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OBJECTIVE: To assess whether computational electroencephalogram (EEG) measures during the first day of life correlate to clinical
outcomes in infants with perinatal asphyxia with or without hypoxic-ischemic encephalopathy (HIE).
METHODS: We analyzed four-channel EEG monitoring data from 91 newborn infants after perinatal asphyxia. Altogether 42
automatically computed amplitude- and synchrony-related EEG features were extracted as 2-hourly average at very early (6 h) and
early (24 h) postnatal age; they were correlated to the severity of HIE in all infants, and to four clinical outcomes available in a
subcohort of 40 newborns: time to full oral feeding (nasogastric tube NGT), neonatal brain MRI, Hammersmith Infant Neurological
Examination (HINE) at three months, and Griffiths Scales at two years.
RESULTS: At 6 h, altogether 14 (33%) EEG features correlated significantly to the HIE grade ([r]= 0.39−0.61, p < 0.05), and one
feature correlated to NGT ([r]= 0.50). At 24 h, altogether 13 (31%) EEG features correlated significantly to the HIE grade ([r]=
0.39−0.56), six features correlated to NGT ([r]= 0.36−0.49) and HINE ([r]= 0.39−0.61), while no features correlated to MRI or Griffiths
Scales.
CONCLUSIONS: Our results show that the automatically computed measures of early cortical activity may provide outcome
biomarkers for clinical and research purposes.

Pediatric Research; https://doi.org/10.1038/s41390-024-03235-y

IMPACT:

● The early EEG background and its recovery after perinatal asphyxia reflect initial severity of encephalopathy and its clinical
recovery, respectively.

● Computational EEG features from the early hours of life show robust correlations to HIE grades and to early clinical outcomes.
● Computational EEG features may have potential to be used as cortical activity biomarkers in early hours after perinatal asphyxia.

INTRODUCTION
Perinatal asphyxia remains a significant neonatal neurological
adversity that requires assessment and intervention during
neonatal care, and results in an increased risk of lifelong
neurodevelopmental problems.1–6 Clinical symptoms define the
diagnostic grades of hypoxic-ischemic encephalopathy (HIE),
however continuous brain monitoring is recommended because
it provides a fair prediction of neurodevelopmental outcome7–9

especially in combination with brain magnetic resonance imaging
(MRI).10,11 The bedside assessment of cortical functional recovery
is currently based on visual review of the electroencephalography
(EEG) signals,12 which is most often done using a time and
amplitude-compressed trend, amplitude integrated EEG (aEEG).13

Visual review of either raw EEG signals or aEEG trend (hereafter
jointly called (a)EEG) is qualitative and inherently subjective.14–18

The visual review also needs efforts put into expert training that
are not available in most neonatal intensive care units (NICU)
worldwide.19 Therefore, various computational means have been
developed, with a collective aim to support early neonatal (a)EEG
monitoring by facilitating routine bedside review, or to benchmark
clinical trials. It is a common experience that the worst situations
are relatively easy to identify, but there is a notable challenge in
assessing majority of infants with milder clinical presentation. In
particular, infants presenting with clinically categorized HIE as mild
to moderate (grade 1 or 2, HIE1 or HIE2, respectively) may show
widely ranging neurological outcomes, from typical to severe
impairments.1,2,4,5,20

It is reasonable to assume that the widely differing outcomes
within and between HIE grades are represented in the latent
characteristics of the cortical recovery measured with (a)EEG
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monitoring in ways that could escape visual recognition of the raw
EEG signals or aEEG trends. Indeed, several recent studies have
shown that computational EEG measures may show feature-
related differences between HIE categories21–23 or correlate with
clinical outcomes.24–26 Those features are typically chosen
heuristically, measuring EEG’s spectral21 or amplitude content,22

cross-frequency interactions,27 non-linear characteristics,28 or
scaling properties in the bursting behavior.29

Here, we aimed to identify objective, quantitative features of
the EEG signal, i.e., potential functional biomarkers of asphyxia
severity, that could complement early clinical evaluation of the
infant with perinatal asphyxia. We extracted computational EEG
features from two time points during the first day of life and
validated these EEG features by correlating them to clinical HIE
classification and early neurological outcome.

