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Signal-induced PARP1-Erk synergism mediates IEG
expression
Malka Cohen-Armon1,2, Adva Yeheskel3 and John M. Pascal4

A recently disclosed Erk-induced PARP1 activation mediates the expression of immediate early genes (IEG) in response to a variety
of extra- and intra-cellular signals implicated in memory acquisition, development and proliferation. Here, we review this
mechanism, which is initiated by stimulation-induced binding of PARP1 to phosphorylated Erk translocated into the nucleus. Their
binding maintains their long-lasting activity in a synergism, which offers a new pattern for targeted therapy.
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INTRODUCTION
Activated polyADP-ribose polymerase-1 (PARP1) catalyzes post-
translational modification of nuclear proteins by adding a series of
negatively charged ADP-ribose moieties (poly-ADP-ribosylation).1,2

PARP1 substrates include PARP1 itself, histones, high mobility
group proteins, topoisomerases, gyrases, DNA methyltransferase
and demethylases, and the insulator protein CTCF (CCCTC-binding
factor).1,3–8 Poly-ADP-ribosylation modulates the interaction of
these substrates with the negatively charged DNA and with other
chromatin-bound proteins.1,2 Poly-ADP-ribosylation of DNA
methyltransferase has been explored for its epigenetic effect,
and for its possible role in de novo methylation in the central
nervous system.9–13

PARP1 is activated by binding to DNA breaks, and its poly-ADP-
ribosylation is implicated in single-strand and double-strand DNA
break repair.1,14,15 DNA-bound PARP1 poly-ADP-ribosylates
chromatin-bound proteins, causing chromatin loosening near
sites of DNA damage. In addition, ADP-ribose polymers on the
activated PARP1 bind and recruit XRCC1 (X-ray repair cross-
complementing protein 1), which acts as a scaffold for DNA repair
proteins (DNA ligase 3, polynucleotide kinase-3-phosphatase and
aprataxin).1,14,15 In double-strand break repair, activated and poly-
ADP-ribosylated PARP1 is implicated to participate in DNA end
resection for homologous recombination (HR) and in nonhomo-
logous end joining (NHEJ) repair by activating the DNA-dependent
kinase.14,15

Recent findings have revealed other mechanisms of PARP1
activation not involving its binding to DNA breaks. PARP1 is
activated by interaction with the transcription factor Yin Yang 1
(YY1), which either up- or down-regulates gene expression.16 In
addition, PARP1 is activated via a variety of signal-transduction
mechanisms in the absence of stress conditions causing DNA
breaks. PARP1 is activated by Ca2+ via CAMKII activation17 or via
IP3-induced Ca2+ release into the nucleoplasm.18 Additionally,
PARP1 becomes activated downstream in the MAP kinase
phosphorylation cascade by binding to phosphorylated Erk,

without involving the kinase activity.19–21 In this mechanism,
activated PARP1 mediates Erk-induced expression of immediate
early genes (IEGs), which are implicated in a variety of mechan-
isms unrelated to DNA repair.
IEG expression is independent of de novo-synthesized

transcription factors or other protein mediators.22–24 IEGs are
rapidly expressed in response to signals activating transcription
factors bound to their promoters, including RNAPolII that is
ready to act22–25 Many signal transduction pathways inducing
IEG expression are mediated by phosphorylation of the
mitogen-activated protein kinase (MAPK) cascade22,26–30 PARP1
activation is implicated in MAP kinase-induced expression
of oncogenes that promote proliferation.31 Additionally,
stimulation-induced PARP1 activation-mediated Erk-induced
IEG expression that is implicated in synaptic potentiation and
memory acquisition20,32 Here, we summarize findings indicating
synergistic activity between PARP1 and phosphorylated Erk that
mediates IEG expression. This mechanism reveals new targets of
therapeutic significance.

