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Very preterm infants are at high risk of growth failure. Poor weight gain is a prominent risk factor for retinopathy of prematurity
(ROP) and optimizing nutrition could potentially promote growth and reduce ROP. Most infants at risk of ROP need parenteral
nutrition initially and studies of enhanced parenteral provision of lipids and amino acids have suggested a beneficial effect on ROP.
Higher amino acid intake was associated with lower incidence of hyperglycemia, a risk factor for ROP. For very preterm infants,
providing unpasteurized fortified raw maternal breast milk appears to have a dose-dependent preventive effect on ROP. These
infants become deficient in arachidonic acid (ArA) and docosahexaenoic acid (DHA) after birth when the maternal supply is lost.
Earlier studies have investigated the impact of omega-3 fatty acids on ROP with mixed results. In a recent study, early enteral
supplementation of ArA 100 mg/kg/d and DHA 50mg/kg/d until term equivalent age reduced the incidence of severe ROP by 50%.
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IMPACT:

● Previous reviews of nutritional interventions to prevent morbidities in preterm infants have mainly addressed
bronchopulmonary dysplasia, brain lesions and neurodevelopmental outcome. This review focusses on ROP.

● Neonatal enteral supplementation with arachidonic acid and docosahexaenoic acid, at levels similar to the fetal accretion rate,
has been found to reduce severe ROP by 50% in randomized controlled trials.

INTRODUCTION
Retinopathy of prematurity (ROP) is a neurovascular disease of
preterm infants and a major cause of childhood blindness
worldwide.1 Extremely preterm infant survival rates are increasing
and, unfortunately, so have morbidities such as ROP. In Sweden,
the proportion of screened infants treated for ROP increased from
2008 to 2017 and over time, more very immature infants and
fewer with higher gestational age (GA) were treated.2 In the US,
the incidence of ROP doubled from 2003 to 2019, and the increase
was most pronounced in low-income areas.3

ROP has two phases. In the first phase, starting directly after
birth, increased and fluctuating oxygenation, oxidative stress and
inflammation, as well as insufficient nutrient supply contributes to
post-natal weight loss and impaired retinal blood vessel growth.4,5

A sharp demarcation line between vascularized and avascular
retina develops. Later, body weight gain velocity increases.6 At this
stage, retinal vascularization either develops relatively normally or
the second phase of ROP occurs, with extra-retinal neovascular-
isation and risk of retinal detachment. Low GA and poorly
controlled oxygen supplementation are well-known risk factors for
ROP. In addition, poor weight gain and low circulating concentra-
tions of insulin-like growth factor-1 (IGF-1) are strong risk factors.
Tools for the prediction of severe ROP based on these variables
have been developed for very preterm infants and are used

worldwide to optimize screening.7–10 Circulating IGF-1, mainly
produced in the fetal/infant liver, is a signal of nutritional status
and health. IGF-1 stimulates growth and maturation and acts as a
permissive factor for VEGF-induced normal retinal vascularization.
Serum IGF-1 levels are partly nutrition dependent but are also
downregulated by infections, hypoxic episodes, corticosteroids
and other factors. Measures to prevent ROP include optimizing
nutrition and preventing inflammation to increase IGF-1 and
improve growth.
The aim of this narrative review is to discuss nutritional

interventions evaluated for their possible ability to reduce ROP.

METHODS
We searched PubMed for articles in English up to August 2023
addressing the association between nutrition and ROP.

Nutritional interventions to prevent ROP
Parenteral nutrition (PN) nutrition is recommended for very
preterm infants starting at birth. Minimal enteral feedings are
provided in increasing amounts as tolerated. Fortified maternal
breast milk is preferred, but donor human milk (DHM) or preterm
formula (PF) is used when the mother’s own milk (MOM) is
unavailable in sufficient amounts. This regimen follows the
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recommendations of the American Academy of Pediatrics and the
European Society for Pediatric Gastroenterology Hepatology and
Nutrition (ESPGHAN).11,12

Nutritional interventions to prevent ROP include early enhanced
nutrition to increase IGF-1 levels and growth. We will address PN
as well as alternative for enteral nutrition. We will also discuss trials
evaluating parenteral and enteral supplementation with LCPUFAs
and other supplements.

