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Seryl tRNA synthetase cooperates with POT1 to regulate
telomere length and cellular senescence
Yingxi Li1, Xiyang Li1, Mei Cao1, Yuke Jiang1, Jie Yan1, Ze Liu1, Rongcun Yang1, Xu Chen2, Peiqing Sun3, Rong Xiang1,
Longlong Wang1,2 and Yi Shi 1,2

Deregulated telomere length is a causative factor in many physiological and pathological processes, including aging and cancer.
Many studies focusing on telomeres have revealed important roles for cooperation between the Shelterin protein complex and
telomerase in maintaining telomere length. However, it remains largely unknown whether and how aging-related stresses, such as
deregulated protein homeostasis, impact telomere length. Here, we explored the possible roles of aminoacyl tRNA synthetases
(AARSs), key enzymes catalyzing the first reactions in protein synthesis, in regulating telomere length and aging. We selected seryl
tRNA synthetase (SerRS) since our previous studies discovered expanded functions of SerRS in the nucleus in addition to its
canonical cytoplasmic role in protein synthesis. In this study, we revealed that overexpression of SerRS promoted cellular
senescence and inhibited the growth of cervical tumor xenografts in mice by triggering the senescence of tumor cells. In the
nucleus, SerRS directly bound to telomeric DNA repeats and tethered more POT1 proteins to telomeres through a direct interaction
between the UNE-S domain of SerRS and the OB1 domain of POT1. We further demonstrated that SerRS-induced enrichment of
POT1 prevented the recruitment of telomerase to telomeres, resulting in progressive telomere shortening. Our data suggested a
possible molecular link between protein synthesis and telomere length control, the deregulation of which may be associated with
aging and cancer.

Signal Transduction and Targeted Therapy            (2019) 4:50 ; https://doi.org/10.1038/s41392-019-0078-1

INTRODUCTION
Human telomeres comprise tandem repeats of double-stranded
TTAGGG repeats that terminate in a single-stranded 3' overhang.
In human somatic cells, telomere sequence is progressively lost
with each cell division, and this shortening may eventually trigger
cell senescence.1,2 Deregulation of telomere-length maintenance
has been observed in cancer and aging.3 In stem cells and cancer
cells, which are able to maintain telomere length during cell
division, a specialized reverse transcriptase named telomerase
adds telomeric repeats to the chromosome ends.4 Overexpression
of telomerase, which is usually not expressed in normal cells,
results in an increased incidence of spontaneous cancer in mice.5,6

In addition to telomerase, the length of telomeres is also
controlled by a telomere complex composed of six proteins,
known as Shelterin, which binds to and protects the telomere
from activating DNA damage signaling and double-strand break
repair pathways.7

As a key protein complex regulating the recruitment of
telomerase to telomeres, Shelterin is composed of six proteins,
namely, TRF1, TRF2, TIN2, RAP1, POT1, and TPP1.8–10 In the
Shelterin complex, POT1 is the only protein that binds single-
stranded telomeric DNA with high affinity and specificity.11,12 This
binding is mediated by the two oligonucleotide/oligosaccharide
binding folds (OB-folds) of POT1 at the N-terminus, while the
C-terminal portion of POT1 binds TPP1.13 Recent studies have

indicated that both POT1 and TPP1 are critical factors for the
recruitment of telomerase. POT1 has been shown to negatively
regulate telomerase engagement. Depletion of POT1 or over-
expression of OB1-truncated POT1 causes rapid telomerase-
dependent telomere elongation.14 TPP1 can directly interact with
telomerase through a protein surface termed the TEL patch.15

Cells lacking the TPP1/telomerase interaction undergo progressive
telomere shortening.16,17 However, it remains largely unknown
whether there are other regulators that bridge aging-related
intrinsic and extrinsic stimuli to control telomere length.
Protein synthesis has been shown to affect lifespan. Many

mutations in or depletions of the translational machinery were
found to impact the lifespan of various organisms.18–21 However,
how altered translation machinery affects lifespan is not fully
understood. The nutrient-responsive target of rapamycin (TOR)
signaling pathway, which has a conserved role in modulating
longevity, has distinct roles in regulating translation initiation and
elongation.22–25 As a key family of enzymes that catalyze the first
reaction in protein synthesis, namely, adding amino acids to
specific tRNAs, aminoacyl tRNA synthetases (AARSs) gained many
new domains during evolution, expanding their functions beyond
translation.26 Interestingly, some members, such as leucyl tRNA
synthetase (LeuRS), have been reported to mediate the amino acid
signals to the TOR pathway.27 We were specifically interested in
another member, i.e., seryl tRNA synthetase (SerRS). Our previous
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studies have shown that vertebrate SerRS acquired a C-terminal
domain unique to SerRS (namely, the UNE-S domain), which
harbors a nuclear localization signal (NLS) and may divert a
portion of SerRS proteins into the nucleus.28 Nuclear SerRS can
directly bind the promoter of VEGFA, suppressing its transcription
and therefore inhibiting angiogenesis.29–31 Our unpublished
chromatin immunoprecipitation (ChIP) data suggested that SerRS
may bind more DNA loci on regions of chromosomes, including
telomeres. Here, we explored the impact of SerRS on cellular
senescence and investigated the underlying SerRS-mediated
regulation of telomere length through its interaction with
telomeric DNA and Shelterin proteins.

