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The interrelationship between cerebral ischemic stroke and
glioma: a comprehensive study of recent reports
Mrinal K. Ghosh1, Dipankar Chakraborty1, Sibani Sarkar1, Arijit Bhowmik2 and Malini Basu3

Glioma and cerebral ischemic stroke are two major events that lead to patient death worldwide. Although these conditions have
different physiological incidences, ~10% of ischemic stroke patients develop cerebral cancer, especially glioma, in the postischemic
stages. Additionally, the high proliferation, venous thrombosis and hypercoagulability of the glioma mass increase the significant
risk of thromboembolism, including ischemic stroke. Surprisingly, these events share several common pathways, viz. hypoxia,
cerebral inflammation, angiogenesis, etc., but the proper mechanism behind this co-occurrence has yet to be discovered. The
hypercoagulability and presence of the D-dimer level in stroke are different in cancer patients than in the noncancerous population.
Other factors such as atherosclerosis and coagulopathy involved in the pathogenesis of stroke are partially responsible for cancer,
and the reverse is also partially true. Based on clinical and neurosurgical experience, the neuronal structures and functions in the
brain and spine are observed to change after a progressive attack of ischemia that leads to hypoxia and atrophy. The major
population of cancer cells cannot survive in an adverse ischemic environment that excludes cancer stem cells (CSCs). Cancer cells in
stroke patients have already metastasized, but early-stage cancer patients also suffer stroke for multiple reasons. Therefore, stroke is
an early manifestation of cancer. Stroke and cancer share many factors that result in an increased risk of stroke in cancer patients,
and vice-versa. The intricate mechanisms for stroke with and without cancer are different. This review summarizes the current
clinical reports, pathophysiology, probable causes of co-occurrence, prognoses, and treatment possibilities.
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INTRODUCTION
Cerebral ischemia, also known as cerebral ischemic stroke or
cerebrovascular ischemia, is the most common type of stroke
(>80%) and is the second leading cause of death, dementia, and
disability worldwide.1 This condition occurs when a sudden
obstruction of the blood supply or a reduction of normal cerebral
blood flow (CBF) leads to brain injuries.2 The sudden brain tissue
damage due to a low supply of nutrients and hypoxia is also
known as cerebral infarction and is further divided into two major
categories according to origin. Focal cerebral ischemia, micro-
ischemia, or local cerebral infarction is caused by blockage of a
blood vessel3 due to onsite blood clot formation (thrombus)4 or a
blood clot that originates in a different place (embolus, sporadic),5

whereas the global cerebral ischemic condition originates due to
hypoperfusion or a drastic reduction of CBF in the overall brain
caused by large-artery atherosclerosis, complete obstruction of
the carotid arteries, cardiac arrest, chronic hypoxemia, or seizures.6

Several intracranial malignant tumors occur in the human brain,
of which glioma is the deadliest and rarely curable form and is
resistant to radiotherapy and chemotherapy7 According to the
World Health Organization (WHO), glioma can be classified into
four different grades (I–IV), where grade I includes pilocytic
astrocytoma, grades II–III include diffuse or anaplastic astrocytoma
and oligodendrogliomas, and grade IV includes most malignant

glioblastomas (GBMs).8,9 Despite the major driver mutations (TP53,
IDH1, EGFR, PTEN, Rb, RTKs, and others), several mechanical or
molecular signaling alterations are found in all grades of glioma
and within its microenvironment.10 The postoperative approx-
imate survival time for GBM patients is ≤15 months, and only
26.5% of patients survive for >2 years after diagnosis.11

In this review, our major aim is to document the interrelationship
between cerebral ischemic stroke and glioma based on a
comprehensive review of current knowledge, which is sequentially
discussed in detail. First, we briefly discuss the relationship between
cerebral ischemia and glioma that could explain the interplay
between the two diseases. Second, we discuss the effects of
cerebral ischemia on glioma development and progression. Third,
we elaborate on the effects of reactive oxygen species (ROS),
reactive nitrogen species (RNS), and the neurovascular unit on brain
tumors. Fourth, we focus on glioma-dependent cerebral ischemic
stroke and brain injuries. Finally, plausible pharmacological inter-
ventions towards therapeutic strategies are discussed.