METHODS
An overview of the present study is shown in the Fig. 1. Long-term (a)EEG
monitoring with four scalp electrodes was performed in NICU for term
infants with perinatal asphyxia. The computational EEG features were
estimated and correlated to several clinical outcomes. This study was
approved by the hospital district of Helsinki and Uusimaa (HUS/1331/
2016). Parents of the participants gave their informed consent for the
research and publication of the results.

Study subjects and clinical grouping
The present study included 91 infants with perinatal asphyxia, out of which
40 infants had outcome (cohort 1) assessments, and the rest were included
to expand the range of HIE severity (cohort 2). Both cohorts recruited full-
term infants with clinical signs of perinatal asphyxia, no other reason for
distress at birth and at least one of the following: umbilical arterial cord pH
below 7.10, a 1-min Apgar score not exceeding 6, need for assisted
ventilation or cardiopulmonary resuscitation at birth. Based on severity of
clinical symptoms,30 infants were subcategorized in to four groups:
perinatal asphyxia without HIE (later referred as PA), mild HIE (HIE1),
moderate HIE (HIE2) and severe HIE (HIE3), later referred to as HIE groups.
Infants were collated from two previously published cohorts: Cohort 131

contributed 40 infants (PA n= 18, HIE1 n= 10, HIE2 n= 12) and a more
detailed clinical characterization, including clinical outcome measures (see
below). Cohort 232,33 complemented the dataset with more severe cases
(HIE2 n= 40, HIE3 n= 11) to allow a more balanced correlation between
HIE grades and EEG features. An experienced neonatologist (MM)

uniformly assessed the clinical HIE categorization for both cohorts by
reviewing the medical records and according to the worst assessment (the
first day for cohort 1, and days 1−4 for cohort 2). Decision of therapeutic
hypothermia was made according to clinical guidelines.34 Patients were
treated with anticonvulsants if clinically indicated (Table S3).

Clinical outcome measures
Prospectively collected clinical outcome data was available for 40 infants
(18/PA, 10/HIE1, 12/HIE2; see also Fig. S1 for details). To depict early clinical
outcome we used time to full oral feeding (number of days, continuous
variable) as a neonatal clinical marker of recovery,35 visually determined
neonatal brain MRI score36 (continuous variable ranging 0−57) and
Hammersmith Infant Neurological Examination at three months of age
(HINE)37 (continuous variable ranging 0−78). At two years of age outcome
was assessed using standardized developmental quotient (DQ) score of
Griffiths Scales of Child Development, 3rd Edition (GMDS-III)38 (continuous
variable ranging 50-150).

EEG recordings
The long-term EEG recordings were performed with a NicOne EEG
system (Carefusion/Natus, Madison, WI) using four (F3, F4, P3, and P4)
recording electrodes and a recording reference electrode near frontal
midline. Only the standard bipolar derivations (F3-P3, F4-P4, F3-F4, and
P3-P4) were used in the present study. The recordings were started
during the first hours of life (see Fig. 2a), and the timing of (a)EEG
recording was comparable between HIE groups. The (a)EEG monitoring
data from the first 24 h of life was imported into Matlab (Mathworks)
using EDF format as needed, and further processing was done using
custom-built algorithms.

EEG preprocessing
The raw EEG signals were first bandpass filtered within 0.4−30 Hz using a
pair of high-pass and low pass Butterworth filters with the corresponding
cut-offs, then re-sampled to 250 Hz from the original recordings with
variable sampling frequencies (Fs= 250−2 kHz). The artefacts were
identified in four-seconds-long epochs with two-seconds-long overlap
using a previously published machine learning-based classifier.39 The
corresponding segment of EEG was included if probability >0.75 for being
classified as clean EEG (i.e., non-artefact). There was an overall impression
that the worse HIE grades had somewhat higher incidence of artefacts (see
Fig. S1C), however visual assessment of artefact rejections suggested that
rejections were not a cause of meaningful bias. In addition, we used
median values over relatively long (2 h) EEG segments that render the
results more robust to brief artefact rejections.

