discoveries into clinical practices, a major task is to
develop specific inhibitors targeting more E3 ligases and DUBs,
especially those involved in the regulation of antitumor immunity.
The advances in small molecule inhibitor development will in turn
promote more preclinical studies as well as clinical trials to
characterize ubiquitin-based drugs to be employed in the clinic for
cancer immunotherapy. In addition to developing small molecule
inhibitors, more effort should also be spent on preclinical studies
employing the adoptive cell therapy approach, in which specific
E3s and DUBs can be knocked out or knocked down for improving
the therapeutic efficacy. This latter approach is particularly
attractive for adoptive T cell and NK cell therapies based on
chimeric antigen receptors.
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