INTERPLAY BETWEEN CEREBRAL ISCHEMIA AND GLIOMA:
WHAT DO CLINICAL REPORTS REVEAL?
The relationship between cerebral ischemia and glioma is still
ambiguous based on molecular mechanisms, but several clinical
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reports and case studies have indicated that glioma and cerebral
ischemia can facilitate each other with respect to occurrence. It
has been reported that the location of the tumor inside the brain
(insula, operculum, and temporal lobe) and repeated resection
during glioma therapy can increase the risk of ischemic injuries
and other neurological deficits.12 A recent report based on clinical
cohort studies suggests that the chance of the diseases occurring
together reaches 9% compared with 2.7% in the control
population, and the risk of developing brain cancer (especially
glioma) is also higher in stroke patients.13 Another clinical cohort-
based study on 3680 noncancerous adults with no disabling
cerebral infarction reported the development of brain cancer
(glioblastoma) with a mortality rate that is threefold higher than
that of the control cohort in the postischemic period.14 Another
case study of a 73-year-old woman with a history of atrial
fibrillation and mechanical aortic valve replacement showed
primary glioma development within the territory of a previous
ischemic infarction.15 A similar result of the sudden onset of an
acute ischemic lesion near the tumor area was reported in another
case study of a 77-year-old woman suffering from an anterior
temporal lobe tumor.16 A different report stated that two adult
patients with supratentorial glioblastomas developed an ischemic
stroke on the tumor site.17,18 A recent case study reported that the
risk of neurodegeneration and ischemic lesions increases after
resection of recurrent tumors.19 The case of an anaplastic
astrocytoma patient showed acute onset ischemic stroke-like
symptoms.20 In another interesting case, a 79-year-old woman
with a history of atrial fibrillation and coronary heart disease
developed glioblastoma multiforme (GBM) at the site of a previous
infarction 6 years after the onset of right hemiplegia.21 Cerebral
ischemia might occur due to embolus metastatic glioma cells, as
reported recently.22 Another unusual case of acute ischemic
infarction of the middle cerebral artery was caused by a
proliferating glioma mass.23 In certain cases, it is notably difficult
to distinguish the early symptoms of stroke and glioma, which
might lead to improper therapy. Several reports worldwide present
these pseudo-symptoms of glioma and cerebral ischemia.24,25

Another interesting case is a woman from India who was primarily
diagnosed as a cerebral stroke patient but was later found to exhibit
glioma development instead of stroke symptoms.26

The most widely accepted model that connects ischemia and
glioma is based on the common hypoxic condition that occurs in
both situations.13,19,27,28 Cerebral ischemia due to obstruction in
the vasculature locally or globally causes low oxygen tension in
the ischemic regions and results in hypoxia, whereas a highly
proliferating glioma cell mass has poor vasculature inside its core,
leading to a hypoxic core region that is deprived of oxygen.29 The
exact mechanisms of this co-occurrence or interplay are still in the
nebulous phase, but certain possible mechanisms, e.g., astrocyte
activation,30,31 reactive gliosis,32–34 angiogenesis35–37, and
changes in perivascular and perinecrotic niches38–40 due to
cerebral ischemia, are reported as a consequence for glioma
development. In this review, all of the possible methods of
interplay are described in a sequential manner (Fig. 1).

CEREBRAL ISCHEMIA, HYPOXIA AND GLIOMA: ROS AND RNS
CONNECTION
ROS are metabolic byproducts, e.g., hydroxyl radicals (HO•), alkoxyl
radicals (RO•), hydrogen peroxide (H2O2), and hydroperoxyl
radicals (HO2•), originating from different sources in hypoxic41

and hyperoxic situations with condition-dependent functions.42–44

Multiple sources for ROS production are reported in both ischemia
and glioma, and both conditions share a common network of
signaling for ROS production and downstream functions.
In the cerebrovascular unit, the hypoxic situation induces

astrocytes, microglia, pericytes, and even neurons to produce ROS
and RNS (NO, ONOO−).45–47 ROS, together with RNS, take a lead
role in regulation of the hypoxic situation in the affected
tissue mass.

Mitochondrial ECT
In mitochondria, electrons flow into the sequential Electron
transport chain (ETC) (complex I, II, III) and ultimately meet up
with O2 at complex IV for ATP synthesis and H2O production via
the oxidative phosphorylation (OXPHOS) process.48,49 However, in
the case of oxidative stress or other pathophysiological conditions,
more leaky electrons are produced, and ROS are mainly generated
from complex I, III, and glycerol 3-phosphate dehydrogenase.50

During oncogenesis, several cancer-specific external stimuli or

Fig. 1 Bi-phasic role (i.e., detrimental and tumor promoting) of cerebral ischemic hypoxia and glioma development
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signaling alterations (e.g., TNF-α, STAT3) cause a decrease in the
mitochondrial membrane potential that hampers the components
of ETC such that ROS generation is promoted on a large scale.51,52

Reports exist of mutation in components of the ETC complexes,
and mtDNA can cause a high level of ROS production.53,54

Cytoplasmic NOX
The NADPH oxidase (NOX) family of proteins is one of the main
producers of ROS in several cancers and ischemic stroke.55 NOXs
are membrane-bound proteins with a C-terminal NADPH/FAD-
binding domain and N-terminal transmembrane tandem heme
groups.56 It is reported that NOX2 (gp91phox) and its homologs
(Nox1, 3, 4, and 5 and Duox1/2) require p22 phox as a cosubunit
and catalyze superoxide (O2

−) generation via a NADPH-dependent
pathway, which is subsequently converted to H2O2.