RESULTS
Nuclear SerRS decreases the length of telomeres and promotes
cellular senescence
It has been reported that the rate of protein synthesis decreases
during cellular aging due to the declined efficiency of the
components in the protein synthetic machinery, including
ribosomes and elongation factors.18 However, as the key
enzymes catalyzing the first reaction in protein synthesis, i.e.,
adding amino acids to their cognate tRNAs, the role of AARSs in
aging remains largely unknown. To obtain insights into this
question, we studied one AARS, SerRS, to test whether AARSs
regulates cellular senescence. We overexpressed SerRS in normal
fibroblasts, BJ cells, and in a HeLa cell strain, HeLa 1.2.11, which
harbors long telomere repeats (~20 kb). We observed an
unexpected increase in SA-β-gal activity (Fig. 1a, b) and
increased levels of cellular senescence signaling molecules, such
as P21, P16, and β-galactosidase (β-Gal)32–34 at late cell passages
of both cells (Fig. 1c); these changes were even observed in HeLa
1.2.11 cells, which undergo little replicative senescence (Fig. 1b),
suggesting a role of SerRS in promoting cellular senescence
beyond its role in translation. Our previous studies have shown
that in addition to its canonical function in protein biosynthesis,
vertebrate SerRS evolved a noncanonical nuclear function to
directly bind DNA and regulate the transcription of target genes
involved in angiogenesis.28 We hypothesized that nuclear SerRS
might promote cellular senescence. Given that telomere length
control is a key event that triggers cellular senescence, we first
examined the correlation between nuclear SerRS and telomere
length.
We chose two strains of telomerase-positive HeLa cells that

differ in telomere length, i.e., HeLa VST (for Very Short Telomeres)
cells with an average telomere length of ~5 kb and HeLa
1.2.11 cells, which have longer telomeres (~20 kb). We observed
similar levels of cytoplasmic SerRS proteins in both cells (Fig. 1d).
However, as reported,28 we observed ~10% SerRS proteins in the
nucleus of HeLa VST cells, while there were much lower levels of
nuclear SerRS proteins in HeLa 1.2.11 cells (Fig. 1d). These results
were further confirmed by immunofluorescent staining and
confocal microscopy (Fig. 1e, f), suggesting that the different
lengths of telomeres in these two cell strains may relate to the
difference in levels of nuclear SerRS.
To further investigate whether nuclear SerRS regulated the

length of telomeres, we established a stable SerRS-overexpressing
HeLa 1.2.11 cell strain that showed increased SerRS expression in
both the nucleus and the cytoplasm (Fig. 1g). We continuously
passaged the cells for 45 population doublings (PD). Strikingly, the
telomere length detected by Telomere Restriction Fragment (TRF)
analysis showed a progressive reduction (from ~16 kb to ~9 kb) in
SerRS-overexpressing HeLa 1.2.11 cells when compared with
empty vector transfected cells, which showed almost no change in
the length of telomere (Fig. 1h, i). The telomere length was also
examined by the metaphase chromosome spreads followed by a
telomeric quantitative fluorescent in situ hybridization (Q-FISH)
assay (Fig. 1j, k). Significant telomere shortening was viewed by

reduced FISH signals, further indicating that telomeres were
globally shortened when SerRS was overexpressed. Consistently,
we also observed a significant increase in the appearance of
telomere-free chromosome ends, which is also indicative of
telomere shortening, in SerRS-overexpressing cells (Fig. 1l).
Taken together, these results suggest that nuclear SerRS

negatively regulated telomere length and thus led to cellular
senescence.

SerRS induces tumor cell senescence to inhibit the growth of
cervical cancer xenografts in mice, and its expression correlates
with better prognosis in cancer patients
Tumors require the active biosynthesis of macromolecules,
including proteins, to fuel tumor cell growth and proliferation.
We analyzed the correlation between the levels of AARSs and
the relapse-free survival (RFS) of breast cancer patients in
previously generated microarray data sets from 1764 breast
cancer patients.35 As expected, high expression of many AARS
members tightly correlated with a poor prognosis of cancer
patients (Fig. 2a). Other AARS family members, except SerRS,
showed no such tight correlation (Supplementary Fig. 1). In
contrast, high expression of SerRS shows a very tight correlation
with better prognosis of cancer patients (Fig. 2a), suggesting a
novel role of SerRS in addition to protein biosynthesis in
suppressing tumor progression. Consistently, we observed that
the overexpression of SerRS induced the senescence of HeLa
cells (Fig. 1b, c). These results further supported an important
function of SerRS in balancing protein synthesis and telomere
shortening-induced cellular senescence to prevent the malig-
nant proliferation of cells.
To further test whether SerRS could suppress tumor progression

in vivo, we used a tumor xenograft system; HeLa cells that were
stably transfected with SerRS or an empty vector were xeno-
grafted into immune-deficient mice and monitored. Overexpres-
sion of SerRS in HeLa cells dramatically inhibited the growth of the
tumor xenograft (Fig. 2b, c). The levels of the senescence
molecular markers β-Gal, P21, and P16 were significantly increased
in SerRS-overexpressing tumor cells in the tumor xenografts
(Fig. 2d, e), suggesting that a high level of SerRS was able to
induce the senescence of tumor cells, which led to the inhibited
growth of tumor xenografts in mice. Taken together, the in vivo
data further confirmed that SerRS may function as a tumor
suppressor by promoting cellular senescence.

