Abstract
Prenatal diagnoses of congenital malformations have increased significantly in recent years with use of high-resolution prenatal imaging. Despite more precise radiological diagnoses, discussions with expectant parents remain challenging because congenital malformations are associated with a wide spectrum of outcomes. Comprehensive prenatal genetic testing has become an essential tool that improves the accuracy of prognostication. Testing strategies include chromosomal microarray, exome sequencing, and genome sequencing. The diagnostic yield varies depending on the specific malformations, severity of the abnormalities, and multi-organ involvement. The utility of prenatal genetic diagnosis includes increased diagnostic clarity for clinicians and families, informed pregnancy decision-making, neonatal care planning, and reproductive planning. Turnaround time for results of comprehensive genetic testing remains a barrier, especially for parents that are decision-making, although this has improved over time. Uncertainty inherent to many genetic testing results is a challenge. Appropriate genetic counseling is essential for parents to understand the diagnosis and prognosis and to make informed decisions. Recent research has investigated the yield of exome or genome sequencing in structurally normal fetuses, both with non-invasive screening methods and invasive diagnostic testing; the prenatal diagnostic community must evaluate and analyze the significant ethical considerations associated with this practice prior to generalizing its use.
Impact
-
Reviews available genetic testing options during the prenatal period in detail.
-
Discusses the impact of prenatal genetic testing on care using case-based examples.
-
Consolidates the current literature on the yield of genetic testing for prenatal diagnosis of congenital malformations.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 14 print issues and online access
$259.00 per year
only $18.50 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Salomon, L. J. et al. ISUOG Practice Guidelines (updated): performance of the routine mid-trimester fetal ultrasound scan. Ultrasound Obstet. Gynecol. 59, 840–856 (2022).
Reddy, U. M., Abuhamad, A. Z., Levine, D., Saade, G. R. & Fetal Imaging Workshop Invited Participants*. Fetal imaging: executive summary of a joint Eunice Kennedy Shriver National Institute of Child Health and Human Development, Society for Maternal-Fetal Medicine, American Institute of Ultrasound in Medicine, American College of Obstetricians and Gynecologists, American College of Radiology, Society for Pediatric Radiology, and Society of Radiologists in Ultrasound Fetal Imaging workshop. Obstet. Gynecol. 123, 1070–1082 (2014).
American College of Obstetricians and Gynecologists, American College of Radiology, & American Institute of Ultrasound in Medicine.Practice Bulletin No. 175: Ultrasound in pregnancy. Obstet. Gynecol. 128, e241–e256 (2016).
Dolk, H., Loane, M. & Garne, E. The prevalence of congenital anomalies in Europe. Adv. Exp. Med. Biol. 686, 349–364 (2010).
Centers for Disease Control and Prevention (CDC). Update on overall prevalence of major birth defects-Atlanta, Georgia, 1978-2005. MMWR Morb. Mortal. Wkly. Rep. 57, 1–5 (2008).
Kirby, R. S. The prevalence of selected major birth defects in the United States. Semin. Perinatol. 41, 338–344 (2017).
American Institute of Ultrasound in Medicine. AIUM-ACR-ACOG-SMFM-SRU practice parameter for the performance of standard diagnostic obstetric ultrasound examinations. J. Ultrasound Med. 37, E13–E24 (2018).
Prayer, D. et al. ISUOG Practice Guidelines (updated): performance of fetal magnetic resonance imaging. Ultrasound Obstet. Gynecol. 61, 278–287 (2023).
Counsell, S. J., Arichi, T., Arulkumaran, S. & Rutherford, M. A. Chapter 4 - Fetal and neonatal neuroimaging. In Handbook of Clinical Neurology (eds. de Vries, L. S. & Glass, H. C.) Vol. 162 67–103 (Elsevier, 2019).
Chaudhari, B. P. & Ho, M.-L. Congenital Brain Malformations: An Integrated Diagnostic Approach. Semin. Pediatr. Neurol. 42, 100973 (2022).
American College of Obstetricians and Gynecologists. Guidelines for Diagnostic Imaging During Pregnancy and Lactation. 130, (2017).
Smith, F. W., Adam, A. H. & Phillips, W. D. NMR imaging in pregnancy. Lancet Lond. Engl. 1, 61–62 (1983).
McCarthy, S. et al. Magnetic resonance imaging of fetal anomalies in utero: early experience. Am. J. Roentgenol. 145, 677–682 (1985).
Gonçalves, L. F. et al. Diagnostic accuracy of ultrasonography and magnetic resonance imaging for the detection of fetal anomalies: a blinded case–control study. Ultrasound Obstet. Gynecol. 48, 185–192 (2016).
