Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Clinical Research
  • Published:

Circulating myeloid-derived suppressor cells and survival in prostate cancer patients: systematic review and meta-analysis

Abstract

Background

Immunotherapy has not achieved improvement of survival in prostate cancer patients. Myeloid-derived suppressor cells (MDSCs) in tumor microenvironment can hamper its efficacy. Some preclinical studies explored the role of MDSCs in prostate cancer development. We aimed to verify the availability of studies exploring the prognostic effect of circulating MDSCs in prostate cancer patients.

Methods

We systematically selected studies for a meta-analysis, which compares survival between prostate cancer patients with high vs low circulating MDSC levels. We extracted or calculated hazard ratios (HRs) and relative 95% confidence intervals (CIs) in terms of overall survival (OS) from selected studies. We calculated the pooled HR and relative 95% CIs and estimated publication bias.

Results

Among 133 studies retrieved from search on Pubmed, 5 eligible studies (236 prostate cancer patients) met inclusion criteria. High circulating MDSC levels are associated with a worse OS (HR = 2.19; 95%CI = 1.51–3.17). Heterogeneity was not significant (I2 = 0%; p = 0.64). Publication bias was also not significant (Egger’s test, p = 0.09).

Conclusions

High levels of circulating MDSCs induce a worse OS in prostate cancer patients than in those with low levels. This finding supports the importance of MDSC detection and targeting also in prostate cancer patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Flow chart of study selection process.
Fig. 2: Forest plot of overall survival.
Fig. 3: Funnel plot of overall survival.

Similar content being viewed by others

Data availability

Details on extracted data are available by the corresponding author upon reasonable request.

References

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics. CA Cancer J Clin. 2022;72:7–33.

    Article  PubMed  Google Scholar 

  2. Mottet N, van den Bergh RCN, Briers E, Van den Broeck T, Cumberbatch MG, De Santis M, et al. EAU-EANM-ESTRO-ESUR-SIOG guidelines on prostate cancer-2020 update. Part 1: screening, diagnosis, and local treatment with curative intent. Eur Urol. 2021;79:243–62.

    Article  CAS  PubMed  Google Scholar 

  3. Sweeney CJ, Chen YH, Carducci M, Liu G, Jarrard DF, Eisenberger M, et al. Chemohormonal therapy in metastatic hormone-sensitive prostate cancer. N Engl J Med. 2015;373:737–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kwon ED, Hurwitz AA, Foster BA, Madias C, Feldhaus AL, Greenberg NM, et al. Manipulation of T cell costimulatory and inhibitory signals for immunotherapy of prostate cancer. Proc Natl Acad Sci USA. 1997;94:8099–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Graff JN, Puri S, Bifulco CB, Fox BA, Beer TM. Sustained complete response to CTLA-4 blockade in a patient with metastatic, castration-resistant prostate cancer. Cancer Immunol Res. 2014;2:399–403.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Beer TM, Kwon ED, Drake CG, Fizazi K, Logothetis C, Gravis G, et al. Randomized, double-blind, phase III trial of ipilimumab versus placebo in asymptomatic or minimally symptomatic patients with metastatic chemotherapy-naive castration-resistant prostate cancer. J Clin Oncol. 2017;35:40–47.

    Article  CAS  PubMed  Google Scholar 

  7. Kwon ED, Drake CG, Scher HI, Fizazi K, Bossi A, van den Eertwegh AJ, et al. Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (CA184-043): a multicentre, randomised, double-blind, phase 3 trial. Lancet Oncol. 2014;15:700–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wattenberg MM, Fong L, Madan RA, Gulley JL. Immunotherapy in genitourinary malignancies. Curr Opin Urol. 2016;26:501–7.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kalina JL, Neilson DS, Comber AP, Rauw JM, Alexander AS, Vergidis J, et al. Immune modulation by androgen deprivation and radiation therapy: implications for prostate cancer immunotherapy. Cancers. 2017;9:13.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Gajewski TF, Schreiber H, Fu YX. Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol. 2013;14:1014–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Karzai F, Madan RA, Owens H, Hankin A, Couvillon A, Houston ND, et al. A phase II study of the anti-programmed death ligand-1 antibody durvalumab (D.; MEDI4736) in combination with PARP inhibitor, olaparib (O), in metastatic castration-resistant prostate cancer (mCRPC). J Clin Oncol. 2017;35:162.