57,58 However,
Duox1/2 has an EF-hand domain for calcium binding instead of
the heme group.59 Specific signals (viz., TGF-β,60 AKT,61 PKC,62

MAPK, ERK, etc.) induce conformational changes in the NOX
complex in a phosphorylation-dependent manner and allow
production of a notably large amount of ROS.63

Peroxisomes
The peroxisome is one of the major sites for α- and β-oxidation
of fatty acids, polyamine oxidation, phospholipid and glyoxalate
metabolism, catabolism of amino acids, the pentose phosphate
pathway, etc.64 The peroxisome contains several enzymes (e.g.,
Acyl-CoA oxidases, D-amino acid oxidase, urate oxidase,
aspartate oxidase, polyamine oxidase, xanthine oxidase (XO),
L-alpha-hydroxy acid oxidase, pipecolic acid oxidase,
trihydroxycoprostanoyl-CoA oxidase, etc.) that produce H2O2,
O2

−, and OH• as normal metabolic byproducts.65 The antiox-
idant defense system inside the peroxisome maintains home-
ostasis against those ROS, but in ischemia and glioma, this
homeostasis is disturbed due to oxidative stress, which alters
signaling and mutation and produces overactivation of several
enzymes inside this organelle to give rise to an increased level
of ROS inside the cell.66,67

Xanthine oxidase
XO is a homodimeric metalloprotein with one flavin adenine
dinucleotide (FAD) cofactor for purine oxidation and a molyb-
dopterin cofactor (Moco) for NAD+ reduction flanked by two
nonidentical iron-sulfur redox centers.68,69 In glioma and ischemia,
the hypoxic condition and low pH allow XO to form a large

amount of H2O2, O2
−, and OH• via the Haber–Weiss–Fenton

reaction.70–72

Cytochrome P450 (CYP)
CYPis a monooxygenase with a heme (FeIII) prosthetic group,73,74

and its isoforms in different regions of the body regulate the
biotransformation pathway of several endogenous and exogenous
toxins, chemicals, xenobiotics, and organic molecules. This system
can generate different ROS species (H2O2, O2−, •O2

−, OH−) via
abnormal uncoupling of the normal metabolic pathways due to
hypoxia-specific signals.75–77

Lysyl oxidases (LOXs)
Protein-lysine 6-oxidase, also known as LOX, produces H2O2 as a
byproduct during crosslinking between cell-matrix protein elastin
and collagen using the lysyl tyrosylquinone cofactor.78 The
enzyme is regulated by Hif-1 or Hif-2 and generates ROS and
induces metastasis and cell-matrix adhesion via the FAK/Src
signaling pathway in both ischemia and glioma.79–82

Involvement of other signaling pathways in ROS and RNS
generation
ROS can be regulated by the Ras–Raf–MEK pathway via
transcriptional regulation of Nox1 by the GATA-6.83,84 It is also
reported that transcriptional enhancement of HSF1 by Ras
upregulates the SESN1 and SESN3 genes and peroxiredoxins for
ROS production.85 TGFβ increases ROS production via activation
of GSK3β and the mTOR pathway in mitochondria, and by
suppressing antioxidant enzymes such as SOD and glutathione
peroxidase (GPx).86,87 Nuclear factor-κB (NF-κB) can increase ROS
production via a positive feedback loop of TNF regulation.88,89

c-Myc can regulate ROS production via two mechanisms, i.e., ROS
production via alteration of mitochondrial structure and meta-
bolism with the aid of AMPK and PRx-Romo1 pathway
regulation.90–92 It is also reported that the ROS level can be
upregulated by the β-adaptin/c-Myc pathway.93 The PI3K/mTOR
and STAT5 pathway is activated by Bcr-Abl to increase
mitochondrial ROS production94,95 (Fig. 2).
However, ischemic hypoxia-induced constitutive or inducible

nitric oxide (NO) production is enhanced due to glutamatergic
receptor-mediated high calcium concentration and calmodulin-
dependent upregulation of nitric oxide synthase (nNOS, eNOS,
and iNOS).96,97 Peroxynitrite (ONOO−) is generated by the
reaction of NO and ROS.98 Neuronal NOS (nNOS) is constitutively

Fig. 2 Common hypoxic signaling pathways for cerebral ischemia and glioma
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active and produces a low amount of NO from neurons, but it
kills the surrounding non-NOS-containing neurons. NO produced
by endothelial NOS (eNOS) is a vasodilator and has neuropro-
tective properties. NO from the induced NOS (iNOS) is the main
culprit for cerebral ischemic damage and kills the endothelium
by 3-nitrotyrosine formation under oxygen and glucose
deprivation.99,100