PARP1 ACTS AS AN ANCHORING PROTEIN FOR
PHOSPHORYLATED ERK
Erk is bound to MEK in the cytoplasm of unstimulated cells at
specific docking sites.33,34 Erk-MEK binding is disrupted by
signals inducing MEK and Erk phosphorylation, and phosphory-
lated Erk is translocated apparently as a homodimer into the
nucleus.33–36 Phosphorylated Erk homodimers do not diffuse
freely into the nucleus. They are apparently translocated by
transportins,33 although the modalities and regulation of Erk
transfer and accumulation in the nucleus are not completely
understood. In the absence of a nuclear localization signal (NLS),
phosphorylated Erk could shuttle between the cytoplasm
and the nucleus.33–36 However, relatively long-lasting
activity of phosphorylated Erk in the nucleus has been
documented in both quiescent and proliferating cells.29,30,34,37
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This activity could be attributable to a possible Erk binding to
nuclear protein(s) that retains its activity in the nucleus.29,34

Nuclear phosphatases, specifically MKPs, could be possible
candidates.29,35 These phosphatases are activated by signals
phosphorylating the MAP kinase cascade, and their activity is
simultaneously regulated with the activity of phosphorylated
Erk.35 However, MKPs are mainly expressed in proliferating cells,
and only stress-inducing stimuli induce MKP expression in
quiescent cells.35 However, long-lasting Erk activity has been
measured in neurons under physiological conditions in the
absence of stress-inducing stimulation.21,34 Recently, another
candidate for anchoring phosphorylated Erk in the nuclei of
both quiescent and proliferating cells under a variety of types
of physiological stimulation has emerged.19,38 Docking sites of
phosphorylated Erk have been identified in the abundant
nuclear proteinPARP1.20,39–42 In addition, stimuli inducing Erk
phosphorylation and translocation into the nucleus also induce
the binding of phosphorylated Erk to PARP1,20 and PARP1 is
required to maintain the activity of phosphorylated Erk in the
nucleus for hours.20,37

PARP1 BINDING TO PHOSPHORYLATED ERK INDUCES PARP1
ACTIVATION
Binding to phosphorylated Erk induces PARP1 activation and poly-
ADP-ribosylation.19,20,37 In a cell-free system, recombinant phos-
phorylated Erk-induced poly-ADP-ribosylation of recombinant
PARP1 in the presence of NAD without implicating the kinase
activity of Erk.19 Accordingly, PARP activation is dependent on MEK
activity in stimulated cerebral neurons, cardiomyocytes and mouse
embryonic fibroblasts (MEFs).19,20,37,43 Additionally, PARP1 has been
found to be activated as long as it is bound to phosphorylated Erk,
and poly-ADP-ribosylation does not interfere with this binding.19,20,38

Consensus docking sites of phosphorylated Erk have been
identified in PARP1. These include four sites that partially match
the known docking motifs of phosphorylated Erk in its various
substrates: 633KYPKK637, 683KK684, 747KKPPLL752 and
1007FNF1009.39–42 All the sites are located in the WGR domain,
helical domain (HD), and catalytic (CAT) domain of PARP1 (aa
556–1014)44 (Fig. 1a). Additionally, a negatively charged protein-
binding domain in Erk (CRS/CD region) is involved in its binding to
the docking sites in PARP1.19,20

Binding to recombinant phosphorylated Erk has been found to
induce poly-ADP-ribosylation of recombinant PARP1 at low NAD
concentrations (lower than 1 µM), and recombinant PARP1 bound
to recombinant phosphorylated Erk demonstrates ~70-fold higher
affinity for NAD than recombinant PARP1 bound to nicked DNA
(DNA with single-strand breaks)19,38 (Fig. 1c). Since poly-ADP-
ribosylation does not interfere with the binding of PARP1 to
phosphorylated Erk2, PARP1 that is poly-ADP-ribosylated via other
signal transduction mechanisms (e.g., by IP3-induced Ca2+ release
into the nucleoplasm18) can bind phosphorylated Erk and retain
its activity in the nucleus as effectively as non-poly-ADP-
ribosylated PARP1.20,37,44 The DNA-binding domain of PARP1
(Zn1-Zn2) does not possess Erk docking sites.20,44 However, PARP1
binding to DNA interferes with its binding to phosphorylated Erk
due to structural rearrangements in DNA-bound PARP1 that
occlude its Erk docking sites44 (Fig. 1b). Accordingly, PARP1 fails to
bind phosphorylated Erk in the presence of accumulated DNA
breaks.19,20