    Article  Google Scholar 

  12. Graff JN, Alumkal JJ, Drake CG, Thomas GV, Redmond WL, Farhad M, et al. Early evidence of anti-PD-1 activity in enzalutamide-resistant prostate cancer. Oncotarget. 2016;7:52810–7.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Agarwal N, Azad A, Carles J, Chowdhury S, McGregor B, Merseburger AS, et al. A phase III, randomized, open-label study (CONTACT-02) of cabozantinib plus atezolizumab versus second novel hormone therapy in patients with metastatic castration-resistant prostate cancer. Future Oncol. 2022;18:1185–98.

    Article  CAS  PubMed  Google Scholar 

  14. Bronte V, Brandau S, Chen SH, Colombo MP, Frey AB, Greten TF, et al. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat Commun. 2016;7:12150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Koinis F, Xagara A, Chantzara E, Leontopoulou V, Aidarinis C, Kotsakis A. Myeloid-derived suppressor cells in prostate cancer: present knowledge and future perspectives. Cells. 2021;11:20.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Garcia AJ, Ruscetti M, Arenzana TL, Tran LM, Bianci-Frias D, Sybert E, et al. Pten null prostate epithelium promotes localized myeloid-derived suppressor cell expansion and immune suppression during tumor initiation and progression. Mol Cell Biol. 2014;34:2017–28.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Calcinotto A, Spataro C, Zagato E, Di Mitri D, Gil V, Crespo M, et al. IL-23 secreted by myeloid cells drives castration-resistant prostate cancer. Nature. 2018;559:363–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Canesin G, Evans-Axelsson S, Hellsten R, Sterner O, Krzyzanowska A, Andersson T, et al. The STAT3 inhibitor galiellalactone effectively reduces tumor growth and metastatic spread in an orthotopic xenograft mouse model of prostate cancer. Eur Urol. 2016;69:400–4.

    Article  CAS  PubMed  Google Scholar 

  19. Hellsten R, Lilljebjörn L, Johansson M, Leandersson K, Bjartell A. The STAT3 inhibitor galiellalactone inhibits the generation of MDSC-like monocytes by prostate cancer cells and decreases immunosuppressive and tumorigenic factors. Prostate. 2019;79:1611–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Won H, Moreira D, Gao C, Duttagupta P, Zhao X, Manuel E, et al. TLR9 expression and secretion of LIF by prostate cancer cells stimulates accumulation and activity of polymorphonuclear MDSCs. J Leukoc Biol. 2017;102:423–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Consiglio CR, Udartseva O, Ramsey KD, Bush C, Gollnick SO. Enzalutamide, an androgen receptor antagonist, enhances myeloid cell-mediated immune suppression and tumor progression. Cancer Immunol Res. 2020;8:1215–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lerman I, Garcia-Hernandez ML, Rangel-Moreno J, Chiriboga L, Pan C, Nastiuk KL, et al. Infiltrating myeloid cells exert protumorigenic actions via neutrophil elastase. Mol Cancer Res. 2017;15:1138–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Matchar DB. Introduction to the methods guide for medical test reviews. J Gen Intern Med. 2012;27:S4–10.

    Article  PubMed  Google Scholar 

  24. Parmar MK, Torri V, Stewart L. Extracting summary statistics to perform meta-analyses of the published literature for survival endpoints. Stat Med. 1998;17:2815–34.

    Article  CAS  PubMed  Google Scholar 

  25. Tierney JF, Stewart LA, Ghersi D, Burdett S, Sydes MR. Practical methods for incorporating summary time-to-event data into meta-analysis. Trials. 2007;8:16.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327:557–60.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50:1088–101.