Rossi, A. C. & Prefumo, F. Additional value of fetal magnetic resonance imaging in the prenatal diagnosis of central nervous system anomalies: a systematic review of the literature. Ultrasound Obstet. Gynecol. 44, 388–393 (2014).
Quinn, T. M., Hubbard, A. M. & Adzick, N. S. Prenatal magnetic resonance imaging enhances fetal diagnosis. J. Pediatr. Surg. 33, 553–558 (1998).
Dinh, D. H., Wright, R. M. & Hanigan, W. C. The use of magnetic resonance imaging for the diagnosis of fetal intracranial anomalies. Childs Nerv. Syst. 6, 212–215 (1990).
Kaminen-Ahola, N. Fetal alcohol spectrum disorders: genetic and epigenetic mechanisms. Prenat. Diagn. 40, 1185–1192 (2020).
Gheysen, W. & Kennedy, D. An update on maternal medication-related embryopathies. Prenat. Diagn. 40, 1168–1177 (2020).
Vargesson, N. Thalidomide-induced teratogenesis: history and mechanisms. Birth Defects Res. C. Embryo Today 105, 140–156 (2015).
Henry, D. et al. Occurrence of pregnancy and pregnancy outcomes during isotretinoin therapy. CMAJ 188, 723–730 (2016).
Sangah, A. B. et al. Maternal and fetal outcomes of SLE in pregnancy: a literature review. J. Obstet. Gynaecol. 43, 2205513 (2023).
Li, Y., Wang, W., Wang, Y. & Chen, Q. Fetal risks and maternal renal complications in pregnancy with preexisting chronic glomerulonephritis. Med. Sci. Monit. 24, 1008–1016 (2018).
Huget-Penner, S. & Feig, D. S. Maternal thyroid disease and its effects on the fetus and perinatal outcomes. Prenat. Diagn. 40, 1077–1084 (2020).
Limaye, M. A., Buyon, J. P., Cuneo, B. F. & Mehta-Lee, S. S. A review of fetal and neonatal consequences of maternal systemic lupus erythematosus. Prenat. Diagn. 40, 1066–1076 (2020).
Mardy, A. H., Chetty, S. P. & Norton, M. E. Maternal genetic disorders and fetal development. Prenat. Diagn. 40, 1056–1065 (2020).
Bussel, J. B., Vander Haar, E. L. & Berkowitz, R. L. New developments in fetal and neonatal alloimmune thrombocytopenia. Am. J. Obstet. Gynecol. 225, 120–127 (2021).
Murakhovskaya, I. & Demasio, K. A. Maternal hematologic conditions and fetal/neonatal outcomes of pregnancy. NeoReviews 22, e95–e103 (2021).
Van Mieghem, T. et al. Monochorionic monoamniotic twin pregnancies. Am. J. Obstet. Gynecol. MFM 4, 100520 (2022).
Lerman-Sagie, T., Pogledic, I., Leibovitz, Z. & Malinger, G. A practical approach to prenatal diagnosis of malformations of cortical development. Eur. J. Paediatr. Neurol. 34, 50–61 (2021).
Curcio, A. M., Shekhawat, P., Reynolds, A. S. & Thakur, K. T. Neurologic infections during pregnancy. In Handbook of Clinical Neurology, Vol. 172 (eds. Steegers, E. A. P., Cipolla, M. J. & Miller, E. C.) 79–104 (Elsevier, 2020).
Moodley, A. & Payton, K. S. E. The term newborn: congenital infections. Clin. Perinatol. 48, 485–511 (2021).
Satti, K. F., Ali, S. A. & Weitkamp, J.-H. Congenital infections, part 2: parvovirus, listeria, tuberculosis, syphilis, and varicella. NeoReviews 11, e681–e695 (2010).
Tian, C., Ali, S. A. & Weitkamp, J.-H. Congenital infections, part i: cytomegalovirus, toxoplasma, rubella, and herpes simplex. NeoReviews 11, e436–e446 (2010).
Best, S. et al. Promises, pitfalls and practicalities of prenatal whole exome sequencing. Prenat. Diagn. 38, 10–19 (2018).
Vora, N. L. et al. Prenatal exome sequencing in anomalous fetuses: new opportunities and challenges. Genet. Med. 19, 1207–1216 (2017).
Jelin, A. C., Sagaser, K. G. & Wilkins-Haug, L. Prenatal genetic testing options. Pediatr. Clin. N. Am. 66, 281–293 (2019).
