Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Prenatal Social Determinants of Health: Narrative review of maternal environments and neonatal brain development

Abstract

The Social Determinants of Health, a set of social factors including socioeconomic status, community context, and neighborhood safety among others, are well-known predictors of mental and physical health across the lifespan. Recent research has begun to establish the importance of these social factors at the earliest points of brain development, including during the prenatal period. Prenatal socioeconomic status, perceived stress, and neighborhood safety have all been reported to impact neonatal brain structure and function, with exploratory work suggesting subsequent effects on infant and child behavior. Secondary effects of the Social Determinants of Health, such as maternal sleep and psychopathology during pregnancy, have also been established as important predictors of infant brain development. This research not only establishes prenatal Social Determinants of Health as important predictors of future outcomes but may be effectively applied even before birth. Future research replicating and extending the effects in this nascent literature has great potential to produce more specific and mechanistic understanding of the social factors that shape early neurobehavioral development.

Impact

  • This review synthesizes the research to date examining the effects of the Social Determinants of Health during the prenatal period and neonatal brain outcomes.

  • Structural, functional, and diffusion-based imaging methodologies are included along with the limited literature assessing subsequent infant behavior. The degree to which results converge between studies is discussed, in combination with the methodological and sampling considerations that may contribute to divergence in study results.

  • Several future directions are identified, including new theoretical approaches to assessing the impact of the Social Determinants of Health during the perinatal period.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A schematic depiction of the domains included in the Social Determinants of Health (SDoH).
Fig. 2: Prenatal social disadvantage is associated with decreased brain volumes.
Fig. 3: Maternal psychopathology has been studied as a secondary effect of the Social Determinants of Health, as in a study by Posner and colleagues.
Fig. 4: In the eLABE study, we have also examined neonatal functional connectivity associated with maternal prenatal social disadvantage as a predictor of subsequent infant behavior.

Similar content being viewed by others

References

  1. Chinn, J. J., Martin, I. K. & Redmond, N. Health equity among black women in the United States. J. Women’s Health 30, 212–219 (2021).

    Article  Google Scholar 

  2. Lopez, L. III, Hart, L. H. III & Katz, M. H. Racial and ethnic health disparities related to COVID-19. JAMA 325, 719–720 (2021).

    Article  CAS  PubMed  Google Scholar 

  3. Shim, R. S. Dismantling structural racism in psychiatry: a path to mental health equity. AJP 178, 592–598 (2021).

    Article  Google Scholar 

  4. US Department of Health and Human Services. Social Determinants of Health - Healthy People https://health.gov/healthypeople/priority-areas/social-determinants-health (2030).

  5. Bernard, K., Lee, A. H. & Dozier, M. Effects of the ABC intervention on foster children’s receptive vocabulary. Child Maltreatment 22, 107755951769112 (2017).

    Article  Google Scholar 

  6. Gee, D. G. & Cohodes, E. M. Influences of caregiving on development: a sensitive period for biological embedding of predictability and safety cues. Curr. Dir. Psychol. Sci. 096372142110156 https://doi.org/10.1177/09637214211015673 (2021).

  7. Luby, J. L., Belden, A., Harms, M. P., Tillman, R. & Barch, D. M. Preschool is a sensitive period for the influence of maternal support on the trajectory of hippocampal development. Proc. Natl Acad. Sci. USA 113, 5742–5747 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nelson, C. A., Bos, K., Gunnar, M. R. & Sonuga-Barke, E. J. S. The neurobiological toll of early human deprivation. Monogaphs. Soc. Res. Child Dev. 76, 127–146 (2011).

    Article  Google Scholar 

  9. Barker, D. J. P. Fetal origins of coronary heart disease. BMJ 311, 171–174 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. O’Donnell, K. J. & Meaney, M. J. Fetal origins of mental health: the developmental origins of health and disease hypothesis. AJP 174, 319–328 (2017).

    Article  Google Scholar 

  11. Sandman, C. A., Glynn, L. M. & Davis, E. P. Neurobehavioral consequences of fetal exposure to gestational stress. in Fetal Development: Research on Brain and Behavior, Environmental Influences, and Emerging Technologies 229–265 (Springer International Publishing, 2016). https://doi.org/10.1007/978-3-319-22023-9_13.

  12. Almond, D. & Currie, J. Killing Me Softly: the fetal origins hypothesis. J. Econ. Perspect. 25, 153–172 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Barker, D. J. P. The Wellcome Foundation Lecture, 1994. The fetal origins of adult disease. Proc. R. Soc. Lond. Ser. B Biol. Sci. 262, 37–43 (1997).