Erk-induced PARP1 activation has been examined by bioinfor-
matics methods, and structural rearrangements in PARP1 bound
to phosphorylated Erk2 have been analyzed. A reconstructed
phosphorylated Erk2 homodimer (Protein Data Bank (PDB)
PubMed ID 9298898) was docked on the helical, catalytic and
WGR domains of PARP1 (PDB 4DQY).45–49 Positively charged

Fig. 1 Binding of PARP1 versus DNA-bound PARP1 to phosphorylated Erk. a A ribbon structural model for the open conformation of PARP1
with optional consensus docking sites for phosphorylated Erk. Erk2 monomers in a homodimer (formed after Erk2 phosphorylation) are
indicated by dark and light gray ribbons. Optional Erk-binding motifs on the HD, WGR and the CAT domain of PARP1 are indicated by orange
spheres. The CRS/CD protein-binding region on Erk2 and the optional Erk-binding motifs on PARP1 are highlighted by red and blue shadows,
respectively (from ref. 20) b The modeled conformation of PARP1 bound to damaged DNA indicating the occluded docking sites of
phosphorylated Erk (from Ref # 20). c Autoradiograms presenting a comparison between the dose-dependent [32P]poly-ADP-ribosylation of
recombinant PARP1 bound to recombinant phosphorylated Erk2 and the dose-dependent [32P]poly-ADP-ribosylation of recombinant PARP1
bound to DNA with single strand breaks, (nicked DNA, nDNA). [32P]poly-ADP-ribosylation was achieved in a mixture of β-NAD and [32P]NAD at
the indicated concentrations (from ref. 19)
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patches in PARP1 that are predicted to bind phosphorylated Erk2
(aa residues 633–637 and 747–752) (Fig. 1a) were selected for in
silico molecular docking by a method that predicts the preferred
orientation of two molecules forming a stable complex.47–49 The
conformational changes in PARP1 and phosphorylated Erk2
following binding were predicted using the anisotropic network
model (ANM, http://ignmtest.ccbb.pitt.edu/cgi-bin/anm/anm1.
cgi).49 A normal mode analysis plug-in for a molecular graphic
viewer47 was used to present the outcome of this analysis. The
calculated intramolecular directions of motion in PARP1 bound to
phosphorylated Erk2 revealed that the helical domain (HD) and
the catalytic (CAT) domain of PARP1 move in opposite directions,
thereby exposing the NAD binding site in PARP120 (Fig. 1a and 1S
(Movie; Supplemental Information)). Thus, exposure of the NAD
binding site in PARP1 bound to phosphorylated Erk through the
HD and WGR domains can enhance the frequency of NAD binding
to its site in PARP1. Recent findings have shown how the helical
domain (HD) of PARP1 can inhibit PARP1 activity by restricting the
access of NAD to its binding site and regulating the frequency of
NAD binding.50 Additionally, computed structural rearrangements
of PARP1 bound to phosphorylated Erk that facilitate NAD binding
are compatible with the high NAD affinity of PARP1 activated by
binding to phosphorylated Erk19,20,38 (Fig. 1c).

ERK-INDUCED PARP1 ACTIVATION RESULTS IN POLY-ADP-
RIBOSYLATION OF HISTONE H1
High-frequency electrical stimulation of cultured brain cortical
neurons causing synaptic potentiation has been found to induce
poly-ADP-ribosylation of PARP1 and its prominent substrate linker
histone H1. This poly-ADP-ribosylation was prevented in the
presence of specific MEK inhibitors20 (Fig. 2). Additionally, PARP1
was co-immunoprecipitated with phosphorylated Erk in nuclear
extracts of the stimulated neurons unless they were treated with
MEK inhibitors.20 These findings are in accordance with those of
cell-free experiments in which recombinant H1 was poly-ADP-
ribosylated in the presence of NAD, recombinant PARP1 and
recombinant phosphorylated Erk.19

