Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

BRD4 regulates key transcription factors that drive epithelial–mesenchymal transition in castration-resistant prostate cancer




Androgen deprivation therapies for the hormone-dependent stages of prostate cancer have become so effective that new forms of chemoresistant tumors are emerging in clinical practice, and require new targeted therapies in the metastatic setting. Yet there are important gaps in our understanding of the relevant transcriptional networks driving this process. Progression from localized to metastatic castration resistant prostate cancer (mCRPC) occurs as a result of accumulated resistance mechanisms that develop upon sustained androgen receptor (AR) suppression. Critical to this progression is the plastic nature by which prostate tumor cells transition from epithelial to mesenchymal states (EMT).


Here, using prostate cancer cell lines with different AR composition, we systematically manipulated somatic proteins of the Bromodomain and ExtraTerminal (BET) family (BRD2, BRD3, and BRD4) to determine which BET proteins influence EMT. We used the TCGA repository to correlate the expression of individual BET genes with key EMT genes and determined biochemical recurrence in 414 patients and progression free survival in 488 patients.


We found that only BRD4—and not BRD2 or BRD3—regulates the expression of SNAI1 and SNAI2, and that the downregulation of these EMT transcription factors significantly increases E-cadherin expression. Furthermore, of the BET genes, only BRD4 correlates with survival outcomes in prostate cancer patients. Moreover, selective degradation of BRD4 protein with MZ1 ablates EMT (transcriptionally and morphologically) induced by TGFß signaling.


Many relapsed/refractory tumors share a neuroendocrine transcriptional signature that had been relatively rare until highly successful antiandrogen drugs like abiraterone and enzalutamide came into widespread use. New therapeutic targets must therefore be developed. Our results identify key EMT genes regulated by BRD4, and offers a novel druggable target to treat mCRPC. BRD4-selective protein degraders offer a promising next generation approach to treat the emerging forms of chemoresistance in advanced prostate cancer.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Fig. 1: BRD4 regulates transcription factors critical for EMT.
Fig. 2: Selective degradation of BRD4 represses TGFß induced EMT.
Fig. 3: BRD4 mediates SNAI1 and SNAI2 expression through promoter interactions.
Fig. 4: BRD4 expression correlates with SNAI1 and survival outcomes in prostate cancer patients.
Fig. 5: Visual overview of BRD4’s role in regulating EMT in CRPC.


  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69:7–34.

    PubMed  Google Scholar 

  2. Das R, Gregory PA, Hollier BG, Tilley WD, Selth LA. Epithelial plasticity in prostate cancer: principles and clinical perspectives. Trends Mol Med. 2014;20:643–51.

    CAS  PubMed  Google Scholar 

  3. Rice MA, Malhotra SV, Stoyanova T. Second-generation antiandrogens: from discovery to standard of care in castration resistant prostate cancer. Front Oncol. 2019;9:801.

    PubMed  PubMed Central  Google Scholar 

  4. Miao L, Yang L, Li R, Rodrigues DN, Crespo M, Hsieh JT, et al. Disrupting androgen receptor signaling induces snail-mediated epithelial-mesenchymal plasticity in prostate cancer. Cancer Res. 2017;77:3101–12.

    CAS  PubMed  Google Scholar 

  5. Smith BN, Odero-Marah VA. The role of Snail in prostate cancer. Cell Adh Migr. 2012;6:433–41.

    PubMed  PubMed Central  Google Scholar 

  6. Lim J, Thiery JP. Epithelial-mesenchymal transitions: insights from development. Development. 2012;139:3471–86.

    CAS  PubMed  Google Scholar 

  7. Sun Y, Wang BE, Leong KG, Yue P, Li L, Jhunjhunwala S, et al. Androgen deprivation causes epithelial-mesenchymal transition in the prostate: implications for androgen-deprivation therapy. Cancer Res. 2012;72:527–36.

    CAS  PubMed  Google Scholar 

  8. Belkina AC, Denis GV. BET domain co-regulators in obesity, inflammation and cancer. Nat Rev Cancer. 2012;12:465–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Filippakopoulos P, Qi J, Picaud S, Shen Y, Smith WB, Fedorov O, et al. Selective inhibition of BET bromodomains. Nature. 2010;468:1067–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Raina K, Lu J, Qian Y, Altieri M, Gordon D, Rossi AM, et al. PROTAC-induced BET protein degradation as a therapy for castration-resistant prostate cancer. Proc Natl Acad Sci USA. 2016;113:7124–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Gao L, Schwartzman J, Gibbs A, Lisac R, Kleinschmidt R, Wilmot B, et al. Androgen receptor promotes ligand-independent prostate cancer progression through c-Myc upregulation. PLoS One. 2013;8:e63563.