Enhanced nutrition. Several studies have shown a strong
relationship between poor weight gain and ROP.10,13,14 Weight
gain is multifactorial. Immaturity, infections, hypoxic episodes, and
other factors affect nutrient assimilation and utilization and
contribute to low circulating IGF-1 and poor growth. About half
of neonatal growth retardation in preterm infants is estimated to
be related to nutritional intake.15 It can be speculated that
increased amounts of energy, fat, carbohydrates, and protein as
well as improved compositon of provided nutrition might
promote normal retinal growth and vascularization. This may
lead to reduced avascular retinal area and in turn, the resulting
hypoxia known to stimulate abnormal neovascularization.
PN and formulas for preterm infants lack the variety of bioactive

factors normally transferred via the placenta and ingested in
amniotic fluid and breast milk, which vary according to the
developmental stage and needs of the fetus and newborn infant.
Nutritional regimes for very preterm infants over the past two

decades have not eradicated postnatal growth failure. However, in
more recent studies early postnatal weight loss has decreased and
subsequent weight gain has increased.6 Studies on the association
between higher nutrient intake and outcome have mainly
addressed neurodevelopment. Two systematic reviews from
2022 reported that enhanced enteral but not parenteral nutrition
had a positive impact on neurodevelopment.16,17 Unfortunately, in
most studies the two routes of administration are not presented
separately. A longer duration of PN has been associated with
severe ROP.18,19 Inclusion of PN for more than 14 days as a
variable in the algorithm of the DIGI-ROP clinical decision support
tool improved ROP prediction.20,21 Interestingly, an inverse
association between the amount of PN given in the second week
of life and circulating IGF-1 has been reported in infants with GA
between 24 and 32 weeks.22

In a meta-analysis of five studies, with different ROP definitions,
initiation of parenteral lipids (≥ 1.5 g/kg/day within the first 24 h of
birth) showed a favorable effect on ROP compared to lower initial
doses and/or later initiation.23 Very low-quality evidence suggested,
according to a Cochrane review, that higher amino acid intake in
parenteral nutrition reduces ROP, but not severe ROP. It was pointed
out that high amino acid intake may not be tolerated by all
infants.24 In the Extremely Low Gestational Age Newborn (ELGAN)
study of 1180 infants with GA < 28 weeks, total (parenteral and
enteral) intake of calories, lipids, and carbohydrates in the lowest
quartile but not protein on postnatal days 3, 7, 14, and 21 was
associated with increased risk of ROP needing treatment to prevent
blindness. A growth velocity in the lowest quartile was associated
with an increased risk of any ROP.25 In that study the nutritional
goals for protein and fats were reached, whilst those for
carbohydrates and total energy were not.25 Higher energy intake
days 7 to 27 was associated with less ROP but not severe ROP in the
Extremely Preterm Infant in Sweden Study (EXPRESS).26 Whether
infants with the lowest energy intake would tolerate increased
intake and in doing so, reduce their ROP risk is unknown. Can et al.
found that infants on aggressive PN had increased IGF-1 levels from
the third postnatal week and less ROP compared to infants on
conventional nutritional management. However, included infants
were relatively mature with a mean GA of approximately 29 weeks
and therefore at less risk of ROP than ELGANs.27

Oxidative stress is a major risk factor for ROP and shielding
parenteral solutions from light reduces the amount of peroxides

infused.28 No effect of this intervention on ROP was found in a small
study of infants with GA < 37 weeks.29

