Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Basic Science Article
  • Published:

Modelling the impact of liver regeneration on hepatoblastoma patient-derived-xenograft tumor growth

Abstract

Background

Twenty percent of children with hepatoblastoma (HB) have lung metastasis at diagnosis. Treatment protocols recommend surgical removal of chemotherapy-refractory lung nodules, however no chronological order is established. As hepatectomy is followed by release of growth factors, it has been proposed that partial hepatectomy (PH) could boost local or distant residual tumor growth.

Methods

To evaluate the impact of PH on distant tumor growth, PH was performed in mice subcutaneously implanted with a HB patient-derived xenograft (PDX). The influence of PH on tumor growth at primary site was assessed by performing PH concomitantly to HB PDXs orthotopic implantation.

Results

Subcutaneously implanted HB PDX failed to show any influence of hepatectomy on tumor growth. Instead, intrahepatic tumor growth of one of the 4 HB PDXs implanted orthotopically was clearly enhanced. Cells derived from the hepatectomy-sensitive HB PDX exposed to hepatic growth factor (HGF) showed increased proliferation rate compared to cells derived from a hepatectomy-insensitive model, suggesting that the HGF/MET pathway could be one of the effectors of the crosstalk between liver regeneration and HB growth.

Conclusion

These results suggest that hepatectomy can contribute to HB growth in some patients, further studies will be necessary to identify biomarkers predictive of patient risk of PH-induced HB recurrence.

Impact

  • Key message: Cytokines and growth factors secreted following partial hepatectomy can contribute to intrahepatic tumor growth in some hepatoblastoma models.

  • What does it add to the existing literature: It is the first article about the impact of liver regeneration induced by partial hepatectomy on hepatoblastoma local or distant tumoral growth in nude mice.

  • What is the impact: It is important to identify the secreted factors that enhance tumor growth and to define biomarkers predictive of patient risk of partial hepatectomy-induced hepatoblastoma recurrence.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Impact of hepatectomy on HB-217 PDX extrahepatic growth.
Fig. 2: Impact of hepatectomy on HB-217 PDX extrahepatic tumor growth following chemotherapy.
Fig. 3: Orthotopic and subcutaneous HB PDXs retain histological features of their parental tumors.
Fig. 4: Impact of liver regeneration on HB-217 and HB-284 PDX intrahepatic tumor growth.
Fig. 5: Impact of liver regeneration on HB-214 and HB-243 PDXs intrahepatic tumor growth.
Fig. 6: Evaluation of HGF impact on cell growth from a PH-sensitive vs PH-insensitive tumor cells.

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Aronson, D. C., Czauderna, P., Maibach, R., Perilongo, G., Morland, B. The treatment of hepatoblastoma: its evolution and the current status as per the SIOPEL trials. J. Indian Assoc. Pediatr. Surg. 19, 201–207 (2014).

  2. Spector, L. G. & Birch, J. The epidemiology of hepatoblastoma. Pediatr. Blood Cancer 59, 776–779 (2012).

    Article  PubMed  Google Scholar 

  3. Weinberg, A. G. & Finegold, M. J. Primary hepatic tumors of childhood. Hum. Pathol. 14, 512–537 (1983).

    Article  CAS  PubMed  Google Scholar 

  4. López-Terrada, D. et al. Towards an international pediatric liver tumor consensus classification: proceedings of the Los Angeles COG liver tumors symposium. Mod. Pathol. 27, 472–491 (2014).

    Article  PubMed  Google Scholar 

  5. Cairo, S. et al. Hepatic stem-like phenotype and interplay of Wnt/β-Catenin and Myc signaling in aggressive childhood liver cancer. Cancer Cell 14, 471–484 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Czauderna, P. et al. Hepatoblastoma state of the art: pathology, genetics, risk stratification, and chemotherapy. Curr. Opin. Pediatr. 26, 19–28 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Evans, A. E. et al. Combination chemotherapy (vincristine, adriamycin, cyclophosphamide, and 5-fluorouracil) in the treatment of children with malignant hepatoma. Cancer 50, 821–826 (1982).

