Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Clinical Research
  • Published:

Contemporary approach to predict early biochemical recurrence after radical prostatectomy: update of the Walz nomogram

Abstract

Background

Early biochemical recurrence (eBCR) after radical prostatectomy (RP) heralds poor oncological outcomes and may be prevented with adjuvant radiation (aRT).

Methods

We developed a contemporary eBCR nomogram in 13 797 RP patients from Hamburg (2005–2016) and externally validated it in 5952 RP patients from Vienna. Receiver operating characteristics-derived area under the curve (AUC), Heagerty’s C-index, and decision curve analysis (DCA) were used to quantify model accuracy and to compare the current tool with the Walz nomogram, the online Memorial Sloan Kettering Cancer Center (MSKCC) nomogram and the post-surgical Cancer of the Prostate Risk Assesment (CAPRA-S).

Results

The eBCR nomogram relies on independent BCR predictors at 12 and 24 months after RP: preoperative PSA, pathological Gleason Score, tumor stage, lymph node, and surgical margin status. It achieved 81% accuracy at both time points in external validation. Additionally, the current nomogram yielded best calibration, optimal DCA results, and highest rates of avoided aRT in cutoff analyses, compared to the Walz nomogram, the MSKCC nomogram, and the CAPRA-S score.

Conclusions

The updated eBCR nomogram is easily applicable, highly accurate, and may allow avoiding immediate aRT in a large proportion of patients with few concomitant missed eBCR instances. It compares favorably to similar tools.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Han M, Partin AW, Zahurak M, Piantadosi S, Epstein JI, Walsh PC. Biochemical (prostate specific antigen) recurrence probability following radical prostatectomy for clinically localized prostate cancer. J Urol. 2003;169:517–23.

    Article  PubMed  Google Scholar 

  2. Simmons MN, Stephenson AJ, Klein EA. Natural history of biochemical recurrence after radical prostatectomy: risk assessment for secondary therapy. Eur Urol. 2007;51:1175–84.

    Article  PubMed  Google Scholar 

  3. Dillioglugil O, Leibman BD, Kattan MW, Seale-Hawkins C, Wheeler TM, SP T. Hazard rates for progression after radical prostatectomy for clinically localized prostate cancer. Urology. 1997;50:93–9.

    Article  PubMed  CAS  Google Scholar 

  4. Shariat SF, Karakiewicz PI, Roehrborn CG, Kattan MW. An updated catalog of prostate cancer predictive tools. Cancer. 2008;113:3075–99.

    Article  PubMed  Google Scholar 

  5. Kattan MW, Wheeler TM, Scardino PT. Postoperative nomogram for disease recurrence after radical prostatectomy for prostate cancer. J Clin Oncol. 1999;17:1499–507.

    Article  PubMed  CAS  Google Scholar 

  6. Roberts WW, Bergstralh EJ, Blute ML, Slezak JM, Carducci M, Han M, et al. Contemporary identification of patients at high risk of early prostate cancer recurrence after radical retropubic prostatectomy. Urology. 2001;57:1033–7.

    Article  PubMed  CAS  Google Scholar 

  7. Cooperberg MR, Hilton JF, Carroll PR. The CAPRA-S score: a straightforward tool for improved prediction of outcomes after radical prostatectomy. Cancer. 2011;117:5039–46.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Mottet N, Bellmunt J, Bolla M, Briers E, Cumberbatch MG, De Santis M, et al. EAU-ESTRO-SIOG guidelines on prostate cancer. Part 1: screening, diagnosis, and local treatment with curative intent. Eur Urol. 2017;71:618–29.

    Article  PubMed  Google Scholar 

  9. Mohler JM, Antonarakis ES, Armstrong AJ. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) ProstateCancer Version 2.2017—21 February 2017. https://www.nccn.org/professionals/physician_gls/pdf/prostate.pdf; last checked: 31st August 2017.

  10. Walz J, Chun FK, Klein EA, Reuther A, Saad F, Graefen M. et al. Nomogram predicting the probability of early recurrence after radical prostatectomy for prostate cancer. J Urol. 2009;181:601–7.

    Article  PubMed  Google Scholar 

  11. Mir MC, Li J, Klink JC, Kattan MW, Klein EA, Stephenson AJ. Optimal definition of biochemical recurrence after radical prostatectomy depends on pathologic risk factors: identifying candidates for early salvage therapy. Eur Urol. 2014;66:204–10.

    Article  PubMed  Google Scholar 

  12. Kaplan EL, Meier P. Nonparametrici estimation from incomplete observations. J Am Stat Assoc. 1958;53:457–81.

    Article  Google Scholar 

  13. Heagerty PJ, Lumley T, Pepe MS. Time-dependent ROC curves for censored survival data and a diagnostic marker. Biometrics. 2000;56:337–44.