    PubMed  PubMed Central  Google Scholar 

  12. Andrieu G, Tran AH, Strissel KJ, Denis GV. BRD4 regulates breast cancer dissemination through Jagged1/Notch1 signaling. Cancer Res. 2016;76:6555–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Andrieu GP, Denis GV. BET proteins exhibit transcriptional and functional opposition in the epithelial-to-mesenchymal transition. Mol Cancer Res. 2018;16:580–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Shafran JS, Andrieu GP, Gyorffy B, Denis GV. BRD4 regulates metastatic potential of castration-resistant prostate cancer through AHNAK. Mol Cancer Res. 2019;17:1627–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Belkina AC, Nikolajczyk BS, Denis GV. BET protein function is required for inflammation: Brd2 genetic disruption and BET inhibitor JQ1 impair mouse macrophage inflammatory responses. J Immunol. 2013;190:3670–8.

    CAS  PubMed  Google Scholar 

  16. Asangani IA, Dommeti VL, Wang X, Malik R, Cieslik M, Yang R, et al. Therapeutic targeting of BET bromodomain proteins in castration-resistant prostate cancer. Nature. 2014;510:278–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G, et al. Integrative genomics viewer. Nat Biotechnol. 2011;29:24–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Budczies J, Klauschen F, Sinn BV, Gyorffy B, Schmitt WD, Darb-Esfahani S, et al. Cutoff Finder: a comprehensive and straightforward Web application enabling rapid biomarker cutoff optimization. PLoS One. 2012;7:e51862.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Zengerle M, Chan KH, Ciulli A. Selective small molecule induced degradation of the BET bromodomain protein BRD4. ACS Chem Biol. 2015;10:1770–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Cao Z, Kyprianou N. Mechanisms navigating the TGF-beta pathway in prostate cancer. Asian J Urol. 2015;2:11–8.

    PubMed  PubMed Central  Google Scholar 

  21. Schwarze SR, Fu VX, Desotelle JA, Kenowski ML, Jarrard DF. The identification of senescence-specific genes during the induction of senescence in prostate cancer cells. Neoplasia. 2005;7:816–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Medici D, Hay ED, Olsen BR. Snail and Slug promote epithelial-mesenchymal transition through beta-catenin-T-cell factor-4-dependent expression of transforming growth factor-beta3. Mol Biol Cell. 2008;19:4875–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Li D, Sun H, Sun WJ, Bao HB, Si SH, Fan JL, et al. Role of RbBP5 and H3K4me3 in the vicinity of Snail transcription start site during epithelial-mesenchymal transition in prostate cancer cell. Oncotarget. 2016;7:65553–67.

    PubMed  PubMed Central  Google Scholar 

  24. Li N, Dhar SS, Chen TY, Kan PY, Wei Y, Kim JH, et al. JARID1D is a suppressor and prognostic marker of prostate cancer invasion and metastasis. Cancer Res. 2016;76:831–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Gravdal K, Halvorsen OJ, Haukaas SA, Akslen LA. A switch from E-cadherin to N-cadherin expression indicates epithelial to mesenchymal transition and is of strong and independent importance for the progress of prostate cancer. Clin Cancer Res. 2007;13:7003–11.

    CAS  PubMed  Google Scholar 

  26. Ware KE, Somarelli JA, Schaeffer D, Li J, Zhang T, Park S, et al. Snail promotes resistance to enzalutamide through regulation of androgen receptor activity in prostate cancer. Oncotarget. 2016;7:50507–21.

    PubMed  PubMed Central  Google Scholar 

  27. Welti J, Sharp A, Yuan W, Dolling D, Nava Rodrigues D, Figueiredo I, et al. Targeting Bromodomain and Extra-Terminal (BET) family proteins in castration-resistant prostate cancer (CRPC). Clin Cancer Res. 2018;24:3149–62.

    CAS  PubMed  Google Scholar 

  28. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Disco. 2012;2:401–4.

    Google Scholar 

  29. Sohn M, Shin S, Yoo JY, Goh Y, Lee IH, Bae YS. Ahnak promotes tumor metastasis through transforming growth factor-beta-mediated epithelial-mesenchymal transition. Sci Rep. 2018;8:14379.

    PubMed  PubMed Central  Google Scholar 

  30. Stemmler MP. PCAF, ISX, and BRD4: a maleficent alliance serving lung cancer malignancy. EMBO Rep. 2020;21:e49766.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Qin ZY, Wang T, Su S, Shen LT, Zhu GX, Liu Q, et al. BRD4 promotes gastric cancer progression and metastasis through acetylation-dependent stabilization of snail. Cancer Res. 2019;79:4869–81.