SerRS directly binds telomeric repeats
Next, we explored how SerRS regulated the length of telomeres.
We first investigated whether nuclear SerRS was able to bind to
telomeres directly. The colocalization of SerRS with telomeres
was examined by immunofluorescent staining for SerRS and FISH
for telomeres in HeLa cells. We found that in the nucleus of HeLa
VST cells, in addition to binding the promoters of target genes
such as VEGFA,29 there was a portion of SerRS protein that
localized to telomeres, whereas in HeLa 1.2.11 cells, there was
much less SerRS protein in the nucleus (Fig. 3a, b). To further
confirm the binding of SerRS to telomeres, Flag-tagged SerRS or
Flag-tagged Shelterin TRF1 (as a positive control) was transfected
into HeLa 1.2.11 cells (Fig. 3c). ChIP assays were performed with
nuclear extracts using an anti-Flag antibody or a negative control
IgG. The precipitated DNA fragments were then hybridized with
a digoxin-labeled telomere-specific probe. As shown in Fig. 3d,
the SerRS antibody coprecipitated telomere DNA fragments, as
did the TRF1 antibody, suggesting the binding of SerRS to
telomeres.
Given the capacity of SerRS to directly interact with DNA,29 we

next examined whether SerRS directly interacted with telomeric
DNA repeats. Using an electrophoretic mobility shift assay
(EMSA) with purified recombinant SerRS protein, we found
that SerRS specifically bound telomeric repeats and its known
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DNA-binding sequence from the VEGFA promoter,29 whereas
there was no binding of SerRS with a random DNA sequence
(Fig. 3e). Thus, SerRS could bind the telomere through direct
interaction with telomeric DNA repeats.

SerRS directly interacts with Shelterin POT1
The Shelterin complex has been shown to cooperate with
telomerase to maintain telomere length homeostasis.36 Among
the six proteins in Shelterin, POT1 was reported to bind a single-
stranded telomere 3′ overhang via its N-terminal OB fold and
therefore inhibit the recruitment of telomerase. Depletion of POT1
leads to rapid elongation of telomeres in telomerase-positive
cells.37 In a high-throughput protein-protein interaction screening
for Shelterin-associated proteins, SerRS was identified as a
candidate protein that may interact with POT1.38

To confirm the interaction between SerRS and POT1, we first
examined the localization of these two proteins in HeLa VST cells.
SerRS was partially colocalized with POT1 in the nucleus (Fig. 4a).
The interaction between SerRS and POT1 was further confirmed
by their Co-IP from HeLa cells. As shown in Fig. 4b, V5-tagged
POT1 was able to be coprecipitated with Flag-tagged SerRS via
Flag antibody-mediated isolation; the reverse experiment with a
V5 antibody produced a complementary result. In HeLa VST cells,
the endogenous SerRS proteins could be coprecipitated with
endogenous POT1 by POT1 antibody (Fig. 4c). Taken together,
these results strongly suggested that SerRS interacted with POT1
in the nucleus.
To examine whether SerRS directly interacts with POT1, we

purified recombinant POT1 with a His6 tag at its C-terminal end
and recombinant GST-fused SerRS proteins. The GST pull-down
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assay clearly showed the direct interaction between SerRS and
POT1 (Fig. 4d). Further domain mapping showed that SerRS
interacts with POT1 through the UNE-S domain (Fig. 4d), which
harbors an NLS that was appended to vertebrate SerRS during
evolution.28 Our domain mapping assay also showed that POT1
bound to SerRS through its OB1 domain (Fig. 4e), through which
POT1 bound to single-stranded telomere DNA.39

Taken together, these results suggest that SerRS directly
interacts with POT1 in the nucleus and may regulate telomere
length through POT1.