    Article  CAS  PubMed  Google Scholar 

  8. Weinblatt, M. E., Siegel, S. E., Siegel, M. M., Stanley, P. & Weitzman, J. J. Preoperative chemotherapy for unresectable primary hepatic malignancies in children. Cancer 50, 1061–1064 (1982).

    Article  CAS  PubMed  Google Scholar 

  9. Ninane, J. et al. Effectiveness and toxicity of cisplatin and doxorubicin (PLADO) in childhood hepatoblastoma and hepatocellular carcinoma: a siop pilot study. Med. Pediatr. Oncol. 19, 199–203 (1991).

    Article  CAS  PubMed  Google Scholar 

  10. Ortega, J. A. et al. Effective treatment of unresectable or metastatic hepatoblastoma with cisplatin and continuous infusion doxorubicin chemotherapy: a report from the Childrens Cancer Study Group. J. Clin. Oncol. 9, 2167–2176 (1991).

    Article  CAS  PubMed  Google Scholar 

  11. Douglass, E. C., Reynolds, M., Finegold, M., Cantor, A. B. & Glicksman, A. Cisplatin, vincristine, and fluorouracil therapy for hepatoblastoma: a Pediatric Oncology Group study. J. Clin. Oncol. 11, 96–99 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. Fuchs, J., Seitz, G., Handgretinger, R., Schäfer, J. & Warmann, S. W. Surgical treatment of lung metastases in patients with embryonal pediatric solid tumors: an update. Semin. Pediatr. Surg. 21, 79–87 (2012).

    Article  PubMed  Google Scholar 

  13. Häcker, F. M., Von Schweinitz, D. & Gambazzi, F. The relevance of surgical therapy for bilateral and/or multiple pulmonary metastases in children. Eur. J. Pediatr. Surg. 17, 84–89 (2007).

    Article  PubMed  Google Scholar 

  14. Meyers, R. L. et al. Surgical resection of pulmonary metastatic lesions in children with hepatoblastoma. J. Pediatr. Surg. 42, 2050–2056 (2007).

    Article  PubMed  Google Scholar 

  15. Urla, C. et al. Simultaneous resection of high-risk liver tumors and pulmonary metastases in children. Ann. Surg. 262, e1–e3 (2015).

    Article  PubMed  Google Scholar 

  16. Exelby, P. R., Filler, R. M. & Grosfeld, J. L. Liver tumors in children in the particular reference to hepatoblastoma and hepatocellular carcinoma: American academy of pediatrics surgical section survey — 1974. J. Pediatr. Surg. 10, 329–337 (1975).

    Article  CAS  PubMed  Google Scholar 

  17. Shamberger, R. C., Leichtner, A. M., Jonas, M. M. & LaQuaglia, M. P. Long-term hepatic regeneration and function in infants and children following liver resection. J. Am. Coll. Surg. 182, 515–519 (1996).

    CAS  PubMed  Google Scholar 

  18. Lim, C. et al. Tumour progression and liver regeneration–insights from animal models. Nat. Rev. Gastroenterol. Hepatol. 10, 452–462 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Panis, Y., Ribeiro, J., Chrétien, Y. & Nordlinger, B. Dormant liver metastases: an experimental study. Br. J. Surg. 79, 221–223 (1992).

    Article  CAS  PubMed  Google Scholar 

  20. Slooter, G. D., Marquet, R. L., Jeekel, J. & Ijzermans, J. N. M. Tumour growth stimulation after partial hepatectomy can be reduced by treatment with tumour necrosis factor α. Br. J. Surg. 82, 129–132 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. de Jong, K. P. et al. The effect of partial hepatectomy on tumor growth in rats: In vivo and in vitro studies. Hepatology 22, 1263–1272 (1995).

    Article  PubMed  Google Scholar 

  22. Rashidi, B. et al. Minimal liver resection strongly stimulates the growth of human colon cancer in the liver of nude mice. Clin. Exp. Metastasis 17, 497–500 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Harun, N., Nikfarjam, M., Muralidharan, V. & Christophi, C. Liver regeneration stimulates tumor metastases. J. Surg. Res. 138, 284–290 (2007).

