Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Clinical Research
  • Published:

Diagnostic and prognostic significance of extracellular vesicles in prostate cancer drug resistance: A systematic review of the literature

Abstract

Background

The clinical behavior of prostate cancer is highly heterogeneous, with most patients diagnosed with localized disease that successfully responds to surgery or radiotherapy.

However, a fraction of men relapse after initial treatment because they develop drug resistance. The failure of anticancer drugs leaves resistant cancer cells to survive and proliferate, negatively affecting patient survival. Thus, drug resistance remains a significant obstacle to the effective treatment of prostate cancer patients. In this scenario, the involvement of extracellular vesicles (EVs) in intrinsic and acquired resistance have been reported in several tumors, and accumulating data suggests that their differential content can be used as diagnostic or prognostic factors. Thus, we propose a systematic study of literature to provide a snapshot of the current scenario regarding EVs as diagnostic and prognostic biomarkers resource in resistant prostate cancer.

Methods

We performed the current systematic review according to PRISMA guidelines and comprehensively explored PubMed, EMBASE and Google Scholar databases to achieve the article search.

Results

Thirty-three studies were included and investigated. Among all systematically reviewed EV biomarkers, we found mainly molecules with prognostic significance (61%), molecules with diagnostic relevance (18%), and molecules that serve both purposes (21%). Moreover, among all analyzed molecules isolated from EVs, proteins, mRNAs, and miRNAs emerged to be the most investigated and proposed as potential tools to diagnose or predict resistance/sensitivity to advanced PCa treatments.

Discussion

Our analysis provides a snapshot of the current scenario regarding EVs as potential clinical biomarkers in resistant PCa. Nevertheless, despite many efforts, the use of EV biomarkers in PCa is currently at an early stage: none of the selected EV biomarkers goes beyond preclinical studies, and their translatability is yet far from clinical settings.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2: Extracellular vesicles as biomarkers for resistant prostate cancer.

Similar content being viewed by others

Data availability

The literature datasets generated and analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Ca-a Cancer J Clin. 2021;71:209–49.

    Article  Google Scholar 

  2. Bumbaca B, Lin W. Taxane resistance in castration-resistant prostate cancer: mechanisms and therapeutic strategies. Acta Pharmaceutica Sin B. 2018;8:518–29.

    Article  Google Scholar 

  3. Liu JM, Lin CC, Liu KL, Lin CF, Chen BY, Chen TH, et al. Second-line hormonal therapy for the management of metastatic castration-resistant prostate cancer: A real-world data study using a claims database. Scientific Rep. 2020;10:1–7.

    Google Scholar 

  4. Ryan CJ, Smith MR, de Bono JS, Molina A, Logothetis CJ, de Souza P, et al. Abiraterone in metastatic prostate cancer without previous chemotherapy. N Engl J Med. 2013;368:138–48.

    Article  CAS  PubMed  Google Scholar 

  5. Scher HI, Fizazi K, Saad F, Taplin ME, Sternberg CN, Miller K, et al. Increased survival with enzalutamide in prostate cancer after chemotherapy. N Engl J Med. 2012;367:1187–97.

    Article  CAS  PubMed  Google Scholar 

  6. Beer TM, Armstrong AJ, Rathkopf DE, Loriot Y, Sternberg CN, Higano CS, et al. Enzalutamide in metastatic prostate cancer before chemotherapy. N Engl J Med. 2014;371:424–33.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bhagirath D, Liston M, Akoto T, Lui B, Bensing BA, Sharma A, et al. Novel, non-invasive markers for detecting therapy induced neuroendocrine differentiation in castration-resistant prostate cancer patients. Sci Rep. 2021;11:8279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hoeks CMA, Barentsz JO, Hambrock T, Yakar D, Somford DM, Heijmink S, et al. Prostate cancer: Multiparametric MR imaging for detection, localization, and staging. Radiology 2011;261:46–66.

    Article  PubMed  Google Scholar 

  9. Purysko AS, Bittencourt LK, Bullen JA, Mostardeiro TR, Herts BR, Klein EA. Accuracy and interobserver agreement for prostate imaging reporting and data system, Version 2, for the characterization of lesions identified on multiparametric MRI of the prostate. Am J Roentgenol. 2017;209:339–45.

    Article  Google Scholar 

  10. Girometti R, Giannarini G, Greco F, Isola M, Cereser L, Como G, et al. Interreader agreement of PI-RADS v. 2 in assessing prostate cancer with multiparametric MRI: A study using whole-mount histology as the standard of reference. J Magn Reson Imaging. 2019;49:546–55.

    Article  PubMed  Google Scholar 

  11. Jan AT, Rahman S, Khan S, Tasduq SA, Choi I. Biology, pathophysiological role, and clinical implications of exosomes: A critical appraisal. Cells. 2019;8:1–19.