EEG recording
with 4 electrodes

Feature
extraction

Computational
EEG features

EEG pre-processing

Correlation analyses

HINE at 3 months

Neonatal brain MRI

Clinical outcome

NICU

Time to full
oral feeding

GMDS-lll at 2 years

PA

HIE1

HIE2

Fig. 1 The study overview. Infants with perinatal asphyxia were monitored with a 4-channel (a)EEG in the NICU. After pre-processing, a set of
computational EEG features were extracted, to be correlated to the clinical outcomes.
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Computation of EEG features
We computed 42 features from the EEG derivations as mean values over
each two minutes-long epochs with 1min overlap. This yielded us original
1-min resolution which was later compressed in time to median values over
2-h segments. The feature set was chosen to represent a wide selection of
EEG characteristics that have been shown earlier to correlate with EEG
background or clinical course. The features can be generally categorized
spatially intrahemispheric, interhemispheric, local, or global16,40 or function-
ally (measures of amplitude, spectra, cross-frequency interaction, or
connectivity); for more details, see Supplementary material, Table S1. For
the intrahemispheric measures, we computed average of the feature from
both hemispheres (i.e., F3-P3 and F4-P4 derivations). In addition to the
N= 41 individual features, we also computed a more interpretative feature,
Brain State of the Newborn (BSN)41,42 which is a deep learning -based

continuous index for the EEG background activity ranging from 0 to 100. It
was added to the feature set to allow systematic assessment of relations
between BSN, individual features, and clinical outcomes.

Analysis strategy for correlating EEG features to clinical
outcomes
After the initial inspection of the full time courses and featureXfeature
correlations, we continued with clinically motivated analysis paths using
EEG features from two discrete time points (postnatal ages). For the very
early time point (6 h), we reasoned that the EEG is primarily needed for an
immediate assessment of the infants encephalopathy grade (HIE) and the
very early outcome measure (NGT). For the little later, early time point
(24 h), we reasoned that the EEG is potentially needed for correlating to all
of the five outcome measures available in our dataset. Both time points
included the same set of N= 42 EEG features, calculated from the
respective time intervals (average of 4−6 h and 22−24 h of age). As
graphically depicted in Fig. S4, each outcome was assessed as an
independent question, and corrections for multiple comparisons by
Benjamin-Hochberg were done according to three different analytic
approaches. First, all the EEG features were correlated to the given clinical
outcome (N= 42 comparisons). Second, the EEG features were ordered
spatially into four groups (N= 2−17 comparisons per group). Third, the
EEG features were ordered by neuronal mechanisms into four groups
(N= 2−18 comparisons per group). Results of these analyses are shown in
Figs. 3, 4 and Fig. S5. For a full transparency, all (uncorrected) correlation
results are shown in Table S2 and visually summarized in Fig. S3.

Statistical analyses
Correlations between the EEG features and clinical data were computed
using the default Matlab function to calculate Spearman correlation
coefficients. Statistical significance for the continuous nonparametric
outcome variables was calculated with Kruskal–Wallis. Multiple compar-
isons were corrected by using Benjamin-Hochberg method according to
the analysis strategy described above and graphically depicted in Fig. S4.
Significance level was set at p < 0.05.

RESULTS
Clinical outcome
Regarding cohort 1, clinical characteristics such as neonatal brain
MRI scoring and HINE total score at three months have been
previously reported.31 The majority of infants 35/40 (88%) needed
feeding with nasogastric tube (NGT). Median (IQR) time to full oral
feeding was 2 (0−3) days for PA, 4 (3−7) for HIE1 and 8 (5−12) for
HIE2 (p < 0.001). At two years GMDS-III developmental quotient
(DQ) of all the infants in cohort 1 was within normal range. There
were no significant differences between HIE groups: median (IQR)
DQ was 107 (104−113) for PA, 107 (98−116) for HIE1 and 104
(96−115) for HIE2 (p= 0.833).