EFFECT OF ISCHEMIC ROS AND RNS ON GLIOMA
Surprisingly, ROS and RNS have a dual role in the neurovascular
unit, where they destroy tissues and macromolecules during the
detrimental phase (global ischemia, reperfusion injuries) and aid in
cell proliferation, tissue repair and regeneration and angiogenesis
in the recovery phase (acute ischemic stroke, hypoxic tumor core,
perivascular niche (PVN)).101 Moderately increased ROS are
oncogenic while the highly increased level of ROS acts as a
tumor suppressor.102 Therefore, cells bearing high levels of ROS
are more susceptible to death, and the opposite is also true for the
depleted ROS level in tumors. Furthermore, the level of cellular
ROS is increased due to depletion of antioxidants and potentially
contributes to the oxidative damage to biological macromolecules
that leads to cytotoxic and mutagenic responses. ROS can
contribute to genomic instability, thereby resulting in cell death
or tumorigenesis. At the threshold level, ROS are recognized as
intracellular signal transduction molecules that regulate kinase-
driven pathways and mediate cellular responses to external
stimuli. Additionally, ROS inhibit many phosphatases that nega-
tively regulate signaling cascades, whereas an increased level of
cellular ROS during oxidative stress creates an oxidant/antioxidant
imbalance and is responsible for several malignancies. Based on
the amount and potential, hypoxic ROS either aid in tumorigenesis
and recurrence or cause massive tissue damage.

ROS favor tumor growth
The ROS-induced signaling pathways, viz. EGFR, MAP kinase,103,104

TGFβ,60,105 and NF-kB,106,107 aid tumor development and progres-
sion as also participate in tissue repair, regeneration, and the
healing processes in the postischemic recovery phase. ROS can
also activate ERK1/2 signaling in glioma.108 RAS, an upstream
activator of the ERK1/2 pathway, is also activated through
oxidative modification by ROS at its cysteine 118 residue, which
leads to inhibition of GTP/GDP exchange.109 Moreover, ROS can
modulate pro-apoptotic factors such as Bax,110 Bad, Bim, and
FOXO family transcription factors.111 Tumor necrosis factor (TNF)
and neuronal growth factor (NGF) display various functions from
cell growth and differentiation to cell death. TNF-induced ROS can
also activate antiapoptotic pathways due to activation of the
transcription factor NF-κB. TGFβ is one of the major signaling
pathways in both glioma and ischemia.112,113 In hypoxic ischemia,
the elevated expression of cytokine-mediated TGFβ114 upregu-
lates antiapoptotic Bcl2 and Bcl-xl115 proteins and PAI-1 (ref. 116)
and also transactivates the MAPK pathway and offers neuropro-
tection from oxidative ischemic injuries.117 Moreover, in glioma,
TGFβ increases ROS production and activates GSK3β via the mTOR
pathway in mitochondria by suppressing antioxidant enzymes
such as SOD and GPx.118

Another important pathway that acts on glioma and hypoxic
ischemia in a similar manner is hypoxia-inducing factor 1 (HIF-1).
HIF-1 is a heterodimeric protein with two subunits, viz. HIF-1α
and HIF-1β, that sense low oxygen tension in the tissue
microenvironment and are upregulated due to the inhibition
of degradation via PHD inactivation.119,120 HIF-1α upregulates
the expression of glucose transporter 3 (GLUT3),121 VEGF,122

erythropoietin,123 and BNIP3 (ref. 124) and suppresses cyto-
chrome c release, PARP cleavage,125,126 and p53 activation.127

Therefore, in one way, HIF-1 confers cell survival and in other
way, it drives angiogenesis.

ROS are detrimental for tumor growth
Mitochondria are ROS generators that also increase the level of
ROS which causes mitochondrial dysfunction.128,129 ROS also have
great detrimental effects. A high level of ROS promotes severe
cellular damage and even cell death. ROS are derived from
endogenous and exogenous sources in ischemic stroke as a result
of oxidative stress after a stroke, which leads to lipid peroxidation,
DNA damage, protein degradation, and apoptosis. Apoptosis can
be induced by both intracellular and extracellular signals through
two major pathways, namely, the mitochondrial (intrinsic) and
death receptor-mediated (extrinsic) pathways.130 The intrinsic
apoptotic cascade associated with changes in the permeability of
the outer mitochondrial membrane and ROS directly trigger this
pathway by interacting with the pathway molecules.131 ROS
induce pro-apoptotic molecules such as p53 and p38 kinases and
increase cellular apoptosis.132 The truncated form of Bid proteins
causes Bax/Bak oligomerization and creates megapores in
mitochondria through the direct involvement of ROS, and an
apoptosome complex is subsequently formed in the cytosol by
activating caspase 9 and 3 to initiate apoptosis.133 Apoptosome
complex is regulated and influenced by ROS in various contexts. In
oxidative stress, excessive ROS are produced that damage
biological macromolecules, viz. proteins, lipids, and DNA, creating
fatal conditions in tissue cells that contribute to many diseases,
including cancer. Increased expression of the Fas receptor or
triggering of the mitochondrial permeability transition with the
release of ROS is the basic mechanism of apoptosis induction in
tumor cells.134,135 Intracellular ROS accumulation obstructs cellular
proliferation and induces cell cycle arrest at the G1 and G2/M
phases.136,137 Abnormally increased levels of ischemic ROS can
selectively kill malignant cells and act as an adverse factor in
causing genetic instability. Thus, enhanced ROS production in the
tumor bed might be one of the important strategies in ROS-
mediated cancer therapy.