    CAS  PubMed  Google Scholar 

  32. Wang LT, Liu KY, Jeng WY, Chiang CM, Chai CY, Chiou SS, et al. PCAF-mediated acetylation of ISX recruits BRD4 to promote epithelial-mesenchymal transition. EMBO Rep. 2020;21:e48795.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Alqahtani A, Choucair K, Ashraf M, Hammouda DM, Alloghbi A, Khan T, et al. Bromodomain and extra-terminal motif inhibitors: a review of preclinical and clinical advances in cancer therapy. Future Sci OA. 2019;5:FSO372.

    PubMed  PubMed Central  Google Scholar 

  34. Andrieu G, Belkina AC, Denis GV. Clinical trials for BET inhibitors run ahead of the science. Drug Discov Today Technol. 2016;19:45–50.

    PubMed  PubMed Central  Google Scholar 

  35. Abida W, Cyrta J, Heller G, Prandi D, Armenia J, Coleman I, et al. Genomic correlates of clinical outcome in advanced prostate cancer. Proc Natl Acad Sci USA. 2019;116:11428–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Aggarwal R, Huang J, Alumkal JJ, Zhang L, Feng FY, Thomas GV, et al. Clinical and genomic characterization of treatment-emergent small-cell neuroendocrine prostate cancer: a multi-institutional prospective study. J Clin Oncol. 2018;36:2492–503.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Beltran H, Hruszkewycz A, Scher HI, Hildesheim J, Isaacs J, Yu EY, et al. The role of lineage plasticity in prostate cancer therapy resistance. Clin Cancer Res. 2019;25:6916–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Wyce A, Degenhardt Y, Bai Y, Le B, Korenchuk S, Crouthame MC, et al. Inhibition of BET bromodomain proteins as a therapeutic approach in prostate cancer. Oncotarget. 2013;4:2419–29.

    PubMed  PubMed Central  Google Scholar 

  39. Delmore JE, Issa GC, Lemieux ME, Rahl PB, Shi J, Jacobs HM, et al. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell. 2011;146:904–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Mertz JA, Conery AR, Bryant BM, Sandy P, Balasubramanian S, Mele DA, et al. Targeting MYC dependence in cancer by inhibiting BET bromodomains. Proc Natl Acad Sci USA. 2011;108:16669–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Fan L, Peng G, Sahgal N, Fazli L, Gleave M, Zhang Y, et al. Regulation of c-Myc expression by the histone demethylase JMJD1A is essential for prostate cancer cell growth and survival. Oncogene. 2016;35:2441–52.

    CAS  PubMed  Google Scholar 

  42. Amatangelo MD, Goodyear S, Varma D, Stearns ME. c-Myc expression and MEK1-induced Erk2 nuclear localization are required for TGF-beta induced epithelial-mesenchymal transition and invasion in prostate cancer. Carcinogenesis. 2012;33:1965–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Faivre EJ, McDaniel KF, Albert DH, Mantena SR, Plotnik JP, Wilcox D, et al. Selective inhibition of the BD2 bromodomain of BET proteins in prostate cancer. Nature. 2020;578:306–10.

    CAS  PubMed  Google Scholar 

Download references


We thank Dr. Alessio Ciulli for providing MZ1 and the Boston University-Boston Medical Center Flow Cytometry and Cellular Imaging Core Facilities for technical assistance. J. Shafran is supported by a T32 training grant, ‘Research Training in Immunology’ from NIAID (5T32AI007309-30, PI Kepler). This study was supported by grants from the National Institutes of Health (DK090455, U01CA182898, R01CA222170; GV Denis; T32AI007309; TB Kepler) and the Shipley Prostate Cancer Research Center. The funders had no role in study design, data collection and analysis, preparation of the manuscript or decision to publish.

Author information

Authors and Affiliations



Conception and design: JSS, GVD. Methodology: JSS, GVD. Acquisition of data: JSS, ANC. Analysis and interpretation of data: JSS, NJ, ANC, BG, GVD. Writing, editing, and revision of manuscript: JSS, NJ, ANC, BG, GVD. Funding: GVD. Study supervision: GVD.

Corresponding author

Correspondence to Gerald V. Denis.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shafran, J.S., Jafari, N., Casey, A.N. et al. BRD4 regulates key transcription factors that drive epithelial–mesenchymal transition in castration-resistant prostate cancer. Prostate Cancer Prostatic Dis 24, 268–277 (2021).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links