SerRS tethers more POT1 to telomeres
Next, we determined whether SerRS could influence the recruit-
ment of POT1 to telomeres, given that SerRS can directly bind
telomeric DNA repeats and can interact with POT1 via the UNE-S
domain, which is not involved in DNA interaction.28 To address
this question, we overexpressed V5-tagged SerRS in HeLa
1.2.11 cells, which had a very low level of endogenous SerRS in
the nucleus. We observed an enrichment of POT1 on telomeric
DNA, as detected by a ChIP assay that was compared with empty
vector-transfected cells (Fig. 5a, b); however, overexpression of
SerRS did not change the expression of POT1 (Fig. 5c). To confirm
these findings, we also examined POT1 localization at telomeres by
IF and FISH staining in HeLa 1.2.11 cells transfected with the SerRS
vector or the empty vector. As shown in Fig. 5d, POT1 showed
significantly increased recruitment to telomeres in SerRS-
overexpressing cells. Quantitative analysis indicated that the
average percentage of POT1-associated telomere foci was approxi-
mately 55.3% in SerRS-overexpressing cells, which was much more
than what was observed in control cells (~30%) (Fig. 5e).
Additionally, a higher number of cells showed increased POT1-
associated telomeres upon SerRS overexpression (Fig. 5f). Thus,
nuclear SerRS can tether more POT1 protein to telomeric DNA.

SerRS prevents the recruitment of telomerase to telomeric DNA
POT1 has been reported to regulate the accessibility of telomerase
to telomeric DNA through DNA binding competition.40 We next
investigated whether POT1 tethered on telomeric DNA by SerRS
can prevent the recruitment of telomerase. To test this hypothesis,
we utilized FISH assays to detect the abundance of telomerase on
telomeres via hybridizing the RNA component of telomerase, i.e.,
TERC,41 while the telomeres were counterstained by immuno-
fluorescent staining of the Shelterin complex protein TRF1. HeLa
1.2.11 cells were transfected with the SerRS expression vector or
an empty vector and then synchronized at the S phase, when
telomerases are recruited to telomeres.42 We observed that
overexpression of SerRS resulted in fewer telomerases being

recruited to the telomeres (Fig. 6a, b). These data suggested that
SerRS promoted the recruitment of POT1 to the telomere,
blocking the access of the telomerase.
In summary, our data revealed a noncanonical role of SerRS in

controlling telomere length. Once SerRS enters the nucleus, it can
directly bind telomeric DNA repeats and tether more POT1 protein
on telomeres, which prevents the engagement of telomerase,
resulting in progressive telomere shortening and cellular senes-
cence, thus leading to tumor suppression (Fig. 6c).

DISCUSSION
During evolution, AARSs gained many new domains and
expanded their functions beyond their canonical functions in
protein biosynthesis.26 These expanded functions make AARSs a
good bridge between protein homeostasis (proteostasis) and
other cellular and biological processes, such as cellular senescence
and aging. Many recent studies revealed that some AARS
members regulate longevity-related pathways. As a well-known
example, LeuRS has been shown to regulate the amino acid signal
in conserved mTORC1 signaling that is a well established major
regulator of lifespan.43 Here, we revealed another mechanism
through which AARSs can regulate cellular senescence through
direct regulation of telomere length. We revealed that nuclear
SerRS directly binds to telomeric DNA repeats and recruits POT1
protein to the telomere, which prevents the engagement of
telomerase, and results in progressive telomere shortening and
cellular senescence.
UNE-S is a unique domain at the carboxyl-terminus of SerRS in

all vertebrates, from fish to humans.44 Our previous studies have
revealed that the UNE-S domain harbors a robust NLS, which
directs SerRS into the nucleus where it participates in vascular
development.28 Here, we discovered a novel role for the UNE-S
domain in the interaction with the Shelterin protein POT1, which
is able to trigger telomere shortening and senescence. This result
indicates more complicated biological roles were conferred to
SerRS during evolution by the acquisition of a multifunctional
domain.
As a member of the Shelterin complex, POT1 binds single-

stranded telomeric DNA with high affinity and specificity.39 This
binding is mediated by the two OB domains of POT1 at the
N-terminal end of the protein.45 The domain mapping analysis
showed that the OB1 domain of POT1 was required for SerRS to
interact with POT1. Previous studies showed that overexpression
of OB1-deleted POT1 (POT1-ΔOB) resulted in rapid telomere
elongation, highlighting the important role of OB1 in POT1-
mediated telomere length control.14 According to our results,