Maternal and donor human milk and preterm formula: Breast
milk is the preferred nutrition for all infants, especially those born
very preterm.12 Unprocessed MOM contains nutrients and a
variety of multifunctional bioactive factors involved in nutrient
absorption, immune system maturation, antioxidant, and anti-
inflammatory defense, gut microbiome establishment, food
tolerability, and metabolism. However, energy and protein content
is insufficient to sustain growth in very preterm infants, meaning
that fortification is needed. Suboptimal early nutrition affects boys
more than girls with respect to neurodevelopmental outcomes.30

Breast milk content is modified in relation to maternal nutrition
and infant characteristics such as BW, GA, stage of lactation, and
sex, among others.31 The mothers of boys produce milk richer in
energy and lipid content than mothers of girls, indicating a natural
personalized process.32

If sufficient MOM is not available, pasteurized DHM is
recommended.11 DHM differs from MOM, as it usually comes
from mothers of healthy, more mature infants at a different stage
of lactation and can come from a single donor or be pooled from
multiple donors. It contains less protein, energy, and fat than
MOM.33 Exclusive DHM feeding compared to fresh preterm milk
resulted in a lower intake of DHA (10.6 vs. 16.8 mg/d) and ArA
(17.4 vs. 25.2 mg/d) and in lower total fat intake than recom-
mended by the ESPGHAN (3.7 vs. 6.7 g/d).34 In addition, DHM had
higher lipid peroxidation than both preterm and term breast
milk.34 DHM is commonly exposed to multiple freeze–thaw cycles
which affect content. For microbiological safety the milk is heated
to 62.5 °C for 30min (Holder pasteurization), which reduces or
destroys several of the bioactive factors. Other sterilization
methods affect bioactive proteins differently.35 Unprocessed
MOM contains beneficial bacteria and maternal immune cells as
well as a number of various hormones and factors with multiple
physiologic functions, which are destroyed or reduced with
pasteurization. One example is bile salt stimulated lipase, which
is involved in the digestion of fat and inactivated by pasteuriza-
tion. Fat absorption was reduced by approximately one-third in
infants fed pasteurized compared to raw milk.36 Lactoferrin is a
component of the immune system with anti-microbial as well as
anti-inflammatory properties and acts against bacteria, viruses and
fungi. It is found in various secretory fluids and is especially
abundant in human colostrum and raw breast milk and reduced
by approximately 80% with pasteurization.37 In a Cochrane review
of enteral lactoferrin supplementation, some preventive effect on
threshold ROP was found but with low certainty of evidence.38

In comparison with PF, MOM39 but not DHM40 protects against
severe ROP. In a randomized trial in 243 preterm infants (<
30 weeks GA at birth) of DHM versus PF as substitutes for MOM
when supply was insufficient, infants exclusively fed MOM (MOM
group) were compared to infants who received MOM plus DHM
from women who had preterm infants (DHM group) or MOM plus
PF (PF group). All infants received a bovine milk-based fortifier. In
the DHM group, 17% of infants switched to PF due to poor
growth, compared to none of those receiving exclusively MOM.
Proliferative ROP stage 3 was found in 5.6% of the MOM group
compared to 19% in the DHM group and 14% in the PF group,
suggesting a protective effect of MOM against severe ROP.41 In
addition, the quantity of MOM but not DHM or PF correlated
negatively with infection related events such as NEC and late-
onset sepsis.41 Therefore, efforts to promote the provision of MOM
to infants at risk for ROP might be the most important preventive
intervention.

Long chain polyunsaturated fatty acids: LCPUFAs are structural
and functional components of cell membranes. The brain is a
lipid-rich organ. DHA and ArA are the principal, (highly conserved
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LCPUFA) components of brain lipids. ArA is especially enriched in
endothelium and immune system membranes and is essential for
vascularization, growth and other processes during development.
ArA is abundant in the retina and in retinal and choroidal blood
vessels42 and associated with growth and development in animals
and humans, including preterm infants.43 DHA is abundant in
neuronal tissue with the highest concentrations in retinal
photoreceptor outer segments. Both fatty acids are the bases of
a variety of bioactive metabolites involved in a variety of
processes, such as metabolism, inflammation, and angiogenesis.
An optimal balance between Omega-6 and omega-3 LCPUFA is
important for proper function.
During gestation, the placenta selectively transfers certain fatty