    Article  PubMed  CAS  Google Scholar 

  14. Vickers AJ, Elkin EB. Decision curve analysis: a novel method for evaluating prediction models. Med Decis Mak. 2006;26:565–74.

    Article  Google Scholar 

  15. MSKC Center. https://www.mskcc.org/nomograms/prostate; last checked: 31st August 2017.

  16. Jhaveri FM, Zippe CD, Klein EA, Kupelian PA. Biochemical failure does not predict overall survival after radical prostatectomy for localized prostate cancer: 10-year results. Urology. 1999;54:884–90.

    Article  PubMed  CAS  Google Scholar 

  17. Ho R, Siddiqui MM, George AK, Frye T, Kilchevsky A, Fascelli M, et al. Preoperative multiparametric magnetic resonance imaging predicts biochemical recurrence in prostate cancer after radical prostatectomy. PLoS ONE. 2016;11:e0157313.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Murray NP, Aedo S, Reyes E, Orellana N, Fuentealba C, Jacob O. Prediction model for early biochemical recurrence after radical prostatectomy based on the Cancer of the Prostate Risk Assessment score and the presence of secondary circulating prostate cells. BJU Int. 2016;118:556–62.

    Article  PubMed  Google Scholar 

  19. Murray NP, Reyes E, Orellana N, Fuentealba C, Jacob O. Comparison of the Walz nomogram and presence of secondary circulating prostate cells for predicting early biochemical failure after radical prostatectomy for prostate cancer in chilean men. Asian Pac J Cancer Prev. 2015;16:7123–7.

    Article  PubMed  Google Scholar 

  20. Barkati M, Simard D, Taussky D, Delouya G. Magnetic resonance imaging for prostate bed radiotherapy planning: an inter- and intra-observer variability study. J Med Imaging Radiat Oncol. 2016;60:255–9.

    Article  PubMed  Google Scholar 

  21. Bolla M, van Poppel H, Tombal B, Vekemans K, Da Pozzo L, de Reijke TM, et al. Postoperative radiotherapy after radical prostatectomy for high-risk prostate cancer: long-term results of a randomised controlled trial (EORTC trial 22911). Lancet. 2012;380:2018–27.

    Article  PubMed  Google Scholar 

  22. Wiegel T, Bottke D, Steiner U, Siegmann A, Golz R, Storkel S, et al. Phase III postoperative adjuvant radiotherapy after radical prostatectomy compared with radical prostatectomy alone in pT3 prostate cancer with postoperative undetectable prostate-specific antigen: ARO 96-02/AUO AP 09/95. J Clin Oncol. 2009;27:2924–30.

    Article  PubMed  Google Scholar 

  23. Wiegel T, Lohm G, Bottke D, Hocht S, Miller K, Siegmann A, et al. Achieving an undetectable PSA after radiotherapy for biochemical progression after radical prostatectomy is an independent predictor of biochemical outcome—results of a retrospective study. Int J Radiat Oncol Biol Phys. 2009;73:1009–16.

    Article  PubMed  Google Scholar 

  24. Stephenson AJ, Scardino PT, Kattan MW, Pisansky TM, Slawin KM, Klein EA, et al. Predicting the outcome of salvage radiation therapy for recurrent prostate cancer after radical prostatectomy. J Clin Oncol. 2007;25:2035–41.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Cho YM, Jung SJ, Cho N, Kim MJ, Kattan MW, Yu C, et al. Impact of international variation of prostate cancer on a predictive nomogram for biochemical recurrence in clinically localised prostate cancer. World J Urol. 2014;32:399–405.

    Article  PubMed  CAS  Google Scholar 

  26. Gallina A, Chun FK, Suardi N, Eastham JA, Perrotte P, Graefen M, et al. Comparison of stage migration patterns between Europe and the USA: an analysis of 11 350 men treated with radical prostatectomy for prostate cancer. BJU Int. 2008;101:1513–8.

    Article  PubMed  Google Scholar 

  27. Stephenson JA, Scardino PT, Eastham JA, Bianco FJ Jr, Dotan ZA, DiBlasio CJ, et al. Postoperative nomogram predicting the 10-year probability of prostate cancer recurrence after radical prostatectomy. J Clin Oncol. 2005;23:7005–12.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raisa S. Pompe.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pompe, R.S., Bandini, M., Preisser, F. et al. Contemporary approach to predict early biochemical recurrence after radical prostatectomy: update of the Walz nomogram. Prostate Cancer Prostatic Dis 21, 386–393 (2018). https://doi.org/10.1038/s41391-018-0033-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41391-018-0033-1

Search

Quick links