Genome-wide association study identifies a role for the progesterone receptor in benign prostatic hyperplasia risk

Abstract

Background

Benign prostatic hyperplasia (BPH) is common noncancerous prostate enlargement, which is usually associated with lower urinary tract symptoms (LUTS) and can lead to complex urinary, bladder, or kidney diseases. The majority of elderly men will be affected by BPH as age increases.

Methods

Here, we conducted a genome-wide association study (GWAS) of BPH using 1942 cases and 4730 controls from the Electronic Medical Records and Genomics network (eMERGE) as discovery cohort. We then used 5109 cases and 161,911 controls from UK Biobank as validation cohort.

Results

This GWAS discovered 35 genome-wide significant variants (P < 5 × 10−8), located at 22 different loci in discovery cohort. We validated four significant variants located at four different loci in validation cohort: rs8027714 at 15q11.2, rs8136152 at 22q13.2, rs10192133 at 2q24.2, and rs1237696 at 11q22.1. rs1237696 is an intronic variant on chromosome 11 in the progesterone receptor (PGR) gene (P = 4.21 ×10–8, OR [95% CI] = 1.36 [1.22–1.52]). PGR is a known drug target for BPH as the PGR agonist gestonorone caproate has been used to treat BPH in multiple countries.

Conclusions

Our results suggest that genetic variants identified from BPH GWAS can identify pharmacologic targets for BPH treatment.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Manhattan plot and QQ plot of GWAS result.

References

  1. 1.

    Berry SJ, Coffey DS, Walsh PC, Ewing LL. The development of human benign prostatic hyperplasia with age. J Urol. 1984;132:474–9.

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    GBD 2015 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388:1545–602.

    Article  Google Scholar 

  3. 3.

    Sarma AV, Wei JT. Clinical practice. Benign prostatic hyperplasia and lower urinary tract symptoms. N Engl J Med. 2012;367:248–57.

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Egan KB. The epidemiology of benign prostatic hyperplasia associated with lower urinary tract symptoms: prevalence and incident rates. Urologic Clin North Am. 2016;43:289–97.

    Article  Google Scholar 

  5. 5.

    Rodriguez-Nieves JA, Macoska JA. Prostatic fibrosis, lower urinary tract symptoms, and BPH. Nat Rev Urol. 2013;10:546–50.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. 6.

    Kim EH, Larson JA, Andriole GL. Management of benign prostatic hyperplasia. Annu Rev Med. 2016;67:137–51.

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Nadler RB, Humphrey PA, Smith DS, Catalona WJ, Ratliff TL. Effect of inflammation and benign prostatic hyperplasia on elevated serum prostate specific antigen levels. J Urol. 1995;154:407–13.

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Vickers AJ, Cronin AM, Bjork T, Manjer J, Nilsson PM, Dahlin A, et al. Prostate specific antigen concentration at age 60 and death or metastasis from prostate cancer: case-control study. BMJ. 2010;341:c4521.

    PubMed  PubMed Central  Article  Google Scholar 

  9. 9.

    Chang RT, Kirby R, Challacombe BJ. Is there a link between BPH and prostate cancer? Practitioner. 2012;256:13–6, 2.

    CAS  PubMed  Google Scholar 

  10. 10.

    Gudmundsson J, Sigurdsson JK, Stefansdottir L, Agnarsson BA, Isaksson HJ, Stefansson OA, et al. Genome-wide associations for benign prostatic hyperplasia reveal a genetic correlation with serum levels of PSA. Nat Commun. 2018;9:4568.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  11. 11.

    Suzuki S, Platz EA, Kawachi I, Willett WC, Giovannucci E. Intakes of energy and macronutrients and the risk of benign prostatic hyperplasia. Am J Clin Nutr. 2002;75:689–97.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  12. 12.

    Gacci M, Corona G, Vignozzi L, Salvi M, Serni S, De Nunzio C, et al. Metabolic syndrome and benign prostatic enlargement: a systematic review and meta-analysis. BJU Int. 2015;115:24–31.