ROLE OF NEUROVASCULAR UNIT IN ISCHEMIA AND GLIOMA
Astrocytes
Astrocytes are the star-shaped and most abundant housekeeping
non-neuronal cells found in the brain microenvironment. These
cells form the blood–brain barrier (BBB) and tripartite synapses,
help neurons and glial cells by supplying nutrition and other
factors from the vasculature, and also maintain communication
between the cells and the microenvironment.138

In cerebral ischemia, due to oxygen-glucose deprivation,
dramatic changes (such as swelling, cytoplasmic hypertrophy,
accumulation of GFAP, Vimentin, and other intermediate glial
filaments) occur in astrocytes and increases of cellular organelles
like mitochondria, ribosomes, nuclear size, and Golgi complexes
leads to a metabolically activated reactive form.139 A meshwork of
the cytoplasmic processes of activated astroglial cells form a glial
scar around the area of the ischemic lesions.32,140 This activation
process and subsequent mutational events of several genes, such
as neurofibromatosis type 1 (NF1)141–143 and glycoprotein
podoplanin (PDPN),144 in reactive gliosis lead to gliomagenesis
because both glial progenitor and reactive astrocyte cells are
proposed origins of the same lineages.145–147 Astrocytic STAT3
increases MMP2 expression and inhibits RhoA and PTEN via miR-
21, which leads to adhesion turnover, actomyosin tonus, and
migration of reactive astrocytes to form a glial scar.148,149 These
reactive astrocytes enhance uncontrolled proliferation and migra-
tion of glioma cells by expressing MMPs150 and secretory
SDF1.151–153 The direct interaction between reactive astrocytes
and glioma cells by tunneling nanotubes (TNT) and the secretion
of IL6, IL19, IGF1, TGFβ, MCP4, VEGF, etc. aid glioma cells in
infiltrating the surrounding parenchyma.154–156 The expression of
connexin 43 (Cx43)157 and different ATP-dependent ion channels
(ClC-3, VGCC, TRPs, hERG, ENaC, CLICs)158 in reactive astrocytes
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offer protection against radio- and chemotherapy via activation of
Bcl2 family proteins and inhibition of cytochrome c release from
mitochondria.159 It is also reported that reactive astrocytes supply
a suitable microenvironment for the transformation of CD133+

glioma stem cells from CD133− cells.153 Interestingly, the
astrocyte’s glycogen stores and the presence of a high amount
of metallothionein (MT), glutathione, and other antioxidants
protect the surrounding tissues from hypoglycemic and hypoxic
ischemic shock.160–162

Microglia
Microglia (CD45low, CD68+, Iba1+) are mononuclear resident
phagocytic macrophages of normal brain originated from myeloid
stem cells in the yolk sac.163,164 The main functions of microglia are
to offer immune protection of the brain, a clean brain micro-
environment via phagocytosis of unwanted debris, support of
other glial cells and neurons, and aid in BBB and synaptic plasticity
maintenance.165,166 Microglia are one of the major sources of ROS,
pro-, and anti-inflammatory cytokines, neurotropic and growth
factors and act as the first line barrier of innate immunity by
expressing pattern recognition receptors (TLRs, NLRs, and RLRs) for
pathogen-associated molecular patterns and danger-associated
molecular patterns (DAMPs) recognition.167–169 Microglia are
involved in several cell signaling networks, e.g., NF-κB, TNFα, TGFβ,
interleukin signaling (IL1β, IL6, IL4, and IL10), chemokine receptor
signaling (CX3CL1/CX3CR1 and CCL2/CCR2), neurotransmitter
signaling, and most importantly TREM2 signaling.170–173