Bianchi, D. W. et al. Genome-wide fetal aneuploidy detection by maternal plasma DNA sequencing. Obstet. Gynecol. 119, 890 (2012).
Gil, M. M. et al. Screening for trisomies by cfDNA testing of maternal blood in twin pregnancy: update of The Fetal Medicine Foundation results and meta-analysis. Ultrasound Obstet. Gynecol. 53, 734–742 (2019).
Harris, S., Reed, D. & Vora, N. L. Screening for fetal chromosomal and subchromosomal disorders. Semin. Fetal Neonatal Med. 23, 85–93 (2018).
Dungan, J. S. et al. Noninvasive prenatal screening (NIPS) for fetal chromosome abnormalities in a general-risk population: An evidence-based clinical guideline of the American College of Medical Genetics and Genomics (ACMG). Genet. Med. 25, 100336 (2023).
Dar, P. et al. Cell-free DNA screening for prenatal detection of 22q11.2 deletion syndrome. Am. J. Obstet. Gynecol. 227, 79.e1–79.e11 (2022).
Ehrich, M. et al. Genome-wide cfDNA screening: clinical laboratory experience with the first 10,000 cases. Genet. Med. 19, 1332–1337 (2017).
Hayward, J. & Chitty, L. S. Beyond screening for chromosomal abnormalities: advances in non-invasive diagnosis of single gene disorders and fetal exome sequencing. Semin. Fetal Neonatal Med. 23, 94–101 (2018).
Chitty, L. S. et al. Non-invasive prenatal diagnosis of achondroplasia and thanatophoric dysplasia: next-generation sequencing allows for a safer, more accurate, and comprehensive approach. Prenat. Diagn. 35, 656–662 (2015).
Sparks, T. N. & Dugoff, L. How to choose a test for prenatal genetic diagnosis: a practical overview. Am. J. Obstet. Gynecol. 228, 178–186 (2023).
Jelin, A. C. & Vora, N. Whole exome sequencing: applications in prenatal genetics. Obstet. Gynecol. Clin. N. Am. 45, 69–81 (2018).
Manickam, K. et al. Exome and genome sequencing for pediatric patients with congenital anomalies or intellectual disability: an evidence-based clinical guideline of the American College of Medical Genetics and Genomics (ACMG). Genet. Med. 23, 2029–2037 (2021).
Monaghan, K. G., Leach, N. T., Pekarek, D., Prasad, P. & Rose, N. C. The use of fetal exome sequencing in prenatal diagnosis: a points to consider document of the American College of Medical Genetics and Genomics (ACMG). Genet. Med. 22, 675–680 (2020).
Maguire, M. et al. Grief after second-trimester termination for fetal anomaly: a qualitative study. Contraception 91, 234–239 (2015).
Botkin, J. R. et al. Points to consider: ethical, legal, and psychosocial implications of genetic testing in children and adolescents. Am. J. Hum. Genet. 97, 6–21 (2015).
Horn, R. & Parker, M. Opening Pandora’s box?: ethical issues in prenatal whole genome and exome sequencing. Prenat. Diagn. 38, 20–25 (2018).
Westerfield, L., Darilek, S. & Van den Veyver, I. B. Counseling challenges with variants of uncertain significance and incidental findings in prenatal genetic screening and diagnosis. J. Clin. Med. 3, 1018–1032 (2014).
Chandler, N. et al. Rapid prenatal diagnosis using targeted exome sequencing: a cohort study to assess feasibility and potential impact on prenatal counseling and pregnancy management. Genet. Med. 20, 1430–1437 (2018).
Deden, C. et al. Rapid whole exome sequencing in pregnancies to identify the underlying genetic cause in fetuses with congenital anomalies detected by ultrasound imaging. Prenat. Diagn. 40, 972–983 (2020).
Han, J. et al. Rapid prenatal diagnosis of skeletal dysplasia using medical trio exome sequencing: benefit for prenatal counseling and pregnancy management. Prenat. Diagn. 40, 577–584 (2020).
Olde Keizer, R. A. C. M. et al. Rapid exome sequencing as a first-tier test in neonates with suspected genetic disorder: results of a prospective multicenter clinical utility study in the Netherlands. Eur. J. Pediatr. 182, 2683–2692 (2023).
Matalon, D. R. et al. Clinical, technical, and environmental biases influencing equitable access to clinical genetics/genomics testing: a points to consider statement of the American College of Medical Genetics and Genomics (ACMG). Genet. Med. 25, 100812 (2023).