acids to the fetus. Among the LCPUFAs, the transfer of ArA and its
omega-6 allies di-homo-gamma-linolenic acid (DHGLA), adrenic
acid and docosapentaenoic acid is the most facilitated. Omega-3
DHA transfer is also favored but to a lesser extent. DHA precursors
including eicosapentaenoic acid (EPA) as well as the ArA precursor
linoleic acid (LA) and oleic acid are rejected by the placenta.44 While
the proportion of ArA in umbilical cord blood fatty acids is constant
and exceedsmaternal values throughout gestation, the level of DHA
increases above maternal levels from around 33 weeks, concomi-
tant with increased lipid accumulation in the central nervous system
and adipose tissue.45 Currently used parenteral soy- or olive- based
lipid solutions have insufficient levels of DHA and ArA, but newer
fish oil containing solutions contain more DHA and EPA although
they were not developed specifically for preterm infants. In breast
milk, DHGLA, ArA and adrenic acid have been found in proportions
almost twice those of EPA and DHA.44 In addition, DHA and ArA
levels in breast milk were linked and higher DHA levels were
associated with higher ArA levels.46

Very preterm infants are born with low LCPUFA reserves and
they accumulate a deficit in ArA and DHA in the neonatal period.47

At term equivalent age ArA and DHA content in adipose tissue,
plasma and erythrocyte membranes is reduced and LA increased
in these infants.48 While much research has focused on
supplementation with omega-3 LCPUFAs to preterm infants, few
studies have addressed the role of ArA in neonatal development.
Scant evidence of this role has resulted in recommendations by
the European Commission without a lower limit for ArA
supplementation to infant formula, which has been questioned
by experts in infant nutrition.49

There is evidence that girls and boys may have different
LCPUFA requirements.44 LCPUFAs are prone to peroxidation and
girls have been reported to have increased antioxidant activity
and less oxidative stress than boys.50

LCPUFA and ROP: Clinical trials supplementing preterm infants
with omega -3 fatty acids or pure DHA to prevent ROP have been
somewhat inconsistent. In a mouse model of ROP, omega-3
LCPUFA supplementation suppressed TNFα and reduced patho-
logic retinal neovascularization.51

Parenteral administration of fish oil rich in omega-3 LCPUFAs
has yielded inconsistent results. In a randomized study, infants
receiving an intravenous fat emulsion containing fish oil had less
ROP requiring laser treatment.52 In a cohort study and in an RCT,
significantly fewer infants in the group that received fish oil
developed any stage ROP.53,54 In extremely preterm infants with a
median parenteral nutrition duration of 8 days no effect of fish oil
on ROP incidence was observed.55 A systematic review and meta-
analysis in 2017 concluded that the use of fish-oil lipid emulsions
may reduce the incidence of severe ROP or the need for laser
therapy in preterm infants.56 However, in 2019 a Cochrane review
found no support for the use of fish oil containing lipid emulsions
compared to non-fish oil emulsions to reduce ROP.57 Enteral DHA
supplementation may reduce severe ROP.58

There is a delicate balance between different fatty acids in the
body, and the provision of one LCPUFA might influence the

concentrations of others, because the metabolic pathways of
omega-3 and omega-6 LCPUFA are competitive. Administering
omega-3 LCPUFAs to extremely preterm infants has resulted in
increased levels of circulating DHA and EPA but also in reduced
ArA levels.55,59 In a trial comparing PN with and without fish oil,
lower serum fractions of ArA were associated with ROP.60

Interestingly, it has been demonstrated in one cohort, that higher
mean daily serum levels of DHA during the first 28 postnatal days
were associated with lower frequency of severe ROP even after
adjustment for known risk factors, but only in those infants with
sufficiently high ArA levels (mean daily minimum level of 7.8 to 8.3
molar percent).61