Fig. 1 Nuclear SerRS promotes cellular senescence and telomere shortening. a SA-β-gal activity determined by X-gal staining in 35 population
doublings (PD35) of BJ cells stably transfected with SerRS (SerRS) or empty vector (Vector). Scale bars represent 100 μm. Quantification of the
percentage of SA-β-gal positive cells (SA-β-gal+ cells) is shown in the right panel. Data are represented as the means ± SEM (n= 10). ***P <
0.001, two-tailed Student’s t-test. b SA-β-gal activity assay on different PDs of HeLa 1.2.11 cells stably transfected with SerRS or empty vector.
Quantification of the percentages of SA-β-gal+ cells is shown in the right panel (means ± SEM, n= 10, **P < 0.01, two-tailed Student’s t-test).
c Immunoblot showing the levels of markers of cellular senescence in BJ or HeLa 1.2.11 stable cells at the indicated PDs. d The protein levels of
SerRS in the cytoplasmic and nuclear fractions extracted from HeLa cells with very short telomeres (VST) or long telomeres (1.2.11) were
analyzed by immunoblot. Lamin A/C and α-tubulin served as nuclear and cytoplasmic markers, respectively. WCL, whole cell lysate. e Nuclear
SerRS proteins in HeLa VST and HeLa 1.2.11 are shown by immunofluorescent staining. Scale bars represent 5 μm. f Quantification of the
relative levels of nuclear SerRS protein shown in (e). Data are represented as the means ± SEM (n= 10). ***P < 0.001, two-tailed Student’s t-test.
g Immunoblot to show the levels of SerRS proteins in the cytoplasmic and nuclear fractions of indicated HeLa 1.2.11 stable cells. h HeLa
1.2.11 cells stably transfected with the SerRS expression vector or the empty vector were continuously passaged for the indicated PDs. The
telomere lengths were examined by telomere restriction fragment (TRF) analysis. i The average telomere lengths from h were quantified by
GelPro analysis software. Data are represented as the means ± SEM (n= 3). *P < 0.05, **P < 0.01, two-tailed Student’s t-test. j Representative
images of the telomeres from metaphase chromosomes in indicated HeLa 1.2.11 cells analyzed by Q-FISH assay using a telomeric
Cy3-(CCCTAA)3 PNA probe (red). Signal-free ends are indicated by arrows. Insets are magnified examples of individual chromosome. k Q-FISH
images in j were quantified by TFL-TELO software. The distributions of individual telomeres with different lengths, which are represented by
arbitrary fluorescence units, from a total of 20 metaphase cells per treatment were displayed. l Quantification of chromosome ends lacking a
detectable telomeric signal in j, which is indicative of telomere shortening. Data are shown as the means±SEM (n= 15) from three
independent experiments. ***P < 0.001, two-tailed Student’s t-test
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SerRS may also be involved in this process. However, it is still
unknown how the SerRS-POT1 interaction cooperates with the
POT1-TPP1 interaction to regulate telomere length homeostasis. It
is also unknown how proteostasis stress alters SerRS nuclear
import and therefore regulates telomere length.

MATERIALS AND METHODS
Cell culture
HeLa 1.2.11, HeLa VST and 293T cells were cultured in Dulbecco’s
modified Eagle’s medium (DMEM) with 4.5 g/L glucose (Biological
Industries, Israel), supplemented with 10% fetal bovine serum
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(FBS) (Biological Industries), 100 U/mL penicillin and 100 mg/mL
streptomycin (Gibco, Grand Island, NY, USA) at 37 °C and 5% CO2.
BJ cells were kindly provided by Peiqing Sun and cultured in
EMEM supplemented with 10% FBS, 100 U/mL penicillin and
100mg/mL streptomycin.

Tumor xenograft and immunohistochemistry
HeLa cells (6×106 cells) stably expressing SerRS or stably
transfected with an empty vector were injected subcutaneously
into six-week-old female NOD/SCID mice to establish a mouse
cervical cancer xenograft model. Tumor volumes were determined
by measuring the length and width of the xenografts with a
Vernier caliper and calculated using the formula (length×width2)/
2. When mice were sacrificed, tumor xenografts from each mouse
were dissected and used for further analyses. The sections of
xenografts were stained with an anti-P21 antibody (Proteintech,
China) at a 1:50 dilution, an anti-P16 antibody (Proteintech, China)
at a 1:50 dilution and an anti-β-gal antibody (Proteintech, China) at
a 1:50 dilution. After washing the samples, they were incubated
with biotin-conjugated secondary antibodies, which was followed
by incubation with streptavidin-HRP; finally, they were visualized
with a 3,3’-diaminobenzidine (DAB) substrate (ZSGB BIO, Beijing,
China). Images were taken using an Olympus microscope
(Olympus, Tokyo, Japan). The H-score was used to quantify P21,
P16 and β-gal expression in tumor tissues, which was calculated

by multiplying the staining area (scored as 1, 2, 3 and 4; 1 for
0–25%, 2 for 25%–50%, 3 for 50%–75%, and 4 for 75%–100%
positively stained areas) with the staining intensity (negative,
weak, moderate and strong were scored as 1, 2, 3, and 4 based on
color density, respectively). Student’s t-tests were performed for
statistical analysis.

Plasmids
For the construction of the pFLAG-SerRS, pFLAG-TRF1 and
pcDNA6c-POT1 plasmids, human SerRS, TRF1 and POT1 genes
were cloned from HEK293T cells by RT-PCR and inserted into the
pFLAG-CMV2 vector (Sigma-Aldrich, St Louis, MO, USA) or the
pCDNA6c vector (Thermo-Fisher Scientific, Waltham, MA, USA). For
purifying recombinant SerRS and POT1, the coding sequences for
SerRS and POT1 were subcloned into both the pET20b vector
(Merck, Temecula, CA, USA) and the pGEX-6p-1 vector (GE
Healthcare Bio-Sciences, Uppsala, Sweden).