Furthermore, PARP1 and Erk2 were coimmunoprecipitated with
segments in the promoters of c-fos and zif268 in cerebral neurons
stimulated by high-frequency electrical stimulation.20 Histone H1
was not coimmunoprecipitated with PARP1 and phosphorylated
Erk2 in these chromatin coimmunoprecipitation reactions.20 These
findings are in accordance with studies demonstrating the

eviction of poly-ADP-ribosylated histone H1 from the promoter
of c-fos in response to high-frequency electrical stimulation or
membrane depolarization of cultured cerebral neurons.51,52

While H1 binding to nucleosomes induces a condensed
chromatin structure that represses transcription,53 H1 eviction
from nucleosomes evokes chromatin relaxation, rendering the
DNA more accessible to proteins and transcription factors and
thus facilitating gene expression.51,54,57 Accordingly, PARP1
accumulation accompanied by H1 depletion has been documen-
ted in promoters of transcribed genes, and PARP1 and H1 exhibit
a reciprocal pattern of binding at promoters across the
genome.54–60 H1 exclusion by PARP1 might not require PARP1
activation.54 However, H1 exclusion associated with transcription
of upregulated genes involves poly-ADP-ribosylation.58,59,61 PARP1
activity is dispensable for the expression of genes negatively
regulated by PARP1.62,63

In addition to the fact that histone H1 poly-ADP-ribosylation
causes histone H1 eviction from promoters of cfos in depolarized
cerebral neurons,51,52 in MCF-7 human breast cancer cells, histone
H1 poly-ADP-ribosylation is mediated by poly-ADP-ribosylation of
the demethylase KDM5B, which maintains methylation on histone
H3 (H3K4me3) adjacent to promoters of transcribed genes.8 In
another mechanism, in HeLa cervical cancer cells, PARP1
activation causes local destabilization of chromatin at cfos
promoters by facilitating the exchange of the variant histone
H2A.Z with histone H2A.64,65

ERK-INDUCED PARP1 ACTIVATION MEDIATES IEG EXPRESSION
In a cell-free system, recombinant Elk1 was phosphorylated by
recombinant phosphorylated Erk in the presence of recombinant
PARP1, ATP and NAD.19 Recombinant PARP1 and Elk1 did not bind
directly. They were coimmunoprecipitated only in the presence of
recombinant phosphorylated Erk2.19 Elk1 is phosphorylated by
stimulation activating the MAP kinase cascade, causing PARP1
binding to phosphorylated Erk2 and PARP1 activation.19,20,38

Additionally, import of active recombinant phosphorylated
Erk into the nuclei of permeabilized cortical neurons induces
PARP1 activation and acetylation of histone H4, in accordance
with the fact that Erk-induced activation of transcription factors
is implicated in the activation of HATs (histone acetyltrans-
ferases).19,23,66–68 Furthermore, high-frequency stimulation of
cultured cerebral neurons that induces synaptic potentiation also
induces the expression of the IEGs cfos, zif268 and arc, which are
implicated in synaptic potentiation and memory acquisition.20,69–
73 PARP1 inhibition, silencing or genetic deletion prevents IEG
expression.20 The induced expression of cfos and zif268 is
consistent with the coimmunoprecipitation of PARP1, phosphory-
lated Erk and acetylated H4 with DNA segments in the promoters
of c-fos and zif268.20 These results are consistent with the finding
that PARP1 activation mediates Erk-induced expression of IEGs in
stimulated neurons.20,23,74

Stimulation that induces H1 poly-ADP-ribosylation and eviction
from chromatin51,52,54,55,58 could render the transcription factor
Elk1 in the promoters of cfos and zif268 accessible to phosphor-
ylation by PARP1-bound phosphorylated Erk.23 Elk1
phosphorylation-mediated activation of the HAT activity of CBP/
p300 induces acetylation of core histone-promoting
transcription.23

High-frequency electrical stimulation or treatment with nerve
growth factors could induce the expression of cfos, zif268 and
arc following Erk phosphorylation and the binding of phosphory-
lated Erk translocated into the nucleus to PARP1.20,21,69–74 In
accordance with this finding, MEK inhibition, PARP1 inhibition,
PARP1 silencing and PARP1 genetic deletion prevent both the
expression of these IEGs and synaptic potentiation20 (Fig. 3). These
findings may outline a rapid signal transduction mechanism
mediating IEG expression in cerebral neurons in response to