Kuppermann, M., Gates, E. & Eugene Washington, A. Racial-ethnic differences in prenatal diagnostic test use and outcomes: preferences, socioeconomics, or patient knowledge? Obstet. Gynecol. 87, 675–682 (1996).
Kuppermann, M. et al. Attitudes toward prenatal testing and pregnancy termination among a diverse population of parents of children with intellectual disabilities. Prenat. Diagn. 31, 1251–1258 (2011).
Case, A. P., Ramadhani, T. A., Canfield, M. A. & Wicklund, C. A. Awareness and attitudes regarding prenatal testing among texas women of childbearing age. J. Genet. Couns. 16, 655–661 (2007).
Yang, Y. et al. Molecular findings among patients referred for clinical whole-exome sequencing. JAMA 312, 1870–1879 (2014).
Valencia, C. A. et al. Clinical impact and cost-effectiveness of whole exome sequencing as a diagnostic tool: a pediatric center’s experience. Front. Pediatr. 3, 67 (2015).
Manning, M. & Hudgins, L. Array-based technology and recommendations for utilization in medical genetics practice for detection of chromosomal abnormalities. Genet. Med. 12, 742–745 (2010).
Wapner, R. J. et al. Chromosomal microarray versus karyotyping for prenatal diagnosis. N. Engl. J. Med. 367, 2175–2184 (2012).
Shaffer, L. G. et al. Experience with microarray-based comparative genomic hybridization for prenatal diagnosis in over 5000 pregnancies. Prenat. Diagn. 32, 976–985 (2012).
Lee, C.-N. et al. Clinical utility of array comparative genomic hybridisation for prenatal diagnosis: a cohort study of 3171 pregnancies. BJOG Int. J. Obstet. Gynaecol. 119, 614–625 (2012).
Fiorentino, F. et al. Chromosomal microarray analysis as a first-line test in pregnancies with a priori low risk for the detection of submicroscopic chromosomal abnormalities. Eur. J. Hum. Genet. 21, 725–730 (2013).
Chong, H. P. et al. Prenatal chromosomal microarray testing of fetuses with ultrasound structural anomalies: a prospective cohort study of over 1000 consecutive cases. Prenat. Diagn. 39, 1064–1069 (2019).
Callaway, J. L. A., Shaffer, L. G., Chitty, L. S., Rosenfeld, J. A. & Crolla, J. A. The clinical utility of microarray technologies applied to prenatal cytogenetics in the presence of a normal conventional karyotype: a review of the literature. Prenat. Diagn. 33, 1119–1123 (2013).
Carss, K. J. et al. Exome sequencing improves genetic diagnosis of structural fetal abnormalities revealed by ultrasound. Hum. Mol. Genet. 23, 3269–3277 (2014).
Alamillo, C. L. et al. Exome sequencing positively identified relevant alterations in more than half of cases with an indication of prenatal ultrasound anomalies. Prenat. Diagn. 35, 1073–1078 (2015).
Fu, F. et al. Application of exome sequencing for prenatal diagnosis of fetal structural anomalies: clinical experience and lessons learned from a cohort of 1618 fetuses. Genome Med. 14, 123 (2022).
Normand, E. A. et al. Clinical exome sequencing for fetuses with ultrasound abnormalities and a suspected Mendelian disorder. Genome Med. 10, 74 (2018).
Sparks, T. N. et al. Exome sequencing for prenatal diagnosis in nonimmune hydrops fetalis. N. Engl. J. Med. 383, 1746–1756 (2020).
Lord, J. et al. Prenatal exome sequencing analysis in fetal structural anomalies detected by ultrasonography (PAGE): a cohort study. Lancet 393, 747–757 (2019).
Petrovski, S. et al. Whole-exome sequencing in the evaluation of fetal structural anomalies: a prospective cohort study. Lancet 393, 758–767 (2019).
Yang, Y. et al. Genomic architecture of fetal central nervous system anomalies using whole-genome sequencing. Npj Genom. Med. 7, 1–10 (2022).
Li, L. et al. Genetic tests aid in counseling of fetuses with cerebellar vermis defects: prenatal diagnosis. Prenat. Diagn. 40, 1228–1238 (2020).
Drexler, K. A. et al. Association of deep phenotyping with diagnostic yield of prenatal exome sequencing for fetal brain abnormalities. Genet. Med. 25, 100915 (2023).
Qi, Q. et al. Simultaneous detection of CNVs and SNVs improves the diagnostic yield of fetuses with ultrasound anomalies and normal karyotypes. Genes 11, 1397 (2020).