    Article  Google Scholar 

  12. Penfornis P, Vallabhaneni KC, Whitt J, Pochampally R. Extracellular vesicles as carriers of microRNA, proteins and lipids in tumor microenvironment. Int J Cancer. 2016;138:14–21.

    Article  CAS  PubMed  Google Scholar 

  13. Akoto T, Saini S. Role of exosomes in prostate cancer metastasis. Int J Mol Sci. 2021;22:1–19.

    Article  Google Scholar 

  14. Ni J, Bucci J, Malouf D, Knox M, Graham P, Li Y. Exosomes in cancer radioresistance. Front Oncol. 2019;9:1–9.

    Article  Google Scholar 

  15. Malla B, Zaugg K, Vassella E, Aebersold DM, Dal Pra A. Exosomes and exosomal MicroRNAs in prostate cancer radiation therapy. Int J Radiat Oncol Biol Phys. 2017;98:982–95.

    Article  CAS  PubMed  Google Scholar 

  16. Lucotti S, Rainaldi G, Evangelista M, Rizzo M. Fludarabine treatment favors the retention of miR-485-3p by prostate cancer cells: implications for survival. Mol Cancer. 2013;12:52.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Sahebi R, Langari H, Fathinezhad Z, Bahari Sani Z, Avan A, Ghayour Mobarhan M, et al. Exosomes: New insights into cancer mechanisms. J Cell Biochem. 2020;121:7–16.

    Article  CAS  PubMed  Google Scholar 

  18. Xavier CPR, Caires HR, Barbosa MAG, Bergantim R, Guimaraes JE, Vasconcelos MH. The role of extracellular vesicles in the hallmarks of cancer and drug resistance. Cells. 2020;9:1–34.

  19. Corcoran C, Rani S, O’Brien K, O’Neill A, Prencipe M, Sheikh R, et al. Docetaxelresistance in prostate cancer: Evaluating associated phenotypic changes and potential for resistance transfer via exosomes. PLoS ONE. 2012;7:1–12.

    Article  Google Scholar 

  20. Panagopoulos K, Cross-Knorr S, Dillard C, Pantazatos D, Del Tatto M, Mills D, et al. Reversal of chemosensitivity and induction of cell malignancy of a non-malignant prostate cancer cell line upon extracellular vesicle exposure. Mol Cancer. 2013;12:1–16.

    Article  Google Scholar 

  21. Peak TC, Panigrahi GK, Praharaj PP, Su YX, Shi LH, Chyr J, et al. Syntaxin 6-mediated exosome secretion regulates enzalutamide resistance in prostate cancer. Mol Carcinogenesis. 2020;59:62–72.

    Article  CAS  Google Scholar 

  22. Corcoran C, Rani S, O’Driscoll L. miR-34a is an intracellular and exosomal predictive biomarker for response to docetaxel with clinical relevance to prostate cancer progression. Prostate 2014;74:1320–34.

    Article  CAS  PubMed  Google Scholar 

  23. Li J, Yang X, Guan H, Mizokami A, Keller ET, Xu X, et al. Exosome-derived microRNAs contribute to prostate cancer chemoresistance. Int J Oncol 2016;49:838–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Huang X, Yuan T, Liang M, Du M, Xia S, Dittmar R, et al. Exosomal miR-1290 and miR-375 as prognostic markers in castration-resistant prostate cancer. Eur Urol. 2015;67:33–41.

    Article  CAS  PubMed  Google Scholar 

  25. Guo T, Wang Y, Jia J, Mao X, Stankiewicz E, Scandura G, et al. The identification of plasma exosomal miR-423-3p as a potential predictive biomarker for prostate cancer castration-resistance development by plasma exosomal miRNA sequencing. Front Cell Dev Biol. 2020;8:602493.

    Article  PubMed  Google Scholar 

  26. Bhagirath D, Yang TL, Bucay N, Sekhon K, Majid S, Shahryari V, et al. microRNA-1246 is an exosomal biomarker for aggressive prostate cancer. Cancer Res. 2018;78:1833–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Malla B, Aebersold DM, Dal Pra A. Protocol for serum exosomal miRNAs analysis in prostate cancer patients treated with radiotherapy. J Trans Med. 2018;16:1–13.

    Article  Google Scholar 

  28. Yu Q, Li P, Weng ML, Wu S, Zhang YF, Chen X, et al. Nano-vesicles are a potential tool to monitor therapeutic efficacy of carbon ion radiotherapy in prostate cancer. J Biomed Nanotechnol. 2018;14:168–78.

    Article  CAS  PubMed  Google Scholar 

  29. Fredsoe J, Rasmussen AKI, Mouritzen P, Borre M, Orntoft T, Sorensen KD. A five-microRNA model (pCaP) for predicting prostate cancer aggressiveness using cell-free urine. Int J Cancer. 2019;145:2558–67.