Fig. 2 PARP1 activation susceptibility to MEK inhibition in stimu-
lated cultured cortical neurons. PARP1 activation, as measured by a
shift in the PARP1 isoelectric point (pI) and that of its substrate
histone H1, in cultured cortical neurons subjected to high-frequency
electrical stimulation (100 Hz; induces synaptic potentiation) was
prevented by either MEK or PARP inhibitors (U0126 and PJ-34,
respectively) (from ref. 20)
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electrical stimulation75 (Fig. 4). Findings indicating that RNApolII
positioned on IEG promoters is rapidly activated in response to
stimulation25 are consistent with the rapid responses implicated in
IEG expression in cerebral neurons. Measurements in cellular
model systems of stimulated cerebral neurons could reflect
physiological responses.20,75 In vivo experiments with rodents
and PARP1-KO mice have supported the pivotal role of PARP1
activity in memory acquisition. PARP1 inhibition in rodents (and
also in the marine mollusk Aplysia) or PARP1 genetic deletion in
PARP1-KO mice prevents long-term memory acquisition during
learning.76–78

DNA DAMAGE PREVENTS PARP1-ERK BINDING IN CEREBRAL
NEURONS
In a cell-free system, recombinant PARP1 was found not to bind or
be activated by phosphorylated Erk in the presence of nicked DNA
(DNA single strand breaks).19 In stimulated cultured cerebral
neurons, IEG expression was prevented in the presence of
accumulated DNA single-strand breaks, similar to the effect of
PARP1 inhibition, silencing or genetic deletion. Preventing the
binding of PARP1 to DNA restored the expression of IEGs.20 These
results are consistent with the recently indicated structural
modifications in DNA-bound PARP1 that occlude Erk docking
sites in its HD and WGR domains20,44 (Fig. 1a, b).
Accumulation of single-strand DNA breaks is most common in

aged cerebral neurons, which cannot be replaced during an
organism’s lifetime. These breaks are caused by oxidative damage
due to high energy demands in the central nervous system, and
due to declines in antioxidant defensive mechanisms during
senescence.74,79–82 Thus, gene expression might be suppressed in

aged neurons by mechanisms preventing the transcription of
damaged DNA.83 However, the expression of cfos and zif268,
which is suppressed in stimulated neurons carrying accumulated
DNA breaks, has been found to be restored by preventing the
binding of PARP1 to DNA breaks. This restoration was demon-
strated by IEG expression when recombinant PARP1 lacking the
DNA-binding domain was expressed in PARP1-KO cortical neurons
treated with a DNA damaging agent or when poly-ADP-ribose
glycohydrolase (PARG) was inhibited84 and the recurrent binding
of PARP1 to DNA was prevented.20,84

Since cfos, zif268 and arc expression have been implicated in
synaptic potentiation,67–73 DNA damage that suppresses their
expression by preventing the binding of PARP1 to phosphorylated
Erk might affect synaptic potentiation.20,74 In support of this
possibility, DNA damage, PARP1 inhibition and PARP1 genetic
deletion were found to prevent long-term synaptic potentiation in
a hippocampal cell model and to prevent long-term memory in
rodents.20,76–78 Additionally, PARG inhibitors have been found to
improve learning ability in aged rats.85 Recent findings have
associated failure of synaptic potentiation, or synaptic silencing
with the initiation of Alzheimer’s disease.86,87

PARP1-ERK SYNERGISM IN NEWBORN CARDIOMYOCYTES
Cardiomyocytes cannot be replaced during an organism’s lifetime;
thus, stress conditions causing persistent DNA damage and cell
death may cause permanent damage to the myocardium (heart
muscle).88 Under ischemia caused by myocardial infarction (MI),
cell death could be induced in cardiomyocytes due to the
transportation of poly-ADP-ribose polymers of highly activated
PARP1 to the mitochondria, causing the release of AIF (apoptotic