    PubMed  Article  PubMed Central  Google Scholar 

  13. 13.

    Bartsch G, Rittmaster RS, Klocker H. Dihydrotestosterone and the concept of 5alpha-reductase inhibition in human benign prostatic hyperplasia. Eur Urol. 2000;37:367–80.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  14. 14.

    Neuhouser ML, Kristal AR, Penson DF. Steroid hormones and hormone-related genetic and lifestyle characteristics as risk factors for benign prostatic hyperplasia: review of epidemiologic literature. Urology. 2004;64:201–11.

    PubMed  Article  PubMed Central  Google Scholar 

  15. 15.

    Rohrmann S, Giovannucci E, Smit E, Platz EA. Association of IGF-1 and IGFBP-3 with lower urinary tract symptoms in the third national health and nutrition examination survey. Prostate. 2007;67:1693–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  16. 16.

    St Sauver JL, Sarma AV, Jacobson DJ, McGree ME, Lieber MM, Girman CJ, et al. Associations between C-reactive protein and benign prostatic hyperplasia/lower urinary tract symptom outcomes in a population-based cohort. Am J Epidemiol. 2009;169:1281–90.

    Article  Google Scholar 

  17. 17.

    St Sauver JL, Jacobson DJ, McGree ME, Lieber MM, Jacobsen SJ. Protective association between nonsteroidal antiinflammatory drug use and measures of benign prostatic hyperplasia. Am J Epidemiol. 2006;164:760–8.

    Article  Google Scholar 

  18. 18.

    St Sauver JL, Jacobson DJ, McGree ME, Girman CJ, Lieber MM, Jacobsen SJ. Longitudinal association between prostatitis and development of benign prostatic hyperplasia. Urology. 2008;71:475–9.

    Article  Google Scholar 

  19. 19.

    Kristal AR, Arnold KB, Schenk JM, Neuhouser ML, Weiss N, Goodman P, et al. Race/ethnicity, obesity, health related behaviors and the risk of symptomatic benign prostatic hyperplasia: results from the prostate cancer prevention trial. J Urol. 2007;177:1395–400.

    PubMed  Article  PubMed Central  Google Scholar 

  20. 20.

    Giovannucci E, Rimm EB, Chute CG, Kawachi I, Colditz GA, Stampfer MJ, et al. Obesity and benign prostatic hyperplasia. Am J Epidemiol. 1994;140:989–1002.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  21. 21.

    Sarma AV, St Sauver JL, Hollingsworth JM, Jacobson DJ, McGree ME, Dunn RL, et al. Diabetes treatment and progression of benign prostatic hyperplasia in community-dwelling black and white men. Urology. 2012;79:102–8.

    PubMed  Article  PubMed Central  Google Scholar 

  22. 22.

    Parsons JK, Im R. Alcohol consumption is associated with a decreased risk of benign prostatic hyperplasia. J Urol. 2009;182:1463–8.

    PubMed  Article  PubMed Central  Google Scholar 

  23. 23.

    Platz EA, Kawachi I, Rimm EB, Colditz GA, Stampfer MJ, Willett WC, et al. Physical activity and benign prostatic hyperplasia. Arch Intern Med. 1998;158:2349–56.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  24. 24.

    Hellwege JN, Stallings S, Torstenson ES, Carroll R, Borthwick KM, Brilliant MH, et al. Heritability and genome-wide association study of benign prostatic hyperplasia (BPH) in the eMERGE network. Sci Rep. 2019;9:6077.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  25. 25.

    Giri A, Edwards TL, Motley SS, Byerly SH, Fowke JH. Genetic determinants of metabolism and benign prostate enlargement: associations with prostate volume. PLoS ONE. 2015;10:e0132028.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  26. 26.