    Article  PubMed  Google Scholar 

  24. Momiyama, M. et al. Major liver resection stimulates stromal recruitment and metastasis compared with repeated minor resection. J. Surg. Res. 178, 280–287 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  25. von Schweinitz, D., Fuchs, J., Glüer, S. & Pietsch, T. The occurrence of liver growth factor in hepatoblastoma. Eur. J. Pediatr. Surg. 8, 133–136 (1998).

    Article  Google Scholar 

  26. Shi, J. H. & Line, P. M. Effect of liver regeneration on malignant hepatic tumors. World J. Gastroenterol. 20, 16167–16177 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nicolle, D. et al. Patient-derived mouse xenografts from pediatric liver cancer predict tumor recurrence and advise clinical management. Hepatology 64, 1121–1135 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. Kats, D. et al. Volasertib preclinical activity in high-risk hepatoblastoma. Oncotarget 10, 6403–6417 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Eloranta, K. et al. Chloroquine triggers cell death and inhibits PARPs in cell models of aggressive hepatoblastoma. Front. Oncol. 10, 1138 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Michalopoulos, G. K. Liver regeneration. J. Cell Physiol. 213, 286–300 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. von Schweinitz, D. et al. Hepatocyte growth factor- scatter factor can stimulate post-operative tumor-cell proliferation in childhood hepatoblastoma. Int. J. Cancer 85, 151–159 (2000).

    Article  Google Scholar 

  32. Vidal, I. & Richert, L. The nude mouse as model for liver deficiency study and treatment and xenotransplantation. Int. J. Hepatol. 2012, 140147 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Paschkis, K. E., Cantarow, A., Stasney, J. & Hobbs, J. H. Tumor growth in partially hepatectomized rats. Cancer Res. 15, 579 (1955).

    CAS  PubMed  Google Scholar 

  34. Schindel, D. T. & Grosfeld, J. L. Hepatic resection enhances growth of residual intrahepatic and subcutaneous hepatoma, which is inhibited by octreotide. J. Pediatr. Surg. 32, 995–997 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Gutman, M., Singh, R. K., Price, J. E., Fan, D. & Fidler, I. J. Accelerated growth of human colon cancer cells in nude mice undergoing liver regeneration. Invasion Metastasis 14, 362–371 (1994).

    PubMed  Google Scholar 

  36. Schnater, J. M. et al. Subcutaneous and intrahepatic growth of human hepatoblastoma in immunodeficient mice. J. Hepatol. 45, 377–386 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Ellerkamp, V. et al. Successful establishment of an orthotopic hepatoblastoma in vivo model in NOD/LtSz-scid IL2Rγnull mice. PLoS One 6, e23419 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chen, X. & Calvisi, D. F. Hydrodynamic transfection for generation of novel mouse models for liver cancer research. Am. J. Pathol. 184, 912–923 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Armengol, C. et al. Orthotopic implantation of human hepatocellular carcinoma in mice. Clin. Cancer Res. 10, 2150 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Bissig-Choisat, B. et al. Novel patient-derived xenograft and cell line models for therapeutic testing of pediatric liver cancer. J. Hepatol. 65, 325–333 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to all the technicians from XenTech’s in vivo facility for their contribution in the study.

Funding

The study was supported and financed by XenTech; M.C. received a fellowship from SFCP (Societé Française de Chirurgie Pédiatrique).

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: M.C., S.C. and S.B. Acquisition of data: M.C., L.B.S., V.B., C.M., C.G. Analysis and interpretation of data: M.C., L.B.S., O.D., C.M., C.G., M.F. Revising the article: T.T., M.P., J.G.J. Final approval of the version to be published: M.C., S.C. and S.B. All authors have read and agreed to the published version of the manuscript.”

Corresponding authors

Correspondence to Marianna Cornet or Stefano Cairo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cornet, M., Brulle-Soumare, L., Bisio, V. et al. Modelling the impact of liver regeneration on hepatoblastoma patient-derived-xenograft tumor growth. Pediatr Res (2024). https://doi.org/10.1038/s41390-024-03020-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41390-024-03020-x

Search

Quick links