Analysis of senescence-associated beta-galactosidase (SA-β-gal)
activity
The activity of SA-β-gal in SerRS-overexpressing BJ cells was
determined using 5-bromo-4-chloro-3-indolyl P3-D-galactoside
(X-gal) following the protocol described in a kit (Beyotime, China).
SA-β-gal-positive cells were counted under a microscope and
expressed as the % of total cells.
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Nuclear fractionation analysis
Nuclear fractionation was carried out as previously described by
Xu et al.28 Cells were harvested after 24 h, and the cytoplasmic
and nuclear fractions were separated and extracted by using a
NE-PER Nuclear and Cytoplasmic Extraction Kit (Thermo-Fisher
Scientific). SerRS was detected with an anti-SerRS antibody
(made in our lab). An anti-Lamin A/C antibody (Cell Signaling
Technology, Danvers, MA, USA) and an α-tubulin antibody

(Proteintech, China) were used to identify nuclear and cytoplas-
mic markers, respectively.

Telomere restriction fragment analysis by Southern blot
The telomere restriction fragment (TRF) analysis was performed
using a TeloTAGGG Telomere Length Assay kit (Roche Life Science,
Switzerland) with slight modifications. Briefly, 2 μg of genomic
DNA was extracted from HeLa cells using a DNeasy Blood & Tissue
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Kit (QIAGEN, Germany) and digested with a Hinf I and Rsa I
enzyme mixture overnight at 37 °C. Then, each digested DNA
sample was loaded onto a 0.8% agarose gel and run at 100 V for
3 h. DNA was denatured, neutralized, and then blotted onto the
nylon membrane (Sigma) by capillary transfer using 20× saline
sodium citrate (SSC) buffer for 20 h at room temperature. After
transfer, DNA was fixed on the wet blotting membrane by 120 mJ
UV-crosslinking and hybridized with a DIG-labeled (CCCTAA)4
oligo probe in hybridization buffer overnight at 37 °C. Then, the
membrane was washed and incubated with anti-DIG-AP (Roche, at
1:4000 dilution) and visualized with an imaging system, Tanon-
5200 (Tanon, Beijin, China). The mean TRF length can be obtained

by comparing the mean sizes of the smeared bands to the
molecular weight markers using the GelPro analyzer.

Coimmunoprecipitation
HeLa cells were plated in a 10-cm dish and transiently transfected
with 3 μg of pFLAG-plasmid and 3 μg pcDNA6C-plasmid by
Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA). After 24 h of
posttransfection, cells were lysed by sonication in IP buffer (20 mM
Tris–HCl pH 7.5, 150mM NaCl, 2 mM EDTA, 0.1% Triton X-100 and
protease inhibitor cocktail (Roche)). Immunoprecipitation was
carried out by incubating the supernatants with an anti-FLAG
antibody (Sigma, #F1804, at 1:3000 dilution) or an anti-V5
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antibody (Invitrogen, #46-1157, at 1:3000 dilution), followed by
incubation with protein G agarose (Thermo-Fisher Scientific) at
4 °C overnight. After being washed three times, the recombinant
proteins were eluted and detected by western blotting with an
anti-FLAG antibody or an anti-V5 antibody. For the co-IP of
endogenous POT1 and SerRS, 2 µg of anti-POT1 antibody (Abcam,
#ab194480) and 2 µg of anti-SerRS antibody were used.

Protein expression and purification
PET-20b-SerRS and pET-20b-POT1 plasmids were used to trans-
form E. coli BL21 (DE3) cells (CWBIO, Beijing, China). The
expression of recombinant proteins was induced by 1mM IPTG
(Thermo-Fisher Scientific) for 8 h at 25 °C. Cells were harvested and
lysed by sonication in lysis buffer (50 mM NaH2PO4 pH 8.0,
300mM NaCl, 10 mM imidazole, 2 mg/ml lysozyme, protease
inhibitor cocktail). The supernatants were incubated with Ni-NTA
agarose beads (Qiagen) overnight at 4 °C. The beads were
consecutively washed with wash buffer containing 20mM and
40mM imidazole. The recombinant proteins were eventually
eluted with elution buffer containing 100mM imidazole and were
dialyzed to remove imidazole.
For the expression of GST-tagged proteins, pGEX6P-1-SerRS

and pGEX6P-1-POT1 vectors were used to transform E. coli BL21
(DE3) cells. GST-tagged protein purification was carried out using
glutathione agarose (Thermo-Fisher Scientific), and eluting was
performed with phosphate-buffered saline (PBS) buffer contain-
ing 20 mM reduced glutathione (Sigma-Aldrich). The purities of
the recombinant proteins were assessed by SDS-PAGE

electrophoresis and Coomassie blue staining. The protein
concentrations were measured by NanoPhotometer (IMPLEN,
Munich, Germany).

GST pulldown
GST pulldown assays were carried out, as previously
described.29 Briefly, GST-fusion proteins bound to beads were
incubated with 0.5 μM purified recombinant proteins in 500 µl
of GST pulldown buffer (150 mM NaCl, 20 mM HEPES pH 7.9,
0.5 mM EDTA, 0.1% Triton X-100, 10% glycerol, 1 mM DTT)
overnight at 4 °C. After being washed 5 times with pulldown
buffer, the proteins bound to the beads were analyzed by
western blot, using an anti-His (Proteintech, #66005-1-Ig, at
1:1000 dilution) or an anti-GST (Proteintech, #10000-0-AP, at
1:1000 dilution) antibody.