    Google Scholar 

  14. Baethge, C., Goldbeck-Wood, S. & Mertens, S. SANRA—a scale for the quality assessment of narrative review articles. Res. Integr. Peer Rev. 4, 5 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Campbell, M. et al. Synthesis without meta-analysis (SWiM) in systematic reviews: reporting guideline. BMJ 368, l6890 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lautarescu, A., Craig, M. C. & Glover, V. Chapter Two - Prenatal stress: effects on fetal and child brain development. in International Review of Neurobiology (eds Clow, A. & Smyth, N.) vol. 150 17–40 (Academic Press, 2020).

  17. Monk, C., Lugo-Candelas, C. & Trumpff, C. Prenatal developmental origins of future psychopathology: mechanisms and pathways. Annu. Rev. Clin. Psychol. 15, 317–344 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Oldenburg, K. S., O’Shea, T. M. & Fry, R. C. Genetic and epigenetic factors and early life inflammation as predictors of neurodevelopmental outcomes. Semin. Fetal Neonatal. Med. 25, 101115 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Gumusoglu, S. B. & Stevens, H. E. Maternal inflammation and neurodevelopmental programming: a review of preclinical outcomes and implications for translational psychiatry. Biol. Psychiatry 85, 107–121 (2019).

    Article  PubMed  Google Scholar 

  20. Mueller, B. R. & Bale, T. L. Sex-specific programming of offspring emotionality after stress early in pregnancy. J. Neurosci. 28, 9055–9065 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pavlides, C., Ogawa, S., Kimura, A. & McEwen, B. S. Role of adrenal steroid mineralocorticoid and glucocorticoid receptors in long-term potentiation in the CA1 field of hippocampal slices. Brain Res. 738, 229–235 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Chattarji, S., Tomar, A., Suvrathan, A., Ghosh, S. & Rahman, M. M. Neighborhood matters: divergent patterns of stress-induced plasticity across the brain. Nat. Neurosci. 18, 1364–1375 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Kraszpulski, M., Dickerson, P. A. & Salm, A. K. Prenatal stress affects the developmental trajectory of the rat amygdala. Stress 9, 85–95 (2006).

    Article  PubMed  Google Scholar 

  24. Monk, C. et al. Distress during pregnancy: epigenetic regulation of placenta glucocorticoid-related genes and fetal neurobehavior. AJP 173, 705–713 (2016).

    Article  Google Scholar 

  25. Appleton, A. A. et al. Patterning in placental 11-B hydroxysteroid dehydrogenase methylation according to prenatal socioeconomic adversity. PLoS ONE 8, e74691 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Davis, E. P., Head, K., Buss, C. & Sandman, C. A. Prenatal maternal cortisol concentrations predict neurodevelopment in middle childhood. Psychoneuroendocrinology 75, 56–63 (2017).

    Article  CAS  PubMed  Google Scholar 

  27. Buss, C. et al. Maternal cortisol over the course of pregnancy and subsequent child amygdala and hippocampus volumes and affective problems. Proc. Natl. Acad. Sci. USA. 109, (2012).

  28. Joels, M. & Baram, T. Z. The neuro-symphony of stress. Nat. Rev. Neurosci. 10, 459–466 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. McEwen, B. S. et al. Mechanisms of stress in the brain. Nat. Neurosci. 18, 1353–1363 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. McDermott, C. L. et al. Longitudinally mapping childhood socioeconomic status associations with cortical and subcortical morphology. J. Neurosci. 39, 1365–1373 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Johnson, S. B., Riis, J. L. & Noble, K. G. State of the art review: poverty and the developing brain. Pediatrics 137, (2016).

  32. Noble, K. G. et al. Family income, parental education and brain structure in children and adolescents. Nat. Neurosci. 18, 773–778 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Triplett, R. L. et al. Association of prenatal exposure to early-life adversity with neonatal brain volumes at birth. JAMA Netw. Open 5, e227045 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Thompson, D. K. et al. Early life predictors of brain development at term-equivalent age in infants born across the gestational age spectrum. NeuroImage 185, 813–824 (2019).

    Article  PubMed  Google Scholar 

  35. Mckinnon, K. et al. Association of preterm birth and socioeconomic status with neonatal brain structure. JAMA Netw. Open 6, e2316067 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Herzberg, M. P. et al. The association between maternal cortisol and infant amygdala volume is moderated by socioeconomic status. Biol. Psychiatry Global Open Sci. https://doi.org/10.1016/j.bpsgos.2023.03.002 (2023).