Fig. 3 PARP1-mediated expression of the IEGs c-fos, zif268 and arc in stimulated cortical neurons. The relative expression rates of the IEGs c-fos,
zif268 and arc were measured by RT-PCR at the indicated time intervals after the indicated electrical stimulation (1 s, 3 repeats) of cultured
brain cortical neurons with three different frequencies (100 Hz, 10 Hz or 1 Hz). Enhanced expression rates of these genes were measured only
in response to high-frequency stimulation (100 Hz; black line), which induces synaptic potentiation. The expression of these genes was
prevented in stimulated neurons treated with the PARP inhibitors PJ-34 and Tiq-A (gray lines) (from ref. 20)
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inducing factor) that activates DNA-dependent caspases.88–91 In
support of this finding, PARP1-KO mice have better cardiac
function under ischemia imposed by MI than wild-type mice,90

and PARP1 inhibitors reduce cardiac cell death caused by MI in
normal mice.90,91

In contrast, PARP1 inhibition might not be beneficial in
newborn cardiomyocytes. PARP-Erk synergism has been docu-
mented in newborn cardiomyocytes treated with the hormone/
growth factor angiotensin-II (AngII).43 Intracellular Ca2+ release
and activation of the MAP kinase phosphorylation cascade
mediate the AngII-induced high contraction rates of newborn
cardiomyocytes in cell cultures.43 In these cells, PARP1 is activated
and coimmunoprecipitated with phosphorylated Erk in response
to AngII-induced stimulation, and PARP1 is coimmunoprecipitated
with segments in the cfos promoter. Additionally, cfos expression
is suppressed by both PARP1 and MEK inhibitors.43,90 These
findings implicate PARP1 in the expression of cfos in newborn
cardiomyocytes exposed to AngII. Phosphorylated cFos protein
bound to GATA4 acts as a transcription factor of atrial natriuretic
factor (ANF),92 which is implicated in the growth and development
of newborn cardiomyocytes.92,93 In cultured newborn cardiomyo-
cytes, Erk-induced PARP1 poly-ADP-ribosylation mediates the
assembly of cFos bound to GATA4 in the ANF promoter, inducing
ANF expression.43 Accordingly, PARP1 inhibition, or silencing
prevents both c-fos and ANF expression in these cells,43 leading to
a negative influence of PARP1 inhibition on the growth and
development of newborn cardiomyocytes91–93 (Fig. 4). This
mechanism might be of interest when PARP1 inhibitors, currently
offered for cancer treatments, are administered during pregnancy
or early childhood.

PARP1-ERK SYNERGISM IN PROLIFERATING CELLS AND
TARGETED THERAPY
PARP1 is coimmunoprecipitated with phosphorylated Erk in
nuclear protein extracts prepared from mouse embryonic
fibroblasts (MEFs) treated with PMA (phorbol 12-myristate 13
acetate).37 PMA activates the MAP kinase cascade via PKC
activation.94 Similar to the case in cerebral neurons and newborn
cardiomyocytes, PARP1 is required to maintain long-lasting

activity of phosphorylated Erk in the nuclei of MEFs, and both
PARP1 and Erk remain activated for more than an hour after
stimulation.37

In proliferating cells, activation of the transcription factor AP1,
which is an heterodimer frequently composed of phosphorylated
c-Fos protein bound to c-Jun,95 eventually leads to cyclin D
expression, and initiates mitosis95,96 (Fig. 4). Similar to the case in
neuronal cells, PARP1 silencing and PARP1 genetic deletion
downregulate the presence of phosphorylated Erk in the nuclei
of MEFs, leading to PARP1-dependent downregulation of their Erk-
induced proliferation.27–29 However, unlike in cerebral neurons,
PARP1 inhibition does not suppress cfos expression. Delayed
elevations in cFos have been measured in the nuclei of MEFs pre-
treated with PARP1 inhibitors.37 This might indicate a parallel
alternative PARP1-independent pathway promoting cfos expres-
sion in MEFs treated with PMA. Phosphorylation of transcription
factors by phosphorylated RSK, one of the substrates of
phosphorylated Erk acting in both the cytoplasm and nuclei
mainly in proliferating cells,94 could mediate the expression of cfos
in MEFs after PARP1 inhibition.
Blocking the activation of the MAP kinase phosphorylation

cascade to downregulate Erk-induced oncogene expression and
proliferation in malignant cells has been thoroughly examined.95–99