Upon ischemic injuries, resident microglia together with
monocyte-derived microglia [infiltrating from circulation to the
brain tissue via ruptured BBB] become activated to various
reactive forms. Interestingly, different classes of these reactive
forms act in opposite manners to each other according to the
situation. Due to breakdown of glia–neuron communication
(CX3CL1/CX3CR1) and several excitotoxic signals such as DAMPs,
purinergic signals and acute inflammatory environment resident
microglia are transformed into three distinct morphological types,
viz. enlarged cell body with low ramifications, amoeboid structure
with rare ramifications, and a round-shaped highly activated form
distributed from the peri-infarct regions into the core ischemic
lesions.168,174–176 Despite the morphology, microglia are polarized
into two distinct functional phenotypic variants, i.e., pro-
inflammatory M1 and anti-inflammatory M2 forms (further divided
into M2a capable of repair, immunoregulatory M2b, and
immunomodulatory M2c). The classical M1 (CD16+, CD86+, FcγR+,
iNOS+) phenotype secretes excessive amounts of ROS, RNS, TNFα,
IL6, and IL1β for inflammatory response, cytotoxicity, and brain
tissue damage. Alternatively, M2 (Arg1+, CD36+, CD206+, Ym1+)
phenotypes, mostly found in the ischemic core region, secrete IL4,
IL10, and IL13 and TGFβ, IGF1, NGF, and BDNF for neuroprotection,
inhibition of apoptosis and necrosis, tissue and ECM repair and
cleanup of debris via phagocytosis.177–180 Transformation of these
microglia from M1 (tumor suppressive) to M2 (tumor promoting)
form initiates immune suppression in the tumor area and also
promotes tumor expansion, metastasis, angiogenesis, and glioma
stem cell maintenance via the secretion of several factors (viz.
MMPs, CCL18, CCL22, CXCL12, IL10, TGFB, TNF, FasL, VEGF).181–185

Pericytes
Pericytes (PDGFRβ+, CD13+, NG2+, α-SMA+, Desmin+) or Rouget
cells are contractile cells located directly on small blood vessels,
including capillaries, pre-capillary arterioles, and postcapillary
venules.186 The major functions of pericytes are formation of
blood vessels, glial scars, and the BBB, capillary diameter, and
cerebral blood flow (CBF) regulation, amyloid β clearance, and
neuroinflammation suppression, and they at times exhibit stem
cell-like properties.187

In acute focal cerebral ischemia, the “no-reflow phenomenon”
and secondary hypoperfusion occur due to structural changes of

the ischemic capillary bed because of astrocytic endfeet and
endothelial swelling and constrictions of the capillary peri-
cytes.188,189 Several pathways, especially ROS-mediated transloca-
tion of myosin, thromboxane A2 release, and cytosolic calcium
increase, cause pericytes constriction and death after ischemic
stroke.190 However, ischemic hypoxia results in activation of A2a
receptors, and the NO/guanylate cyclase pathway leads to the
dilation of pericytes.191 Interestingly, pericytic ICAM-1 guides
leukocyte migration through gaps between adjacent pericytes
during ischemia.191,192 Due to induction of TNF-α in the ischemic
region, RGS5-expressing pericytes take on an amoeboid morphol-
ogy, detach from the basal lamina, and migrate toward the
ischemic lesion via secretion of MMP9.193–195 It is also reported
that the phagocytic behavior of pericytes increases during
ischemic insults. Pericytes express a variety of neurotropic and
neuroprotective factors such as GDNF, BDNF, NGF, and NT-3 that
facilitate neuronal and axonal regeneration.196,197 Pericytes
express Ang1 and GDNF, which maintain and enhance the tight
junctions of endothelial cells by up-regulating claudin-5.198,199

Pericytes increase angiogenesis via the interactions of VEGF and
FLT1,200 Ang1 and Tie2,201 and PDGFR-β and TGF-β1.202,203 Several
reports exist on the reprogramming of pericytes into neurons
(NG2, sox2, and ascl1)204,205 and other glial (Iba1+, Glast+) cells
and formation of a glial scar due to the induction of a lineage-
specific stem cell marker in ischemic conditions.206,207 These
active pericytes aid in immune suppression, remodeling of PVN,
and protection of glioma stem cells (GSC) or glioma-initiating cells
(GICs) from ischemic injuries.208,209 Additionally, GSC recruits
vascular pericytes via SDF1/CXCR4 signaling for angiogen-
esis.210,211 GICs maintain self-renewal and differential properties
by interacting with pericyte-derived endothelial cells via PDGF-
NOS2-ID4 signaling.212,213

Glioma stem cells
GSCs and glioma-associated stem cells (GASC) are two types of
cancer stem cells (CSCs) found in the glioma microenviron-
ment.214,215 Both cell populations have enhanced self-renewal and
differential proliferation properties, but only GSCs can initiate
tumor formation and proliferation. GSCs are heterogeneous in
origin, are found in the inner core of the tumor mass, express
several markers (SOX2, NANOG, BMI1, OLIG2, MUSASHI1, and
CD133), and are resistant against chemo- and radiotherapy.216,217