  37. Qiu, A. et al. Effects of antenatal maternal depressive symptoms and socio-economic status on neonatal brain development are modulated by genetic risk. Cereb. Cortex 27, 3080–3092 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Betancourt, L. M. et al. Effect of socioeconomic status (SES) disparity on neural development in female African-American infants at age 1 month. Dev. Sci. 19, 947–956 (2016).

    Article  PubMed  Google Scholar 

  39. Knickmeyer, R. C. et al. Impact of demographic and obstetric factors on infant brain volumes: a population neuroscience study. Cereb. Cortex 27, 5616–5625 (2017).

    PubMed  Google Scholar 

  40. Spann, M. N., Bansal, R., Hao, X., Rosen, T. S. & Peterson, B. S. Prenatal socioeconomic status and social support are associated with neonatal brain morphology, toddler language and psychiatric symptoms. Child Neuropsychol. 26, 170–188 (2020).

    Article  PubMed  Google Scholar 

  41. Herzberg, M. P. et al. Maternal prenatal social disadvantage and neonatal functional connectivity: associations with psychopathology symptoms at age 12 months. Dev. Psychol. https://doi.org/10.1037/dev0001708 (2024).

  42. Ramphal, B. et al. Brain connectivity and socioeconomic status at birth and externalizing symptoms at age 2 years. Dev. Cogn. Neurosci. 45, (2020).

  43. Gao, W. et al. Functional network development during the first year: relative sequence and socioeconomic correlations. Cereb. Cortex 25, 2919–2928 (2015).

    Article  PubMed  Google Scholar 

  44. Nielsen, A. N. et al. Prenatal exposure to social disadvantage is evident in functional networks at birth. Preprint at (Under Review).

  45. Lean, R. E. et al. Prenatal exposure to maternal social disadvantage and psychosocial stress and neonatal white matter connectivity at birth. Proc. Natl. Acad. Sci. 119, e2204135119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sanders, A. F. P. et al. Prenatal exposure to maternal disadvantage-related inflammatory biomarkers: associations with neonatal white matter microstructure. Transl. Psychiatry 14, 1–18 (2024).

    Article  Google Scholar 

  47. Ong, M.-L. et al. Neonatal amygdalae and hippocampi are influenced by genotype and prenatal environment, and reflected in the neonatal DNA methylome. Genes, Brain Behav. 18, e12576 (2019).

    Article  PubMed  Google Scholar 

  48. McEwen, B. S., Nasca, C. & Gray, J. D. Stress effects on neuronal structure: hippocampus, amygdala, and prefrontal cortex. Neuropsychopharmacology 41, 3–23 (2016).

    Article  CAS  PubMed  Google Scholar 

  49. Moog, N. K. et al. Prospective association of maternal psychosocial stress in pregnancy with newborn hippocampal volume and implications for infant social-emotional development. Neurobiol. Stress 15, 100368 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Lautarescu, A. et al. Exploring the relationship between maternal prenatal stress and brain structure in premature neonates. PLoS ONE 16, e0250413 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Humphreys, K. L., Camacho, M. C., Roth, M. C. & Estes, E. C. Prenatal stress exposure and multimodal assessment of amygdala–medial prefrontal cortex connectivity in infants. Dev. Cogn. Neurosci. 46, 100877 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Graham, A. M. et al. Maternal cortisol concentrations during pregnancy and sex-specific associations with neonatal amygdala connectivity and emerging internalizing behaviors. Biol. Psychiatry 85, 172–181 (2019).

    Article  CAS  PubMed  Google Scholar 

  53. Scheinost, D. et al. Prenatal stress alters amygdala functional connectivity in preterm neonates. NeuroImage: Clin. 12, 381–388 (2016).

    Article  PubMed  Google Scholar 

  54. Spann, M. N. et al. The effects of experience of discrimination and acculturation during pregnancy on the developing offspring brain. Neuropsychopharmacology. 1–10 https://doi.org/10.1038/s41386-023-01765-3 (2023).

  55. Lautarescu, A. et al. Maternal prenatal stress is associated with altered uncinate fasciculus microstructure in premature neonates. Biol. Psychiatry 87, 559–569 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Stoye, D. Q. et al. Maternal cortisol is associated with neonatal amygdala microstructure and connectivity in a sexually dimorphic manner. eLife 9, 1–18 (2020).

    Article  Google Scholar 

  57. McEwen, B. S. Brain on stress: How the social environment gets under the skin. Proc. Natl. Acad. Sci. 109, 17180–17185 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Benediktsson, R., Calder, A. A., Edwards, C. R. W. & Seckl, J. R. Placental 11β-hydroxysteroid dehydrogenase: a key regulator of fetal glucocorticoid exposure. Clin. Endocrinol. 46, 161–166 (1997).