Immunofluorescence (IF) and fluorescent in situ hybridization
(FISH)
Cells grown on coverslips were fixed with 4% paraformaldehyde
and permeabilized in 0.25% Triton X-100 for 10 min at room
temperature. After incubation with blocking buffer (5% goat
serum, 0.1% Tween-20, PBS) for 1 h, cells were incubated at 4 °C
overnight with anti-SerRS (made in the lab; 1:100 dilution) or anti-
POT1 (Santa Cruz, CA, USA; 1:100 dilution) antibodies. Coverslips
with cells were washed three times before a 1 h incubation at
room temperature with secondary antibodies (goat anti-rabbit IgG
or goat anti-mouse IgG antibodies conjugated with either
Alexa488 or Alexa594). Cells were then washed and stained with
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0.1 μg/mL 4,6-diamidino-2-phenylindole (DAPI, Sigma-Aldrich) and
mounted onto glass slides with ProlongGold Antifade Reagent
(Thermo-Fisher).
For IF staining combined with telomere FISH, after fixation,

permeabilization and washing with PBS, cells were dehydrated
sequentially in 70%, 90%, and 100% ethanol for 2 min each. A Cy3-
OO-(CCCTAA)3 PNA telomere probe (Panagene, Korea) was added
to the glass slides in hybridization buffer (70% formamide, 10 mM
Tris-HCl pH 7.2, 1×blocking reagent (Roche)). After denaturation
for 3 min at 80 °C, slides were hybridized for 2 h at room
temperature in a humidified chamber and then washed twice
with wash buffer (70% formamide, 0.1% bovine serum albumin,
10mM Tris–HCl pH 7.2) for 15 min each and three times with PBST
(0.1% Tween 20 in PBS) for 5 min each prior to mounting and
imaging.
For IF staining combined with telomerase RNA FISH, cells were

fixed in 4% formaldehyde, processed in sequential dehydration
solutions containing 70, 90%, and 100% ethanol, and then
rehydrated in 2×SSC buffer with 50% formamide. Prehybridization
was performed in a 2×SSC solution containing 10% dextran sulfate,
2mM vanadyl ribonucleotide complex, 0.002mg/mL nuclease-free
BSA, 1mg/mL E. coli tRNA, 1 U/μL RNasin, and 50% deionized
formamide for 1 h at 37 °C in a humidified chamber. For in situ
hybridization, the cells were hybridized in the prehybridization
solution by incubation with a mixture of three Cy3-conjugated
hTERC probes (50 ng/probe/sample) (Sangon Biotech, Shanghai,
China) overnight at 37 °C. After washing sequentially with 50%
formamide in 2×SSC solution at 37 °C and PBS at room temperature,
the cells were incubated with a TRF1 antibody (Abcam, #ab10570,
1:100) following the IF protocols described above.
Cell images were acquired with an Olympus FV1000 microscope

(Tokyo, Japan) using a 100× objective. All image files were
randomly assigned coded names to allow blinded scoring for spot
colocalization and fluorescence intensity quantification. The
sequences for the hTERC probes are as follows: hTERC1 (5′
GCT*GACATTTTTGTTTGCTCAGAATGAACGGGGAAGGCGGCAGGCC
GAG GCT*T 3′), hTERC2 (5′ CT*CCGTTCCTCTTCCGCGGCCTGAAAG
GCCGAACC TCGCCCCGCCCCCGAGT*G 3′), hTERC3 (5′ AT*GTG
TGAGCCGAGCCTGGG TGCACGCCCACAGCTCAGGGAACGCGCCGC
GCT*C 3′). The * indicates a Cy3-conjugated T.

Metaphase-FISH
After the cell density reached 70–80% confluence, colcemid
(0.1 μg/ml, Sigma-Aldrich) was added to the medium for 2 h. Cells
were harvested with trypsin-EDTA, washed with PBS, and
resuspended in 75 mM KCl at 37 °C for 30min. Then, the cells
were fixed with 2 ml of fresh cold fixative solution (methanol:
acetic acid, 3:1) and mixed carefully by inverting the tube. Cells
were harvested by centrifugation, and the fixation step was
repeated. Finally, the cell suspension was dropped onto glass
slides and incubated at 80 °C for 3 min; then, the glass slides were
left to dry overnight. Slides were immersed in PBS for 5 min, fixed
with 2% formaldehyde and dehydrated sequentially in 70, 90, and
100% ethanol for 2 min each. A Cy3-OO-(CCCTAA)3 PNA telomere
probe or a FITC-OO-(CCCTAA)3 PNA telomere probe was added to
the glass slides in hybridization buffer containing 70% formamide,
10mM TrisHCl pH 7.2, 1×blocking reagent and PBS. After
denaturation for 3 min at 80 °C, slides were hybridized for 2 h at
room temperature in a humidified chamber, washed twice with a
solution of 70% formamide, 0.1% bovine serum albumin, and
10mM Tris-HCl at pH 7.2 for 15min each, and then washed three
times with TBST for 5 min each. Glass slides were dehydrated
sequentially with 70, 90, and 100% ethanol again, counterstained
with 0.1 μg/mL DAPI, and then mounted onto glass slides with
ProlongGold Antifade Reagent. Photos were taken using an
Olympus FV1000 fluorescence microscope. The number of
signal-free ends per cell in metaphase was determined by manual
inspection of the same metaphase images that were used for

telomere signal-intensity quantification. Statistical significance was
analyzed with a two-tailed Student’s t test.