Hu, P. et al. Whole genome sequencing vs chromosomal microarray analysis in prenatal diagnosis. Am. J. Obstet. Gynecol. https://doi.org/10.1016/j.ajog.2023.03.005 (2023).
Miceikaite, I. et al. Comprehensive prenatal diagnostics: exome versus genome sequencing. Prenat. Diagn. 43, 1132–1141 (2023).
Wang, Y. et al. Diagnostic yield of genome sequencing for prenatal diagnosis of fetal structural anomalies. Prenat. Diagn. 42, 822–830 (2022).
Zhou, J. et al. Whole genome sequencing in the evaluation of fetal structural anomalies: a parallel test with chromosomal microarray plus whole exome sequencing. Genes 12, 376 (2021).
Greenbaum, L. et al. Evaluation of diagnostic yield in fetal whole-exome sequencing: a report on 45 consecutive families. Front. Genet. 10, 425 (2019).
Boissel, S. et al. Genomic study of severe fetal anomalies and discovery of GREB1L mutations in renal agenesis. Genet. Med. 20, 745–753 (2018).
Chen, M. et al. Clinical application of medical exome sequencing for prenatal diagnosis of fetal structural anomalies. Eur. J. Obstet. Gynecol. Reprod. Biol. 251, 119–124 (2020).
de Koning, M. A. et al. Prenatal exome sequencing: a useful tool for the fetal neurologist. Clin. Genet. 101, 65–77 (2022).
Drury, S. et al. Exome sequencing for prenatal diagnosis of fetuses with sonographic abnormalities. Prenat. Diagn. 35, 1010–1017 (2015).
Dufke, A. et al. A single center experience of prenatal parent-fetus trio exome sequencing for pregnancies with congenital anomalies. Prenat. Diagn. 42, 901–910 (2022).
Fu, F. et al. Whole exome sequencing as a diagnostic adjunct to clinical testing in fetuses with structural abnormalities. Ultrasound Obstet. Gynecol. 51, 493–502 (2018).
Gabriel, H. et al. Trio exome sequencing is highly relevant in prenatal diagnostics. Prenat. Diagn. 42, 845–851 (2022).
He, M. et al. The added value of whole-exome sequencing for anomalous fetuses with detailed prenatal ultrasound and postnatal phenotype. Front. Genet. 12, 627204 (2021).
Heide, S. et al. Prenatal exome sequencing in 65 fetuses with abnormality of the corpus callosum: contribution to further diagnostic delineation. Genet. Med. 22, 1887–1891 (2020).
Huang, R. et al. Whole exome sequencing improves genetic diagnosis of fetal clubfoot: human genetics. Hum. Genet. 142, 407–418 (2023).
Lei, L., Zhou, L. & Xiong, J. Whole-exome sequencing increases the diagnostic rate for prenatal fetal structural anomalies. Eur. J. Med. Genet. 64, 104288 (2021).
Tran Mau-Them, F. et al. Prenatal diagnosis by trio exome sequencing in fetuses with ultrasound anomalies: a powerful diagnostic tool. Front. Genet. 14, 1099995 (2023).
Yaron, Y. et al. Exome sequencing as first-tier test for fetuses with severe central nervous system structural anomalies. Ultrasound Obstet. Gynecol. 60, 59–67 (2022).
Yates, C. L. et al. Whole-exome sequencing on deceased fetuses with ultrasound anomalies: expanding our knowledge of genetic disease during fetal development. Genet. Med. 19, 1171–1178 (2017).
Mone, F. et al. COngenital heart disease and the Diagnostic yield with Exome sequencing (CODE) study: prospective cohort study and systematic review. Ultrasound Obstet. Gynecol. 57, 43–51 (2021).
Mone, F. et al. Evolving fetal phenotypes and clinical impact of progressive prenatal exome sequencing pathways: cohort study. Ultrasound Obstet. Gynecol. 59, 723–730 (2022).
Vaknin, N. et al. High rate of abnormal findings in prenatal exome trio in low risk pregnancies and apparently normal fetuses. Prenat. Diagn. 42, 725–735 (2022).
Daum, H., Meiner, V., Elpeleg, O., Harel, T. & Authors, C. Fetal exome sequencing: yield and limitations in a tertiary referral center. Ultrasound Obstet. Gynecol. 53, 80–86 (2019).
Mellis, R., Oprych, K., Scotchman, E., Hill, M. & Chitty, L. S. Diagnostic yield of exome sequencing for prenatal diagnosis of fetal structural anomalies: a systematic review and meta-analysis. Prenat. Diagn. 42, 662–685 (2022).