    Article  CAS  Google Scholar 

  59. Sandman, C. A. et al. Elevated maternal cortisol early in pregnancy predicts third trimester levels of placental corticotropin releasing hormone (CRH): Priming the placental clock. Peptides 27, 1457–1463 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Shannon, M. M. et al. Neighborhood violent crime and perceived stress in pregnancy. Int. J. Environ. Res. Public Health 17, 5585 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Brady, R. G. et al. The effects of prenatal exposure to neighborhood crime on neonatal functional connectivity. Biol. Psychiatry 92, 139–148 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Brady, R. G. et al. Neighborhood crime and externalizing behavior in toddlers: a longitudinal study with neonatal fMRI and parenting. J. Am. Acad. Child Adolesc. Psychiatry https://doi.org/10.1016/j.jaac.2023.09.547 (2023).

  63. Bates, K. & Herzog, E. D. Maternal-fetal circadian communication during pregnancy. Front. Endocrinol. 11, (2020).

  64. Pires, G. N. et al. Effects of sleep modulation during pregnancy in the mother and offspring: evidences from preclinical research. J. Sleep. Res. 30, e13135 (2021).

    Article  PubMed  Google Scholar 

  65. Kalmbach, D. A. et al. Insomnia, short sleep, and snoring in mid-to-late pregnancy: disparities related to poverty, race, and obesity. Nat. Sci. Sleep. 11, 301–315 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Okun, M. L., Tolge, M. & Hall, M. Low socioeconomic status negatively affects sleep in pregnant women. J. Obstet. Gynecol. Neonatal Nurs. 43, 160–167 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Facco, F. L. et al. Later sleep timing is associated with an increased risk of preterm birth in nulliparous women. Am. J. Obstet. Gynecol. MFM 1, 100040 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Reschke, L. et al. Chronodisruption: an untimely cause of preterm birth? Best practice. Res. Clin. Obstet. Gynaecol. 52, 60–67 (2018).

    Google Scholar 

  69. Warland, J., Dorrian, J., Morrison, J. L. & O’Brien, L. M. Maternal sleep during pregnancy and poor fetal outcomes: a scoping review of the literature with meta-analysis. Sleep. Med. Rev. 41, 197–219 (2018).

    Article  PubMed  Google Scholar 

  70. Hoyniak, C. P. et al. Sleep and circadian rhythms during pregnancy, social disadvantage, and alterations in brain development in neonates. Dev. Sci. e13456 https://doi.org/10.1111/desc.13456 (2023).

  71. LeMoult, J. et al. Meta-analysis: exposure to early life stress and risk for depression in childhood and adolescence. J. Am. Acad. Child Adolesc. Psychiatry 59, 842–855 (2020).

    Article  PubMed  Google Scholar 

  72. Lorant, V. et al. Socioeconomic inequalities in depression: a meta-analysis. Am. J. Epidemiol. 157, 98–112 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Rich-Edwards, J. W. et al. Sociodemographic predictors of antenatal and postpartum depressive symptoms among women in a medical group practice. J. Epidemiol. Community Health 60, 221–227 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Lehtola, S. J. et al. Newborn amygdalar volumes are associated with maternal prenatal psychological distress in a sex-dependent way. NeuroImage Clin. 28, 102380 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Qiu, A. et al. Maternal anxiety and infants’ hippocampal development: timing matters. Transl. Psychiatry 3, 1–7 (2013).

    Article  Google Scholar 

  76. Qiu, A. et al. COMT haplotypes modulate associations of antenatal maternal anxiety and neonatal cortical morphology. Am. J. Psychiatry 172, 163–172 (2015).

    Article  PubMed  Google Scholar 

  77. Wang, C. et al. FKBP5 moderates the association between antenatal maternal depressive symptoms and neonatal brain morphology. Neuropsychopharmacology 43, 564–570 (2018).

    Article  CAS  PubMed  Google Scholar 

  78. Qiu, A. et al. Prenatal maternal depression alters amygdala functional connectivity in 6-month-old infants. Transl. Psychiatry 5, e508 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Posner, J. et al. Alterations in amygdala–prefrontal circuits in infants exposed to prenatal maternal depression. Transl. Psychiatry 6, e935 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Dean, D. C. et al. Association of prenatal maternal depression and anxiety symptoms with infant white matter microstructure. JAMA Pediatr. 172, 973–981 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Graham, R. M. et al. Maternal anxiety and depression during late pregnancy and newborn brain white matter development. Am. J. Neuroradiol. 41, 1908–1915 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Rifkin-Graboi, A. et al. Antenatal maternal anxiety predicts variations in neural structures implicated in anxiety disorders in newborns. J. Am. Acad. Child Adolesc. Psychiatry 54, 313–321.e2 (2015).