These cells interact with the surrounding microenvironment,
regulating multiple signaling networks such as VEGF, NF-kB, EGFR,
HIF1α, TGFβ, BMP, and NOTCH for promotion of tumor growth,
metastasis and angiogenesis.218 In contrast, GASC are nontumori-
genic tumor supporting stem cells originated from mesenchymal
stem cells mostly found in the perivascular area. GASCs are
classified into two categories according to their marker profile and
functions. A high rate of proliferation of CD90high GASC and
secretion of exosomes loaded with growth factors, IL10, miRNA,
CCL5, SDF-1α, and MMP9 support glioma proliferation and
infiltration, whereas CD90low GASC produces VEGF, IL6, and FGF
and is transformed into CD31+ from CD13− pericytes for
angiogenesis.219–221 A major hallmark of glioblastoma is the
presence of ischemic pseudo-palisading necrosis, where chromo-
domain helicase DNA‐binding protein 7 (CHD7) is expressed in an
ischemic hypoxia-dependent manner and regulates angiogen-
esis.35 GSCs produce NO via overexpression of nitric oxide
synthase-2 (NOS2) in an ischemic condition, which aids in
hyperproliferation.222

Blood–brain barrier
BBB is a highly selective physical barrier that regulates direct and
indirect diffusion of molecules from circulation into the brain. The
BBB consists of a nonfenestrated endothelial cell monolayer of
blood capillaries connected by tight junctions and a basement
membrane composed of specialized ECM, astrocyte endfeet,
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pericytes, neurons, and microglia.223,224 In hypoxic acute ischemia
or high-grade glioma, a high rate of metabolism requires a high
oxygen and nutrient supply such that expression of VEGF and
PDGF increases, leading to angiogenesis.225,226 Increased vascu-
larization together with the altered BBB forms the blood–brain
tumor barrier (BBTB) or blood tumor barrier (BTB) with three
distinct types of blood capillaries, viz. nonfenestrated continuous
normal brain capillaries, continuous and partially fenestrated
capillaries, and capillaries composed of inter-endothelial gaps and
fenestration.227 Altered aquaporin expression and displacement of
astrocyte endfeet,228 depletion of normal pericytes and recruit-
ment of GSC derived pericytes,229 bradykinin-dependent migra-
tion of glioma cells toward capillaries,230 and finally, degradation
of tight junction proteins of endothelial cells alter the BBTB structure
and make it leaky, which causes rapid metastasis.231 Interestingly,
the transmembrane proteins, e.g., ABC transporter, HB-EGF, PTGS2,
ST6GALNAC5, and other drug efflux transporters, are also found in
the BBTB, which supports chemo-resistance.232–235 Another impor-
tant component of the glioma microenvironment is the PVN at the
border area of the tumor and vasculature and is enriched with
GSCs.236 Several noncancerous cells such as macrophage,
pericytes, astrocytes, and endothelial cells give support to GSCs
for maintenance and proliferation in this region and maintain an
immunosuppressive hypoxic environment. Signaling crosstalk
between these cells in PVN makes this region radiotherapy- and
chemotherapy resistant.237–239

GLIOMA LEADS TO ISCHEMIC STROKE AND BRAIN INJURIES
In glioma, the highly proliferating cell mass, metastasis, BBB
breakdown and release of micro- and macroparticles in circulation
cause thrombosis and capillary blockade, resulting in the focal
ischemic condition.240,241 Blood vessel compression due to brain
tumor formation also results in cerebral ischemia, which leads to a
limited supply of nutrients to the brain that is unable to meet the
metabolic demands of the brain tissue. Tumors in the brain
progress gradually with time, whereas stroke occurs due to a
certain blockage of blood in the brain.242 A recent patient cohort-
based study on extracellular vesicles shows high correlation with
D-dimer levels and cancer, which indicates increased risk of stroke
in cancer patients.243,244 It is well established that glioma cells
release factor X, mucins,245 podoplanin,246,247 and other procoa-
gulant factors and cytokines248 that activate monocytes, endothe-
lial cells, and platelets and also stimulate neutrophils to form
neutrophil extracellular traps and inhibit protein C activation,
leading to local inflammation and ischemic hypoxia.249 Several
reports showed that glioma therapy, especially platinum-based
drugs, angiogenesis inhibitors, monoclonal antibodies, and radio-
therapy, increased the risk of thromboembolism.

The characteristics of cancer-related stroke are completely
different from those of conventional stroke. Hemorrhagic stroke
can cause direct adverse effects on the tumor within the cranial
vault.250,251 The intravascular coagulopathy that causes embolism
is the main mechanism of cancer-related stroke.252,253 Direct
effects either from tumor compression or from tumor embolism
are another causal mechanism of stroke. Tumor bed edema leads
to ischemia or infarction in the territory of the affected vessels and
is clinically different from tumor progression.254 This mechanism is
unique in that radiation treatment on the brain tumor might result
in a stroke in certain cases. Selected chemotherapeutic agents (viz.
cisplatin, methotrexate, L-asparaginase)255,256 and antiangiogenic
agents (viz. paclitaxel, angiostatin)257–259 have also been asso-
ciated with cerebral stroke. For example, the treatment of GBM
with Bevacizumab shows a stroke rate of 1.9%.260–262 (Fig. 3).