    Article  CAS  PubMed  Google Scholar 

  30. Vo JN, Zhang YJ, Shukla S, Xiao LB, Robinson D, Wu YM, et al. The landscape of circular RNA in cancer. Cancer Res. 2018;176:869–81.

    Google Scholar 

  31. Cao SB, Ma TF, Ungerleider N, Roberts C, Kobelski M, Jin LJ, et al. Circular RNAs add diversity to androgen receptor isoform repertoire in castration-resistant prostate cancer. Oncogene 2019;38:7060–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Del ReM, Biasco E, Crucitta S, Derosa L, Rofi E, Orlandini C, et al. The detection of androgen receptor splice variant 7 in plasma-derived exosomal RNA strongly predicts resistance to hormonal therapy in metastatic prostate cancer patients. Eur Urol. 2017;71:680–7.

    Article  Google Scholar 

  33. Del ReM, Crucitta S, Sbrana A, Rofi E, Paolieri F, Gianfilippo G, et al. Androgen receptor (AR) splice variant 7 and full-length AR expression is associated with clinical outcome: a translational study in patients with castrate-resistant prostate cancer. BJU Int. 2019;124:693–700.

    Article  Google Scholar 

  34. Joncas FH, Lucien F, Rouleau M, Morin F, Leong HS, Pouliot F, et al. Plasma extracellular vesicles as phenotypic biomarkers in prostate cancer patients. Prostate 2019;79:1767–76.

    Article  CAS  PubMed  Google Scholar 

  35. Woo HK, Park J, Ku JY, Lee CH, Sunkara V, Ha HK, et al. Urine-based liquid biopsy: Non-invasive and sensitive AR-V7 detection in urinary EVs from patients with prostate cancer. Lab a Chip. 2019;19:87–97.

    Article  CAS  Google Scholar 

  36. Foroni C, Zarovni N, Bianciardi L, Bernardi S, Triggiani L, Zocco D, et al. When less is more: Specific capture and analysis of tumor exosomes in plasma increases the sensitivity of liquid biopsy for comprehensive detection of multiple androgen receptor phenotypes in advanced prostate cancer patients. Biomedicines. 2020;8:1–14.

    Article  Google Scholar 

  37. Del Re M, Conteduca V, Crucitta S, Gurioli G, Casadei C, Restante G, et al. Androgen receptor gain in circulating free DNA and splicing variant 7 in exosomes predict clinical outcome in CRPC patients treated with abiraterone and enzalutamide. Prostate Cancer Prostatic Dis. 2021;24:524–31.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Bhagirath D, Yang TL, Tabatabai ZL, Majid S, Dahiya R, Tanaka Y, et al. BRN4 is a novel driver of neuroendocrine differentiation in castration-resistant prostate cancer and is selectively released in extracellular vesicles with BRN2. Clin Cancer Res. 2019;25:6532–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kato T, Mizutani K, Kawakami K, Fujita Y, Ehara H, Ito M. CD44v8-10 mRNA contained in serum exosomes as a diagnostic marker for docetaxel resistance in prostate cancer patients. Heliyon 2020;6:e04138.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Zavridou M, Strati A, Bournakis E, Smilkou S, Tserpeli V, Lianidou E. Prognostic significance of gene expression and DNA methylation markers in circulating tumor cells and paired plasma derived exosomes in metastatic castration resistant prostate cancer. Cancers (Basel). 2021;13:1–14.

    Article  Google Scholar 

  41. Vardaki I, Corn P, Gentile E, Song JH, Madan N, Hoang A, et al. Radium-223 treatment increases immune checkpoint expression in extracellular vesicles from the metastatic prostate cancer bone microenvironment. Clin Cancer Res. 2021;27:3253–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Corcoran C, Rani S, O’Brien K, O’Neill A, Prencipe M, Sheikh R, et al. Docetaxel-resistance in prostate cancer: Evaluating associated phenotypic changes and potential for resistance transfer via exosomes. PLoS One. 2012;7:e50999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kato T, Mizutani K, Kameyama K, Kawakami K, Fujita Y, Nakane K, et al. Serum exosomal P-glycoprotein is a potential marker to diagnose docetaxel resistance and select a taxoid for patients with prostate cancer. Urologic Oncol: Semin Original Investig. 2015;33:385.e15–e20.

    Article  CAS  Google Scholar 

  44. Kharaziha P, Chioureas D, Rutishauser D, Baltatzis G, Lennartsson L, Fonseca P, et al. Molecular profiling of prostate cancer derived exosomes may reveal a predictive signature for response to docetaxel. Oncotarget 2015;6:21740–54.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Kawakami K, Fujita Y, Kato T, Mizutani K, Kameyama K, Tsumoto H, et al. Integrin β4 and vinculin contained in exosomes are potential markers for progression of prostate cancer associated with taxane-resistance. Int J Oncol 2015;47:384–90.