Shaffer, L. G. et al. Detection rates of clinically significant genomic alterations by microarray analysis for specific anomalies detected by ultrasound. Prenat. Diagn. 32, 986–995 (2012).
Pauta, M., Martinez-Portilla, R. J. & Borrell, A. Diagnostic yield of exome sequencing in fetuses with multisystem malformations: systematic review and meta-analysis. Ultrasound Obstet. Gynecol. 59, 715–722 (2022).
Meler, E., Sisterna, S. & Borrell, A. Genetic syndromes associated with isolated fetal growth restriction. Prenat. Diagn. 40, 432–446 (2020).
Martins, J. G., Biggio, J. R. & Abuhamad, A. Society for Maternal-Fetal Medicine Consult Series #52: diagnosis and management of fetal growth restriction: (Replaces Clinical Guideline Number 3, April 2012). Am. J. Obstet. Gynecol. 223, B2–B17 (2020).
McCowan, L. M., Figueras, F. & Anderson, N. H. Evidence-based national guidelines for the management of suspected fetal growth restriction: comparison, consensus, and controversy. Am. J. Obstet. Gynecol. 218, S855–S868 (2018).
Lees, C. C. et al. ISUOG Practice Guidelines: diagnosis and management of small-for-gestational-age fetus and fetal growth restriction. Ultrasound Obstet. Gynecol. 56, 298–312 (2020).
Borrell, A. et al. Genomic microarray in fetuses with early growth restriction: a multicenter study. Fetal Diagn. Ther. 42, 174–180 (2017).
Zhou, H. et al. The genetic and clinical outcomes in fetuses with isolated fetal growth restriction: a chinese single-center retrospective study. Front. Genet. 13, 856522 (2022).
Borrell, A., Grande, M., Pauta, M., Rodriguez-Revenga, L. & Figueras, F. Chromosomal microarray analysis in fetuses with growth restriction and normal karyotype: a systematic review and meta-analysis. Fetal Diagn. Ther. 44, 1–9 (2017).
Zhou, H. et al. Genetic causes of isolated and severe fetal growth restriction in normal chromosomal microarray analysis. Int. J. Gynecol. Obstet. 161, 1004–1011 (2023).
Mone, F. et al. Should we offer prenatal exome sequencing for intrauterine growth restriction or short long bones? A systematic review and meta-analysis. Am. J. Obstet. Gynecol. 228, 409–417.e4 (2023).
Pauta, M., Martinez-Portilla, R. J., Meler, E., Otaño, J. & Borrell, A. Diagnostic yield of exome sequencing in isolated fetal growth restriction: systematic review and meta-analysis. Prenat. Diagn. 43, 596–604 (2023).
Snijders, R., Noble, P., Sebire, N., Souka, A. & Nicolaides, K. UK multicentre project on assessment of risk of trisomy 21 by maternal age and fetal nuchal-translucency thickness at 10–14 weeks of gestation. Lancet 352, 343–346 (1998).
Nicolaides, K. H., Azar, G., Snijders, R. J. M. & Gosden, C. M. Fetal nuchal oedema: associated malformations and chromosomal defects. Fetal Diagn. Ther. 7, 123–131 (1992).
Kelley, J., McGillivray, G., Meagher, S. & Hui, L. Increased nuchal translucency after low-risk noninvasive prenatal testing: what should we tell prospective parents? Prenat. Diagn. 41, 1305–1315 (2021).
Prabhu, M., Kuller, J. A. & Biggio, J. R. Society for Maternal-Fetal Medicine Consult Series #57: Evaluation and management of isolated soft ultrasound markers for aneuploidy in the second trimester: (Replaces Consults #10, Single umbilical artery, October 2010; #16, Isolated echogenic bowel diagnosed on second-trimester ultrasound, August 2011; #17, Evaluation and management of isolated renal pelviectasis on second-trimester ultrasound, December 2011; #25, Isolated fetal choroid plexus cysts, April 2013; #27, Isolated echogenic intracardiac focus, August 2013). Am. J. Obstet. Gynecol. 225, B2–B15 (2021).
Bardi, F. et al. Is there still a role for nuchal translucency measurement in the changing paradigm of first trimester screening? Prenat. Diagn. 40, 197–205 (2020).
Hui, L. et al. Reexamining the optimal nuchal translucency cutoff for diagnostic testing in the cell-free DNA and microarray era: results from the Victorian Perinatal Record Linkage study. Am. J. Obstet. Gynecol. 225, 527.e1–527.e12 (2021).