In the Mega Donna Mega trial, infants with GA < 28 weeks were
randomized to receive enteral ArA (100 mg/kg/d) and DHA
(50mg/kg/d) or no supplementation from within 3 days after
birth until 40 weeks’ PMA. The supplement increased circulating
fractions of both ArA and DHA and reduced severe ROP by 50%
(Fig. 1).62 In a later Norwegian study of infants with GA < 29 weeks,
a similar intervention demonstrated reduced incidence of severe
ROP from 12.7% in the control group to 5.4% in the supplemented
group. This difference was not statistically significant, possibly due
to the low rate of severe ROP in the study population. In the
Norwegian study, supplemented infants had less oxygen demand
and fewer days with respiratory support than controls.63

Therefore, enteral supplementation with both ArA and DHA
appears to be a simple intervention that can prevent ROP. The
optimal dosage has not been determined, though it has been
proposed that the ratio of ArA/DHA should be higher than 2/1,
thus reflecting fetal levels, especially in infants with GA < 29 weeks
since fetal ArA levels are constant throughout gestation while DHA
levels increase from around 33 weeks45,64. In cord plasma, the
ratio of ArA/DHA has been reported to decrease from 4.9 at
24–27 weeks to 2.5 at term.45 ESPGHAN recommends the
provision of 30–65mg/kg/d of DHA if ArA intake is sufficient
and 30–100 mg/kg/d of ArA to preterm infants with BW <1800 g.12

Overall, whether LC-PUFAs affect the incidence or severity of ROP
requires further investigation.

Micronutrients: Vitamin E is a strong antioxidant that has been
studied decades ago for its proposed preventive effect on ROP.
However, trials of vitamin E supplementation in the 1990s were
ended due to reports of adverse events such as necrotizing
enterocolitis, sepsis and intraventricular hemorrhage as reviewed
by Ogihara.65 Few recent studies are available, but in 2021 a
Mexican RCT reported lower levels of oxidative damage markers,
increased antioxidant capacity, and a reduced ROP rate without
adverse effects in infants who were orally supplemented with 25
IU vitamin E compared to placebo.66

Vitamin A downregulated VEGF and reduced neovascularization in
a rat model of ROP.67 Of two recent meta-analyses of studies on
vitamin A supplementation to preterm infants with BW< 1500 g, one
found a preventive effect while the other found no effect on ROP.68,69

Zinc is a trace element involved in growth, immune defense,
and other functions. Very preterm infants start out with a smaller
zinc pool than term babies and zinc content in breast milk may
not be sufficient to match fetal accretion rates. Enteral zinc
supplementation resulted in a non-significant reduction in ROP in
the one study analysed in a Cochrane review.70

The carotenoids lutein and zeaxanthin are antioxidants
transferred to the fetus during the third trimester. Supplementa-
tion of these carotenoids to the mother reduced retinal avascular
area and neovascularization in a mouse model of ROP.71 In
humans, postnatal administration did not reduce threshold ROP
but the progression rate from early stages to threshold ROP was
reduced by 50%.72

Blood glucose management: Transient hyperglycemia, related to
insulin resistance and excessive glucose infusion rates in
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parenteral nutrition, is a common complication of prematurity. It is
associated with increased morbidity and mortality in very preterm
infants, in particular severe ROP, after adjustments for its main risk
factors.73,74 Hyperglycemia also impairs retinal neurovascular
development in neonatal animal models.75,76 The impact of
strategies to avoid or reduce hyperglycemia on preterm birth-
associated morbidity, including ROP, has not been evaluated as a
primary outcome in clinical trials. However, published data
support limiting the frequency and intensity of hyperglycaemic
episodes in very preterm infants, as the combined severity and
duration of hyperglycemia in the first three weeks of life is more
important than the average or maximum value of glycemia in
determining the risk of severe ROP.74 In line with these
observations, the ESPGHAN recommends that hyperglycemia >
8mmol/L (145 mg/dL) should be avoided and that repeated blood
glucose levels >10 mmol/L (180 mg/dL) should be treated with
insulin therapy if a reasonable adjustment of the glucose infusion
rate has been insufficient.77