    Na R, Helfand BT, Chen H, Conran CA, Crawford SE, Hayward SW, et al. A genetic variant near GATA3 implicated in inherited susceptibility and etiology of benign prostatic hyperplasia (BPH) and lower urinary tract symptoms (LUTS). Prostate. 2017;77:1213–20.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    Verma SS, de Andrade M, Tromp G, Kuivaniemi H, Pugh E, Namjou-Khales B, et al. Imputation and quality control steps for combining multiple genome-wide datasets. Front Genet. 2014;5:370.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  28. 28.

    Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 2015;12:e1001779.

    PubMed  PubMed Central  Article  Google Scholar 

  29. 29.

    Hoffmann TJ, Passarelli MN, Graff RE, Emami NC, Sakoda LC, Jorgenson E, et al. Genome-wide association study of prostate-specific antigen levels identifies novel loci independent of prostate cancer. Nat Commun. 2017;8:14248.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Depostat for benign prostatic hyperplasia? Drug Therap Bull. 1973;11:75–6.

  31. 31.

    Aubrey DA, Khosla T. The effect of 17-alpha-hydroxy-19-norprogesterone caproate (SH582) on benign prostatic hypertrophy. The. Br J Surg. 1971;58:648–52.

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Watanabe H, Kaiho H, Takahashi H, Kato T, Shima M. [Effects of 17-alpha-hydroxy-19-norprogesterone acaproate (SH-582) on prostatic hypertrophy with special reference to estimation of size of the prostate by means of ultrasonotomography]. Hinyokika kiyo Acta urologica Japonica. 1970;16:438–45.

  33. 33.

    Ochiai K, Komase M, Oshima H, Negishi T, Yamauchi A. [Effects of SH 582 (gestonorone caproate) for prostatic hypertrophy]. Hinyokika kiyo Acta urologica Japonica. 1970;16:473–81.

    CAS  PubMed  Google Scholar 

  34. 34.

    Yu Y, Lee JS, Xie N, Li E, Hurtado-Coll A, Fazli L, et al. Prostate stromal cells express the progesterone receptor to control cancer cell mobility. PLoS ONE. 2014;9:e92714.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  35. 35.

    Chen R, Yu Y, Dong X. Progesterone receptor in the prostate: a potential suppressor for benign prostatic hyperplasia and prostate cancer. J Steroid Biochem Mol Biol. 2017;166:91–6.

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Grindstad T, Richardsen E, Andersen S, Skjefstad K, Rakaee Khanehkenari M, Donnem T, et al. Progesterone receptors in prostate cancer: progesterone receptor B is the isoform associated with disease progression. Sci Rep. 2018;8:11358.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  37. 37.

    Song L, Shen W, Zhang H, Wang Q, Wang Y, Zhou Z. Differential expression of androgen, estrogen, and progesterone receptors in benign prostatic hyperplasia. Bosn J Basic Med Sci. 2016;16:201–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    GTEx Consortium. Genetic effects on gene expression across human tissues. Nature. 2017;550:204–13.

    PubMed Central  Article  PubMed  Google Scholar 

  39. 39.

    Meiraz D, Margolin Y, Lev-Ran A, Lazebnik J. Treatment of benign prostatic hyperplasia with hydroxyprogesterone-caproate: placebo-controlled study. Urology. 1977;9:144–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  40. 40.

    Neumann LC, Markaki Y, Mladenov E, Hoffmann D, Buiting K, Horsthemke B. The imprinted NPAP1/C15orf2 gene in the Prader-Willi syndrome region encodes a nuclear pore complex associated protein. Hum Mol Genet. 2012;21:4038–48.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  41. 41.

    Fortner RT, Katzke V, Kuhn T, Kaaks R. Obesity and breast cancer. Recent results Cancer Res. Fortschr der Krebsforsch Prog dans les Rech sur le cancer. 2016;208:43–65.

    CAS  Google Scholar 

  42. 42.