Miranda, J. et al. Should cell-free DNA testing be used in pregnancy with increased fetal nuchal translucency? Ultrasound Obstet. Gynecol. 55, 645–651 (2020).
Petersen, O. B. et al. Nuchal translucency of 3.0-3.4 mm an indication for NIPT or microarray? Cohort analysis and literature review. Acta Obstet. Gynecol. Scand. 99, 765–774 (2020).
Yang, X. et al. Exome sequencing improves genetic diagnosis of fetal increased nuchal translucency: prenatal diagnosis. Prenat. Diagn. 40, 1426–1431 (2020).
Mellis, R. et al. Fetal exome sequencing for isolated increased nuchal translucency: should we be doing it? BJOG. Int. J. Obstet. Gynaecol. 129, 52–61 (2022).
Choy, K. W. et al. Prenatal diagnosis of fetuses with increased nuchal translucency by genome sequencing analysis. Front. Genet. 10, 761 (2019).
Di Girolamo, R. et al. Whole exome sequencing in fetuses with isolated increased nuchal translucency: a systematic review and meta-analysis. J. Matern. Fetal Neonatal Med. 36, 2193285 (2023).
Norton, M. E., Chauhan, S. P. & Dashe, J. S. Society for Maternal-Fetal Medicine (SMFM) Clinical Guideline #7: nonimmune hydrops fetalis. Am. J. Obstet. Gynecol. 212, 127–139 (2015).
Al-Kouatly, H. B. et al. High diagnosis rate for nonimmune hydrops fetalis with prenatal clinical exome from the Hydrops-Yielding Diagnostic Results of Prenatal Sequencing (HYDROPS) Study. Genet. Med. 23, 1325–1333 (2021).
Al-Kouatly, H. B. et al. Diagnostic yield from prenatal exome sequencing for non-immune hydrops fetalis: a systematic review and meta-analysis. Clin. Genet. 103, 503–512 (2023).
D’Antonio, F. et al. Outcomes associated with isolated agenesis of the corpus callosum: a meta-analysis. Pediatrics 138, e20160445 (2016).
D’Antonio, F. et al. Systematic review and meta-analysis of isolated posterior fossa malformations on prenatal imaging (part 2): neurodevelopmental outcome. Ultrasound Obstet. Gynecol. 48, 28–37 (2016).
Van den Veyver, I. B. Prenatally diagnosed developmental abnormalities of the central nervous system and genetic syndromes: a practical review. Prenat. Diagn. 39, 666–678 (2019).
Choi, J. J., Yang, E., Soul, J. S. & Jaimes, C. Fetal magnetic resonance imaging: supratentorial brain malformations. Pediatr. Radiol. 50, 1934–1947 (2020).
Lerman-Sagie, T., Prayer, D., Stöcklein, S. & Malinger, G. Chapter 1 - Fetal cerebellar disorders. In Handbook of Clinical Neurology (eds. Manto, M. & Huisman, T. A. G. M.) Vol. 155 3–23 (Elsevier, 2018).
Kline-Fath, B. M. & Calvo-Garcia, M. A. Prenatal imaging of congenital malformations of the brain. Semin. Ultrasound CT MRI 32, 167–188 (2011).
Sun, L. et al. Prenatal diagnosis of central nervous system anomalies by high-resolution chromosomal microarray analysis. BioMed. Res. Int. 2015, e426379 (2015).
Zou, Z. et al. Prenatal diagnosis of posterior fossa anomalies: additional value of chromosomal microarray analysis in fetuses with cerebellar hypoplasia: Prenatal diagnosis. Prenat. Diagn. 38, 91–98 (2018).
Cai, M., Huang, H., Xu, L. & Lin, N. Clinical utility and the yield of single nucleotide polymorphism array in prenatal diagnosis of fetal central nervous system abnormalities. Front. Mol. Biosci. 8, 666115 (2021).
Mustafa, H. J. et al. Diagnostic yield with exome sequencing in prenatal severe bilateral ventriculomegaly: a systematic review and meta-analysis. Am. J. Obstet. Gynecol. MFM 5, 101048 (2023).
Niles, K. M., Blaser, S., Shannon, P. & Chitayat, D. Fetal arthrogryposis multiplex congenita/fetal akinesia deformation sequence (FADS)—aetiology, diagnosis, and management. Prenat. Diagn. 39, 720–731 (2019).
Langston, S. & Chu, A. Arthrogryposis multiplex congenita. Pediatr. Ann. 49, e299–e304 (2020).