    Article  CAS  PubMed  Google Scholar 

  28. Stuck AE, Rubenstein LZ, Wieland D. Bias in meta-analysis detected by a simple, graphical test. Asymmetry detected in funnel plot was probably due to true heterogeneity. BMJ. 1998;316:469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Duval S, Tweedie R. Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in metaanalysis. Biometrics. 2000;56:455–63.

    Article  CAS  PubMed  Google Scholar 

  30. Chi N, Tan Z, Ma K, Bao L, Yun Z. Increased circulating myeloid-derived suppressor cells correlate with cancer stages, interleukin-8 and -6 in prostate cancer. Int J Clin Exp Med. 2014;7:3181–92.

    PubMed  PubMed Central  Google Scholar 

  31. Idorn M, Køllgaard T, Kongsted P, Sengeløv L, Straten PT. Correlation between frequencies of blood monocytic myeloid-derived suppressor cells, regulatory T cells and negative prognostic markers in patients with castration-resistant metastatic prostate cancer. Cancer Immunol Immunother. 2014;63:1177–87.

    Article  CAS  PubMed  Google Scholar 

  32. Santegoets SJ, Stam AG, Lougheed SM, Gall H, Jooss K, Sacks N, et al. Myeloid derived suppressor and dendritic cell subsets are related to clinical outcome in prostate cancer patients treated with prostate GVAX and ipilimumab. J Immunother Cancer. 2014;2:31.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Koga N, Moriya F, Waki K, Yamada A, Itoh K, Noguchi M. Immunological efficacy of herbal medicines in prostate cancer patients treated by personalized peptide vaccine. Cancer Sci. 2017;108:2326–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Karzai F, VanderWeele D, Madan RA, Owens H, Cordes LM, Hankin A, et al. Activity of durvalumab plus olaparib in metastatic castration-resistant prostate cancer in men with and without DNA damage repair mutations. J Immunother Cancer. 2018;6:141.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Brusa D, Simone M, Gontero P, Spadi R, Racca P, Micari J, et al. Circulating immunosuppressive cells of prostate cancer patients before and after radical prostatectomy: profile comparison. Int J Urol. 2013;20:971–8.

    CAS  PubMed  Google Scholar 

  36. Wang J, McGuire TR, Britton HC, Schwarz JK, Loberiza FR Jr., Meza JL, et al. Lenalidomide and cyclophosphamide immunoregulation in patients with metastatic, castration-resistant prostate cancer. Clin Exp Metastasis. 2015;32:111–24.

    Article  CAS  PubMed  Google Scholar 

  37. Vuk-Pavlović S, Bulur PA, Lin Y, Qin R, Szumlanski CL, Zhao X, et al. Immunosuppressive CD14+HLA-DRlow/- monocytes in prostate cancer. Prostate. 2010;70:443–55.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Noguchi M, Moriya F, Koga N, Matsueda S, Sasada T, Yamada A, et al. A randomized phase II clinical trial of personalized peptide vaccination with metronomic low-dose cyclophosphamide in patients with metastatic castration-resistant prostate cancer. Cancer Immunol Immunother. 2016;65:151–60.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

GB, VC, ML, and ADP contributed to the study conception and design, data collection, analysis, manuscript writing, and they read and approved the final manuscript.

Corresponding author

Correspondence to Giuseppe Bronte.

Ethics declarations

Competing interests

VC has served as a consultant/advisory board member for Janssen, Astellas, Merck, AstraZeneca, Amgen and Bayer and has received speaker honoraria or travel support from Astellas, Janssen, Ipsen, Bayer. The other authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bronte, G., Conteduca, V., Landriscina, M. et al. Circulating myeloid-derived suppressor cells and survival in prostate cancer patients: systematic review and meta-analysis. Prostate Cancer Prostatic Dis 26, 41–46 (2023). https://doi.org/10.1038/s41391-022-00615-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41391-022-00615-5

This article is cited by

Search

Quick links