Q-FISH
Metaphase-FISH was performed as described above. Quantitative-
FISH analysis was performed using TFL-TELO image analysis
software. The distributions of fluorescence intensities, which are
shown in arbitrary fluorescence units, of individual telomeres from
a total of 20 cells in metaphase per treatment were displayed.

Chromatin immunoprecipitation (ChIP) and Dot-blot
ChIP was carried out using a ChIP-IT Express Enzymatic Kit (Active
Motif). Briefly, cells grown to 70–80% confluence were cross-linked
with 1% formaldehyde for 10 min; crosslinking was stopped by the
addition of glycine to a final concentration of 0.125 M, which was
followed by incubation for 5 min. Pellets were collected by
scrapping cells and centrifuging them for 10 min at 2500 r/min
and 4 °C. After cell pellets were lysed, the nuclei pellets were
resuspended in digestion buffer and incubated with 17 μl of 1×
enzymatic shearing cocktail at 37 °C for 5 min. The sheared
chromatin was incubated overnight at 4 °C with 35 µl of protein G
magnetic beads and 2 μg of anti-Flag antibody (Sigma-Aldrich,
#F1804) or mouse IgG (Abmart, #B30010M) as a negative control.
After washing, immunoprecipitated chromatin was eluted with
elution buffer for 15 min and reverse-crosslinked by treatment
with 5 M NaCl at 95 °C for 15min. DNA was purified with RNase A
and proteinase K treatment for 1 h at 37 °C, denatured at 95 °C for
5 min and immediately placed on ice. The DNA samples were
blotted using a Bio-Dot Microfiltration Apparatus (GE Healthcare,
Little Chalfont, UK) and hybridized with a digoxigenin (DIG)-
labeled probe (Sangon Biotech, Shanghai, China) that is specific
for telomeric repeats. The signal intensity was measured by GelPro
software and was normalized to the signal from the input DNA on
the same blot.

Electrophoretic mobility shift assay (EMSA)
EMSA was performed as Xu et al. described.29 Briefly, telomeric
[TTAGGG]5 dsDNA were synthesized, annealed, and [32P]-labeled
at the 5′ end by T4 DNA kinase (New England Biolabs) before
purification using a sephadex G-25 spin column (GE Healthcare).
The labeled oligonucleotides (0.8 pmol) were incubated with
recombinant SerRS at the indicated concentrations in binding
buffer (20 mM Tris-HCl pH 8.0, 60 mM KCl, 5 mM MgCl2, 0.1 mg/mL
BSA, 10 ng/µl poly (dG-dC), 1 mM DTT) for 30 min at room
temperature. The samples were loaded onto a 5% native
polyacrylamide gel and underwent electrophoresis at 250 V in
running buffer (25 mM Tris pH 8.3, 190 mM glycine). Then, the gel
was dried and examined by autoradiography.
Oligonucleotides used for EMSA are as follows: Telomere: 5′

TTAGGGTTAGGGTTAGGGTTAGGGTTAGGG 3′ (top strand) and 5′
CCCTAACCCTAACCCTAACCCTAACCCTAA 3′ (bottom strand); Con-
trol: 5′ TCGAAGTCGAAGCATGGGTCGAAGCATGGG 3′ (top strand)
and 5′ CCCATGCTTCGACCCATGCTTCGACTTCGA 3′ (bottom
strand); VEGFA promoter: 5′ GGCGGGGCGGAGCCATGCGCCCCC
CCCTTT 3′ (top strand) and 5′ AAAGGGGGGGGCGCATGGCTC
CGCCCCGCC 3′ (bottom strand).

Western blot analysis
Cells were lysed in cold lysis buffer supplemented with protease
inhibitor cocktail, and the lysate was subjected to SDS-PAGE.
Proteins were transferred onto nitrocellulose membranes (Milli-
pore, Billerica, MA, USA) and blotted with antibodies as follows:
anti-SerRS (made in lab, 1:2000), anti-POT1 (Abcam, 1:500), anti-
GST (Proteintech, 1:1000), anti-Flag (Sigma, 1:3000), anti-V5
(Invitrogen, 1:3000), anti-β-actin (Santa Cruz, 1:5000), anti-P21
(Santa Cruz, 1:1000), anti-P16 (Abcam, 1:1000), and anti-β-gal
(Proteintech, 1:1000). Proteins were visualized by enhanced
chemiluminescent (ECL) reagent (Thermo-Fisher Scientific).
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