    Mauland KK, Trovik J, Wik E, Raeder MB, Njolstad TS, Stefansson IM, et al. High BMI is significantly associated with positive progesterone receptor status and clinico-pathological markers for non-aggressive disease in endometrial cancer. Br J Cancer. 2011;104:921–6.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    Vincze B, Kapuvari B, Udvarhelyi N, Horvath Z, Matrai Z, Czeyda-Pommersheim F, et al. Serum estrone concentration, estrone sulfate/estrone ratio and BMI are associated with human epidermal growth factor receptor 2 and progesterone receptor status in postmenopausal primary breast cancer patients suffering invasive ductal carcinoma. SpringerPlus. 2015;4:387.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  44. 44.

    Ohara M, Akimoto E, Noma M, Matsuura K, Doi M, Kagawa N, et al. Prognostic impact of progesterone receptor status combined with body mass index in breast cancer patients treated with adjuvant aromatase inhibitor. Oncol Lett. 2015;10:3286–92.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. 45.

    Oudanonh T, Nabi H, Ennour-Idrissi K, Lemieux J, Diorio C. Progesterone receptor status modifies the association between body mass index and prognosis in women diagnosed with estrogen receptor positive breast cancer. Int J Cancer. 2020;146:2736–45.

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    Yanai A, Miyagawa Y, Murase K, Imamura M, Yagi T, Ichii S, et al. Influence of body mass index on clinicopathological factors including estrogen receptor, progesterone receptor, and Ki67 expression levels in breast cancers. Int J Clin Oncol. 2014;19:467–72.

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    Gottesman O, Kuivaniemi H, Tromp G, Faucett WA, Li R, Manolio TA, et al. The Electronic Medical Records and Genomics (eMERGE) Network: past, present, and future. Genet Med: Off J Am Coll Med Genet. 2013;15:761–71.

    Article  Google Scholar 

  48. 48.

    McCarty CA, Chisholm RL, Chute CG, Kullo IJ, Jarvik GP, Larson EB, et al. The eMERGE Network: a consortium of biorepositories linked to electronic medical records data for conducting genomic studies. BMC Med Genomics. 2011;4:13.

    PubMed  PubMed Central  Article  Google Scholar 

  49. 49.

    Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81:559–75.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. 50.

    Delaneau O, Marchini J, Zagury JF. A linear complexity phasing method for thousands of genomes. Nat Methods. 2011;9:179–81.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  51. 51.

    Howie BN, Donnelly P, Marchini J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet. 2009;5:e1000529.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  52. 52.

    Li W, Middha M, Bicak M, Sjoberg DD, Vertosick E, Dahlin A, et al. Genome-wide scan identifies role for AOX1 in prostate cancer survival. Eur Urol. 2018;74:710–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. 53.

    Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet. 2006;38:904–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

Work in the Klein lab is supported by the National Cancer Institute (R01 CA175491). This work was supported in part through the computational resources and staff expertize provided by Scientific Computing at the Icahn School of Medicine at Mount Sinai, including infrastructure supported by the Office of Research Infrastructure of the National Institutes of Health under award number S10OD018522. We are grateful to the eMERGE network for making their data available through dbGaP phs000888.v1.p1. Specifically, we acknowledge a consortium of ten participating sites (Cincinnati Children’s Hospital Medical Center/Boston Children’s Hospital, Children’s Hospital of Philadelphia, Essentia Institute of Rural Health, Marshfield Clinic Research Foundation and Pennsylvania State University, Geisinger Clinic, Group Health Cooperative/University of Washington, Mayo Clinic, Icahn School of Medicine at Mount Sinai, Northwestern University, Vanderbilt University Medical Center) funded by the NHGRI. Assistance with phenotype harmonization and genotype data cleaning was provided by the eMERGE Administrative Coordinating Center (U01HG004603) and the National Center for Biotechnology Information (NCBI). We are also grateful to Ben Neale and the Neale Lab for making their analyses of the UK Biobank data freely available prior to publication.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Robert J. Klein.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, W., Klein, R.J. Genome-wide association study identifies a role for the progesterone receptor in benign prostatic hyperplasia risk. Prostate Cancer Prostatic Dis (2020). https://doi.org/10.1038/s41391-020-00303-2

Download citation

Search