A recent review and meta-analysis concluded that insulin
therapy may not improve outcomes of very preterm infants with
hyperglycemia78 The gluconeogenesis initiated within the first
days of life in preterm infants on PN is not regulated by either
glucose or insulin.79 Early enteral feeding and early provision of
amino acids have been shown to reduce hyperglycemia in very
preterm infants and may promote growth and possibly reduce
ROP.24,80,81

DISCUSSION
While several risk factors for ROP are linked to nutritional practices,
such as impaired postnatal growth and inadequate nutrient intake
or low plasma IGF levels, few nutritional interventions have
suggested a preventive effect on ROP. When a nutritional
intervention is implemented its effects may differ depending on
whether the subjects treated are deficient, at risk of deficiency, or
not deficient in the targeted nutrient. The definition of deficiency
and standard requirements for many nutrients are poorly known
in very preterm infants and may vary according to factors such as
gestational age, sex, intrauterine growth restriction, or metabolic

stress; this is a barrier to demonstrating the effectiveness of
nutrition interventions. In addition, as ROP, like most complica-
tions of prematurity, is a multifactorial disease, the effectiveness of
nutritional interventions in preventing ROP will depend on the
balance of exposure to its different risk factors within an individual
NICU, and, therefore on management practices, including satura-
tion targets policy, parenteral and enteral nutrition protocols,
availability of lipid emulsions, glycaemic management or transfu-
sion policy.
The reason for parenteral nutrition as a risk factor for ROP is

currently unknown but may be linked to inadequate composition
of nutrients, lack of proper enteral stimulation and of initial
hepatic passage.
The most important nutritional intervention to reduce ROP is to

encourage and support the provision of MOM. The establishment
of optimal milk production after extremely preterm birth is
challenging and milk production is often delayed. Prenatal
information about MOM as “a medicine” for preterm infants and
its dose-dependent positive effects on the infant may help to
motivate mothers to initiate lactation.82 In the NICU, proper
lactation support with early initiation of breast milk pumping,
frequent pumping and kangaroo care may help to establish
lactation.
Since very preterm infants miss the third trimester transfer of

LCPUFAs, micronutrients, and other factors from the mother,
supplementation to correct or prevent deficiencies may reduce
ROP and other morbidities. For the newborn, ArA and other
omega-6 fatty acids are essential drivers of organogenesis, growth,
and development, and the importance of a proper ArA/DHA
balance has become increasingly recognized.44 The ArA needs of
preterm infants are not well known and at present doses of
30–100mg/kg/d per day of ArA and 30–65mg/kg/d of DHA are
recommended.12 The commonly used parenteral lipid emulsion
Clinoleic® contains insufficient amounts of ArA and DHA.83 In the
Mega Donna Mega trial, enteral administration of an additional
100mg/kg/d of ArA and 50mg/kg/d DHA reduced severe ROP by
50%, which makes it a promising, easily administered nutritional
intervention to prevent ROP.52 In future studies, different doses
may be tested. The ArA/DHA ratio in umbilical cord blood
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decreases from 24–27 weeks to term since the transfer of DHA via
the placenta increases in the third trimester.45 Boys and girls
appear to have different needs and react differently to nutrition in
general and also with regard to LCPUFA supplementation.84–86

The potential impact of adjustments of doses and exposures in
relation to PMA and sex needs further study.

CONCLUSIONS
For the newborn preterm infant, the most important nutritional
intervention is early enteral feeding of MOM, which appears to
have a dose-dependent protective effect of ROP and other
morbidities. Significant support is needed to help mothers of
extremely preterm infants to initiate and sustain lactation.
Optimizing lipids and amino acids in parenteral nutrition may
have a beneficial effect on ROP. Supplementation with enteral ArA
and DHA from birth to 40 weeks has the capacity to significantly
reduce severe ROP.
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