Filges, I., Jünemann, S., Viehweger, E. & Tercanli, S. Fetal arthrogryposis—what do we tell the prospective parents? Prenat. Diagn. 43, 798–805 (2023).
Ravenscroft, G. et al. Fetal akinesia: review of the genetics of the neuromuscular causes. J. Med. Genet. 48, 793–801 (2011).
Ravenscroft, G. et al. Neurogenetic fetal akinesia and arthrogryposis: genetics, expanding genotype-phenotypes and functional genomics. J. Med. Genet. 58, 609–618 (2021).
Allen, N. M. et al. The emerging spectrum of fetal acetylcholine receptor antibody-related disorders (FARAD). Brain 146, 4233–4246 (2023).
Liu, Y. et al. Prenatal diagnosis of fetal skeletal dysplasia using targeted next-generation sequencing: an analysis of 30 cases. Diagn. Pathol. 14, 76 (2019).
Han, J. et al. Rapid prenatal diagnosis of skeletal dysplasia using medical trio exome sequencing: Benefit for prenatal counseling and pregnancy management: Prenatal diagnosis. Prenat. Diagn. 40, 577–584 (2020).
Wiechers, C. & Kagan, K. O. Fetal markers for the detection of infants with craniofacial malformation. Semin. Fetal Neonatal Med. 26, 101291 (2021).
Maulik, D., Nanda, N. C., Maulik, D. & Vilchez, G. A brief history of fetal echocardiography and its impact on the management of congenital heart disease. Echocardiography 34, 1760–1767 (2017).
Menahem, S., Sehgal, A. & Meagher, S. Early detection of significant congenital heart disease: the contribution of fetal cardiac ultrasound and newborn pulse oximetry screening. J. Paediatr. Child Health 57, 323–327 (2021).
Sanapo, L. et al. Fetal echocardiography for planning perinatal and delivery room care of neonates with congenital heart disease: echocardiography. Echocardiography 34, 1804–1821 (2017).
Hegde, B. N., Tsao, K. & Hirose, S. Management of congenital lung malformations. Clin. Perinatol. 49, 907–926 (2022).
Marine, M. B. & Forbes-Amrhein, M. M. Magnetic resonance imaging of the fetal gastrointestinal system. Pediatr. Radiol. Pediatr. Radiol. 50, 1895–1906 (2020).
Revels, J. W. et al. An algorithmic approach to complex fetal abdominal wall defects. Am. J. Roentgenol. 214, 218–231 (2020).
Schedl, A. Renal abnormalities and their developmental origin. Nat. Rev. Genet. 8, 791–802 (2007).
Wu, C.-H. W. et al. Copy number variation analysis facilitates identification of genetic causation in patients with congenital anomalies of the kidney and urinary tract. Eur. Urol. Open Sci. 44, 106–112 (2022).
Koenigbauer, J. T. et al. Spectrum of congenital anomalies of the kidney and urinary tract (CAKUT) including renal parenchymal malformations during fetal life and the implementation of prenatal exome sequencing (WES). Arch. Gynecol. Obstet. https://doi.org/10.1007/s00404-023-07165-8 (2023).
van der Ven, A. T. et al. Whole-exome sequencing identifies causative mutations in families with congenital anomalies of the kidney and urinary tract. J. Am. Soc. Nephrol. 29, 2348 (2018).
Daum, H. et al. Exome sequencing for structurally normal fetuses—yields and ethical issues. Eur. J. Hum. Genet. 31, 164–168 (2023).
Tolusso, L. K., Hazelton, P., Wong, B. & Swarr, D. T. Beyond diagnostic yield: prenatal exome sequencing results in maternal, neonatal, and familial clinical management changes. Genet. Med. 23, 909–917 (2021).
Harding, E., Hammond, J., Chitty, L. S., Hill, M. & Lewis, C. Couples experiences of receiving uncertain results following prenatal microarray or exome sequencing: a mixed‐methods systematic review. Prenat. Diagn. 40, 1028–1039 (2020).
Author information
Authors and Affiliations
Contributions
Substantial contributions to conception and design, acquisition of data, or analysis and interpretation of data: Olivier Fortin. Drafting the article or revising it critically for important intellectual content: Olivier Fortin, Sarah Mulkey, Jamie Fraser. Final approval of the version to be published: Olivier Fortin, Sarah Mulkey, Jamie Fraser.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Fortin, O., Mulkey, S.B. & Fraser, J.L. Advancing fetal diagnosis and prognostication using comprehensive prenatal phenotyping and genetic testing. Pediatr Res (2024). https://doi.org/10.1038/s41390-024-03343-9
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41390-024-03343-9