Erk is constantly phosphorylated in RAS mutant cancer cells that
are mostly resistant to therapy.98,99 However, treatments that
inhibit the MAP kinase phosphorylation cascade by blocking
the activity of MEK or by blocking receptors of growth factors that
activate the MAP kinase cascade94–97 have failed to prevent the
consequences of sustained uncontrolled Erk activity in RAS mutant
cancer cells.98,99 Recently, a treatment combining PARP1 and MEK
inhibitors yielded positive results in patients with RAS mutant
cancer tumors.99 These findings are consistent with the idea that
PARP1 activity preserves the long-lasting activity of phosphory-
lated Erk in the nuclei of these malignant cells, although PARP1-Erk
synergism has not been reported in RAS mutant cancer cells.
PARP1 inhibitors also efficiently eradicate MCF-7 breast cancer

cells,100–102 and PARP1 silencing downregulates the activity of
phosphorylated Erk in the nuclei of these cells.37 In HeLa human
cervical cancer cells, MAP kinase phosphorylation-mediated the
binding of PARP1 to the promoter of cfos. The activation of the

Fig. 4 PARP1-Erk synergism mediates IEG expression. A schematic diagram (in red) indicating the regulation of IEG expression by PARP1-Erk
synergism as part of a signal transduction network (in gray and black) that mediates synaptic plasticity, MEF proliferation, and newborn
cardiomyocyte development. (poly-ADP-ribosylated PARP1 and histone H1: pADPr-PARP1 and pADPr-H1, respectively; phosphorylated Erk and

Elk1: pErk and pElk1, respectively; poly-ADP-ribosylated PARP1 bound to phosphorylated Erk; pADPr-PARP1 ( ) pErk)
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transcription factor NF1 downstream of MAPK activation mediates
the binding of PARP1 to the cfos promoter in these cells.64 An
additional mechanism controlling oncogene expression in malig-
nant cells is mediated by MAP kinase activation. In human
malignant cells, activation of the MAP kinase phosphorylation
cascade has been implicated in the regulation of a group of
miRNAs that downregulate the expression of immediate early
oncogenes.103,104

Despite evidence indicating that PARP1 inhibition interferes
with oncogene expression in malignant cells,31 PARP1 inhibitors
have been mainly examined for their role in reinforcing the
activity of DNA-damaging agents or in BRCA mutant cancer
cells105 in which double-strand DNA break repair is impaired.106,107

PARP1 inhibition preventing DNA repair also interferes with the
repair of damaged DNA in p53 mutant cancer cells,108,109 and
promotes cell death in PTEN phosphatase mutant cells with an
uncontrolled Akt kinase activity.110

Recent findings have identified molecules that have been
tagged as PARP1 inhibitors but that act through a PARP1-
independent mechanism. A group of phenanthrenes (PJ34, Phen
and Tiq-A) acting as potent PARP1 inhibitors that share high
affinity for the NAD binding site in PARP1,111 target the activity of
NuMA (nuclear mitotic apparatus protein-1)112 that stabilizes the
spindle poles during mitosis, by inhibiting the serine-threonine
kinase Pim1 and tankyrase 1 (a PARP family member), both of
which are scarcely expressed in normal somatic cells.113 This
activity prevents the binding of NuMA to α-tubulin and interferes
with its sliding towards the spindle poles. Unstable spindle poles
prevent chromosomes segregation and causes G2/M phase arrest
followed by cell death through mitotic catastrophe death. These
molecules have been shown to efficiently eradicate a variety of
resistant human cancer cells without impairing normal cells.113

CONCLUSION
A rapid signal transduction mechanism that mediates stimulation-
induced IEG expression is based on Erk-induced PARP1 activation
that renders transcription factors accessible to phosphorylated
Erk. Binding to PARP1 results in long-lasting activity of phos-
phorylated Erk in the nucleus and PARP1 activation with a high
affinity for NAD, which lasts as long as PARP1 is bound to
phosphorylated Erk. This mechanism could be involved in rapid
responses to signals that induce memory acquisition during
learning as well as in long-lasting stimulation-induced develop-
ment or proliferation. Jeopardizing this mechanism could impair
synaptic potentiation and memory but could be beneficial in
targeted cancer therapy.
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