    Article  CAS  PubMed  Google Scholar 

  46. Krishn SR, Singh A, Bowler N, Duffy AN, Friedman A, Fedele C, et al. Prostate cancer sheds the αvβ3 integrin in vivo through exosomes. Matrix Biol. 2019;77:41–57.

    Article  CAS  PubMed  Google Scholar 

  47. Ciardiello C, Leone A, Lanuti P, Roca MS, Moccia T, Minciacchi VR, et al. Large oncosomes overexpressing integrin alpha-V promote prostate cancer adhesion and invasion via AKT activation. J Experimental Clin Cancer Res. 2019;38:1–16.

    Article  CAS  Google Scholar 

  48. Kawakami K, Fujita Y, Matsuda Y, Arai T, Horie K, Kameyama K, et al. Gammaglutamyltransferase activity in exosomes as a potential marker for prostate cancer. BMC Cancer. 2017;17:1–12.

    Article  Google Scholar 

  49. Ishizuya Y, Uemura M, Narumi R, Tomiyama E, Koh Y, Matsushita M, et al. The role of actinin-4 (ACTN4) in exosomes as a potential novel therapeutic target in castration-resistant prostate cancer. Biochem Biophys Res Commun. 2020;523:588–94.

    Article  CAS  PubMed  Google Scholar 

  50. Lee HC, Ou CH, Huang YC, Hou PC, Creighton CJ, Lin YS, et al. YAP1 overexpression contributes to the development of enzalutamide resistance by induction of cancer stemness and lipid metabolism in prostate cancer. Oncogene 2021;40:2407–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Biggs CN, Siddiqui KM, Al-Zahrani AA, Pardhan S, Brett SI, Guo QQ, et al. Prostate extracellular vesicles in patient plasma as a liquid biopsy platform for prostate cancer using nanoscale flow cytometry. Oncotarget 2016;7:8839–49.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Nanou A, Coumans FAW, Dalum G, Zeune LL, Dolling D, Onstenk W, et al. Circulating tumor cells, tumor-derived extracellular vesicles and plasma cytokeratins in castration-resistant prostate cancer patients. Oncotarget 2018;9:19283–93.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Nanou A, Miller MC, Zeune LL, de Wit S, Punt CJA, Groen HJM, et al. Tumour-derived extracellular vesicles in blood of metastatic cancer patients associate with overall survival. Br J Cancer. 2020;122:801–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Stegmayr B, Ronquist G. PROMOTIVE EFFECT ON HUMAN-SPERM PROGRESSIVE MOTILITY BY PROSTASOMES. Urological Res. 1982;10:253–7.

    Article  CAS  Google Scholar 

  55. Post H, Wiche R, Sen PC, Hoffbauer G, Albrecht M, Seitz J, et al. Identification of a plasma membrane Ca2+-ATPase in epithelial cells and aposomes of the rat coagulating gland. Prostate 2002;52:159–66.

    Article  CAS  PubMed  Google Scholar 

  56. Logozzi M, Angelini DF, Giuliani A, Mizzoni D, Di Raimo R, Maggi M, et al. Increased plasmatic levels of PSA-expressing exosomes distinguish prostate cancer patients from benign prostatic hyperplasia: A prospective study. Cancers. 2019;11:1–11.

    Article  Google Scholar 

  57. McKiernan J, Donovan MJ, O’Neill V, Bentink S, Noerholm M, Belzer S, et al. A novel urine exosome gene expression assay to predict high-grade prostate cancer at initial biopsy. Jama Oncol. 2016;2:882–9.

    Article  PubMed  Google Scholar 

  58. McKiernan J, Donovan MJ, Margolis E, Partin A, Carter B, Brown G, et al. Prospective adaptive utility trial to validate performance of a novel urine exosome gene expression assay to predict high-grade prostate cancer in patients with prostate-specific antigen 2-10 ng/ml at initial biopsy. Eur Urol. 2018;74:731–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization—AMG and CC. Methodology—AMG and CC. Validation—AMG, CC, and MS. Investigation—AMG and CC, Resources—AMG and CC, Data curation—AMG and CC. Writing-original draft preparation—AMG. Writing-review and editing—CC. Supervision—MS. Funding acquisition—MS. All authors have read and agreed to the published version of the paper.

Corresponding author

Correspondence to Anna Maria Grimaldi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grimaldi, A.M., Salvatore, M. & Cavaliere, C. Diagnostic and prognostic significance of extracellular vesicles in prostate cancer drug resistance: A systematic review of the literature. Prostate Cancer Prostatic Dis 26, 228–239 (2023). https://doi.org/10.1038/s41391-022-00521-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41391-022-00521-w

This article is cited by

Search

Quick links