EEG features
Figure 2a summarizes the hours of EEG available in each infant,
and examples of the temporally changing trends of EEG features
(intrahemispheric mean aEEG and BSN) are shown in Fig. 2b, c.
These group average trends show clearly that the mean values in
patient groups exhibit distinct trajectories throughout the first day
of life. However, there is a significant overlap between patient
groups when considering the intragroup variability (Fig. 2b). The
HIE2 group may also show a clear rapid recovery from an initial
overlap with the HIE3 group and later overlap with the groups of
milder grades (HIE1, PA; Fig. 2c). These observations suggest
directly that computational features need to be considered
dynamically, and at least they cannot be collapsed over longer
than maximum of few hours epochs. As a baseline, we also
computed mutual correlations in the full feature set. It shows
expectedly, that several computational features exhibit substantial
mutual correlations, in particular when they measure the same
overall neuronal mechanisms (e.g., amplitude- or synchrony
-based features; See the heatmaps in Fig. S2). Based on these
observations and clinical reasoning (see above), our correlation
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Fig. 2 Summary of the (a)EEG-dataset and an example of a
temporal dynamics of two individual EEG features. a A temporal
summary of the EEG data available during the first 24 h of life shown
for each patient, as colored by the HIE group. The vertical gray
shades indicate time periods 4−6 h and 22−24 h, respectively, that
were used in further analyses. b Temporal dynamics of intrahemi-
spheric mean aEEG over the first 24 h, shown as the median value in
each HIE grade (average smoothing over 2 h). At the group level, the
extreme groups are clearly separable throughout the recording,
while the other groups are less distinctive, especially when
considering the intra-group variability. c The temporal dynamics of
the median value of BSN in different HIE grades. Shaded areas
represent interquartile intervals. Infants with PA and HIE1 generally
have higher BSN values very early on, while infants with HIE2 start
with a low BSN that recovers towards more normal levels during the
first day of life. In contrast, the HIE3 is associated with low values of
BSN without clear recovery.
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analyses of EEG vs clinical outcomes used 2-hourly averages from
two postnatal time points: at 6 h (very early) and at 24 h (early).

Correlation of EEG features to clinical outcome
A summary of all correlations after correction for multiple
comparisons at 6 h of age is presented in Fig. 3 and at 24 h of
age in Fig. 4. The majority of features that correlated to clinical HIE
grade were related to signal amplitude or power, spatial
correlations (cPSD, wPLI; see Table S1), or the BSN.

Correlations at 6 h of age. Altogether 14 (33%) EEG features
correlated significantly to the HIE grade ([r]= 0.39−0.61, p < 0.05).
The most prominent findings included global assessment of
continuity (SC; r= 0.55), background level (BSN, r= -0.39),
intrahemispheric measures of amplitude (aEEG, rEEG, PSD) as well
as several synchrony measures from the intrahemispheric
comparisons (ASI, wPLI) as well as interhemispheric comparisons
(cPSD, wPLI). Only the global assessment of continuity correlated
to NGT (SC, r= 0.50). Notably, measure of interhemispheric
synchrony (ASI) did not correlate to either HIE or NGT.

Correlations at 24 h of age. Altogether 13 (31%) EEG features
correlated significantly to the HIE grade ([r]= 0.39−0.56). The most
prominent findings included the background level (BSN,
r=−0.43), intra- and interhemispheric measures of amplitude
(aEEG, rEEG, PSD) as well as the same set of synchrony measures
that showed clinical correlation already at 6 h of age (ASI, wPLI,
cPSD, wPLI; see Fig. 3 for exact values). Six EEG features correlated
to NGT ([r]= 0.36−0.49), including the EEG background (BSN,
r=−0.36) and the same five synchrony measures that also
correlated to the HIE grade (wPLI, cPSD). Only synchrony measures
(N= 6) correlated to HINE ([r]= 0.39−0.61), while no features
correlated to MRI or 2 years outcome scores.