    Article  PubMed  Google Scholar 

  83. Lautarescu, A. et al. Maternal depressive symptoms, neonatal white matter, and toddler social-emotional development. Transl. Psychiatry 12, 1–12 (2022).

    Article  Google Scholar 

  84. Rifkin-Graboi, A. et al. Prenatal maternal depression associates with microstructure of right amygdala in neonates at birth. Biol. Psychiatry 74, 837–844 (2013).

    Article  PubMed  Google Scholar 

  85. Davis, E. P. et al. Prenatal maternal stress, child cortical thickness, and adolescent depressive symptoms. Child Dev. 91, e432–e450 (2020).

    Article  PubMed  Google Scholar 

  86. Sandman, C. A., Buss, C., Head, K. & Davis, E. P. Fetal exposure to maternal depressive symptoms is associated with cortical thickness in late childhood. Biol. Psychiatry 77, 324–334 (2015).

    Article  PubMed  Google Scholar 

  87. Moog, N. K. et al. Intergenerational effect of maternal exposure to childhood maltreatment on newborn brain anatomy. Biol. Psychiatry 83, 120–127 (2018).

    Article  PubMed  Google Scholar 

  88. Hendrix, C. L. et al. Maternal childhood adversity associates with frontoamygdala connectivity in neonates. Biol. Psychiatry. Cogn. Neurosci. Neuroimaging 6, 470–478 (2021).

    PubMed  Google Scholar 

  89. van den Heuvel, M. I. et al. Intergenerational transmission of maternal childhood maltreatment prior to birth: effects on human fetal amygdala functional connectivity. J. Am. Acad. Child Adolesc. Psychiatry 62, 1134–1146 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Lu, Y. C. et al. Association between socioeconomic status and in utero fetal brain development. JAMA Netw. Open 4, e213526 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Wu, Y. et al. Association of prenatal maternal psychological distress with fetal brain growth, metabolism, and cortical maturation. JAMA Netw. Open 3, e1919940 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  92. De Asis-Cruz, J. et al. Association of prenatal maternal anxiety with fetal regional brain connectivity. JAMA Netw. Open 3, e2022349 (2020).

    Article  PubMed  Google Scholar 

  93. Hendrix, C. L., Srinivasan, H., Feliciano, I., Carré, J. M. & Thomason, M. E. Fetal hippocampal connectivity shows dissociable associations with maternal cortisol and self-reported distress during pregnancy. Life 12, 943 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Luby, J. L. et al. Basic environmental supports for positive brain and cognitive development in the first year of life. JAMA Pediatr. https://doi.org/10.1001/jamapediatrics.2024.0143 (2024).

  95. U.S. Census Bureau. American Community Survey 2019 1-Year Estimates Detailed Tables. (2019).

  96. Jones, C. P. Levels of racism: A theoretic framework and a gardener’s tale. Am. J. Public Health 90, 1212–1215 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Heard-Garris, N. et al. Structuring poverty: how racism shapes child poverty and child and adolescent health. Acad. Pediatr. 21, S108–S116 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Solar, O. & Irwin, A. A conceptual framework for action on the social determinants of health. Social Determinants of Health Discussion Paper 2 (Policy and Practice). World Health Organization. https://www.who.int/publications/i/item/9789241500852 (2010).

Download references

Funding

The preparation of this article was supported by grants R01 MH113883 (CDS) and P50 HD103525 (Intellectual and Developmental Disabilities Research Center at Washington University) from the National Institutes of Health, with additional support from the March of Dimes Foundation and a gift from Samuel and Mae S. Ludwig Chair in Psychiatry at Barnes-Jewish Hospital.

Author information

Authors and Affiliations

Authors

Contributions

Drs. Herzberg and Smyser each contributed to the conception, drafting, and revision of the manuscript. Both authors gave final approval of the version to be published.

Corresponding author

Correspondence to Christopher D. Smyser.

Ethics declarations

Competing interests

Neither Dr. Herzberg nor Dr. Smyser have competing interests to declare.

Consent statement

No patient consent was required for the preparation of this review article.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herzberg, M.P., Smyser, C.D. Prenatal Social Determinants of Health: Narrative review of maternal environments and neonatal brain development. Pediatr Res (2024). https://doi.org/10.1038/s41390-024-03345-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41390-024-03345-7

Search

Quick links