THERAPEUTIC APPROACHES FOR ISCHEMIA AND GLIOMA
After the onset of cerebral ischemia, oxidative stress plays a major
role in neuro-inflammatory diseases.263,264 In the postischemic
brain, free radicals are increased by redox reactions and express
several pro-inflammatory genes by multiple transcription factors,
such as NF-κB, and inhibit the cellular antioxidant system.265,266

This phenomenon introduces novel anticancer drug discovery in
the line of antioxidant therapy and treatment strategy. Therefore,
anticancer drugs drive intracellular ROS production to destroy
malignant cells. ROS levels increased by so-called oxidation
therapy trigger cell death via the apoptosis or necrosis process.267

Several flavonoids such as quercetin,268,269 catechins,270 baica-
lein,271 delphinidin,272 apigenin, luteolin,273 and proanthocyanins
protect the glial cells from oxidative stress, excitotoxicity,
neuroinflammation, and cellular stress, although the increased
level of free radicals reduces the proliferation of cells and even
induces their death.274–277 These compounds also protect the
brains of normal and cancer patients from ischemia. Gallic acid, an
anticancer agent, can cause toxic effects by targeting mitochon-
drial antioxidant enzymes but also has beneficial effects on
recovery of ischemic injuries.278–280 Overexpression of the
oncogenic variant EGFRvIII and suppression of VEGF signaling
are also involved in ROS production and represent an opportunity
for the development of a new therapeutic strategy.281,282

Cardamonin (a chalcon) shows effective anti-inflammatory and
anticarcinogenic activity in many cancers.283,284 It is reported that
inhibition of NF-κB pathway activation is involved in breaking
cellular redox homeostasis and triggers ROS production and
accumulation through the JNK–mitogen-activated protein kinase
(MAPK) axis.285,286 Due to high specificity and the power to cross
the BBB, exosome- and nanovesicle-mediated delivery287–289 of
peptides,290–293 small molecules, miRNA,294–296 and other drugs in

Fig. 3 Steps of focal cerebral ischemia development
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both glioma and cerebral ischemia therapy has gained recent
successes.
Hyperbaric oxygen (HBO) therapy is a recently developed

procedure in which oxygen is used under an elevated atmospheric
pressure, i.e., at a pressure higher than the pressure found on the
surface of the earth at sea level, which is defined as 1 atm.297

Currently, hyperbaric oxygenation is extensively used as an
adjunctive treatment for various diseases predominantly related
to hypoxic and/or ischemic conditions. Because ischemic stroke
and brain cancer are also related to hypoxia, HBO therapy has
distinct effects on these diseases. Because the hypoxic regions in
the tumor mass play a major role in tumor development and
resistance to novel radio- and chemotherapies, HBO therapy offers
a promising approach to overcoming oxygen insufficiency by
increasing the oxygen supply to neoplastic tissue.298–303 Recent
results clearly suggest that HBO does not induce cancer growth,
recurrence, or metastasis. However, HBO is observed to have an
inhibitory effect on neoplastic cell proliferation and to cause
cancer cell apoptosis. The beneficial effect of HBO therapy varies
with the tumor type, size of the lesion, and malignancy.304–306

Several drugs, e.g., sanguinarine,307–309 glycyrrhizin,310 piroxi-
cam,311–313 salidroside,314–316 astragaloside,317,318 and others,319–322

are used in both glioma and ischemia treatment due to the
counteracting effect of common signaling pathways.
Out of basic clinical need, several studies have been conducted

to examine the remedial capability of either endogenous or
transplanted stem cells in laboratory models of cerebral ischemic
stroke. Further bolstering their good advantages, stem cells show
the ability to react effectively to their condition, move to the zones
of injury, and discharge neuroprotective compounds, notwithstand-
ing their ability to create an assortment of new functional cell
types.323–325 Such properties might manage their restorative and
therapeutic potential in both the acute stage and also at a later time
after ordinary medicinal treatments are no longer viable. Recon-
struction after stroke via stem cells is not likely within a reasonable
time frame, and extraordinary care must be taken to guarantee
security before considering clinical trials. Preliminary pieces of
evidence underpin the remedial capability of certain stem cells for
treatment of ischemic damage in animal models326–328 (Fig. 4).

CONCLUDING REMARKS
The mechanisms underlying the development of stroke in glioma
patients are not yet clearly defined. Patients who suffer from both
cancer and stroke are more difficult to treat than stroke patients
who do not have cancer. The survival rate of glioma patients is
increasing with the development of anticancer medicines,
nanotherapeutics, and improved targeted nanodelivery systems
that easily cross the BBB. Treating stroke in glioma patients can be

challenging, requires specific treatment strategies, and has clinical
and pathological consequences. The characteristics, type, extent,
and time interval from diagnosis of cancer and stroke might be
important in the development of stroke in patients with glioma.
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