Further observations. Additionally, we report the full correlation
analysis (uncorrected for multiple corrections) both graphically in Fig.
S3, andwith numerical details in Supplementary Table S2. Comparisons
across the full EEG feature matrix (Supplementary Table S2) shows that

feature-outcome correlations are not randomly distributed. Instead,
there are clearly identifiable groups of EEG features that persist over
early hours (both 6 and 24 h of age), and between successive follow-up
time points. Notably, several of these findings don’t pass correction for
multiple comparison (see above) though they have been previously
proposed as individual characteristics of clinical interest.16,27,40,43–45

DISCUSSION
Our results show that very early neonatal (a)EEG after perinatal
asphyxia can provide objectively quantified computational
EEG features with significant correlations to clinical outcome even
in infants with only PA or mild-to-moderate HIE. These findings are
in line with prior publications showing correlations between
individual features and HIE grade or EEG backgrounds.21,22,27,46 In
this work, the strongest clinical correlations were observed with
features related to EEG amplitude or spatial synchrony, which can
be intuitively related to the strength of cortical activity or the
interareal communication in the cortico-cortical networks.
The present findings extend prior literature where comparable

clinical correlations were only reported when the severe HIE is
included;25,29 here we show that many EEG features can also
exhibit robust clinical correlations within the milder HIE groups.
The developmental sequelae after mild to moderate HIE have
been well established, however the group of infants with mild HIE
or perinatal asphyxia without HIE is still poorly understood. Early
EEG-based measures could provide additional complementary
tools for clinical decisions in the large group of patients with
milder sequalae of perinatal asphyxia.3,4,20,42,47,48

Our EEG findings also suggest that the cortical activity
shows graded relationship to the severity of HIE (Fig. 2b, c), which
is fully compatible with the clinical experience that the natural
distribution of conditions does not adhere to the discrete
categories.49 The insufficient clinical discrimination by the
current HIE grading is most obvious for the infants with milder
sequelae ranging from the PA to HIE2.4,20,47,48 Early stratification or
outcome prediction in these infants is inaccurate with the clinical
assessment alone.
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Our computational EEG feature set included an interpretative, deep
learning -based background index BSN,41,42 because the early back-
ground recovery is a well-known characteristic used for distinguishing
the clinically identified HIE grades and for predicting clinical out-
comes.32,33,42,50 Results of the temporal dynamics of the BSN in the
groups with different HIE grades (Fig. 2c) illustrate that accounting for
postnatal age is essential when assessing the early cerebral recovery
with (a)EEG for decision-making at different time points. Notably, our
findings show that BSN value alone is significantly correlated to the HIE
grade in infants ranging from PA to HIE2, although it does not correlate
to their later clinical outcomes.
In the clinical practice it is a common experience that a trained

human expert may visually perceive more than what is presented
by discrete EEG background categories,12,51 which are typically
used as benchmarks in clinical trials52 or aEEG classifications.
Findings of the present study support the idea that the EEG signal
can present information beyond what is visually discernible in the
EEG signals, and that these EEG characteristics can be measured
automatically to complement the traditional visual analyses. Our
work shows further that computational EEG features could
potentially be used for supporting objective definition of grades
in the full spectrum of perinatal asphyxia.49

To conclude, our findings suggest that automated, EEG-derived
computational measures hold promise for an early objective,
quantitative, and automated assessment in the milder forms of
perinatal asphyxia. Such measures underpin functional biomarkers
for use in individualized therapeutic decisions and for bench-
marking clinical trials and research. Moreover, computational EEG
measures may provide effective translational bridges between
clinical and preclinical experiments.

DATA AVAILABILITY
The datasets generated during the current study are available from the correspond-
ing author on reasonable request.
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synchrony, and cross-frequency, respectively). The matrix shows only findings that remain significant after correction for multiple comparisons
(Benjamini-Hochberg) in each group. Bold fonts show significant correlations after correction for multiple comparisons (Benjamini-Hochberg)
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S3. For explanations of EEG features, see Table S1. b The scatter plots show comparisons between selected EEG features and clinical
characteristics at 24 h. BSN = brain state of the newborn, cPSD = cross power spectral density, SC = suppression curve, NGT days = days with
nasogastric tube (= time to full oral feeding), HINE = Hammersmith Infant Neurological Examination.
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