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BACKGROUND: Early identification of children at risk of asthma can have significant clinical implications for effective intervention
and treatment. This study aims to disentangle the relative timing and importance of early markers of asthma.
METHODS: Using the CHILD Cohort Study, 132 variables measured in 1754 multi-ethnic children were included in the analysis for
asthma prediction. Data up to 4 years of age was used in multiple machine learning models to predict physician-diagnosed asthma
at age 5 years. Both predictive performance and variable importance was assessed in these models.
RESULTS: Early-life data (≤1 year) has limited predictive ability for physician-diagnosed asthma at age 5 years (area under the
precision-recall curve (AUPRC) < 0.35). The earliest reliable prediction of asthma is achieved at age 3 years, (area under the receiver-
operator curve (AUROC) > 0.90) and (AUPRC > 0.80). Maternal asthma, antibiotic exposure, and lower respiratory tract infections
remained highly predictive throughout childhood. Wheezing status and atopy are the most important predictors of early childhood
asthma from among the factors included in this study.
CONCLUSIONS: Childhood asthma is predictable from non-biological measurements from the age of 3 years, primarily using
parental asthma and patient history of wheezing, atopy, antibiotic exposure, and lower respiratory tract infections.
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IMPACT:

● Machine learning models can predict physician-diagnosed asthma in early childhood (AUROC > 0.90 and AUPRC > 0.80) using
≥3 years of non-biological and non-genetic information, whereas prediction with the same patient information available before
1 year of age is challenging.

● Wheezing, atopy, antibiotic exposure, lower respiratory tract infections, and the child’s mother having asthma were the
strongest early markers of 5-year asthma diagnosis, suggesting an opportunity for earlier diagnosis and intervention and
focused assessment of patients at risk for asthma, with an evolving risk stratification over time.

INTRODUCTION
Asthma is a prevalent chronic disease in children, affecting
approximately 4.1 million children worldwide,1 with no cure
currently available. Currently, the lack of accurate tools to predict
which children are at risk of developing lifelong asthma presents a
significant challenge in the management of childhood asthma.
Precise detection of persistent childhood asthma before 5 years of
age is difficult, leading to both over-treatment and under-
treatment of preschool children.2 Therefore, a clinically adaptable
predictive tool for estimating a child’s risk of developing asthma

by school age could prove invaluable to children susceptible to
asthma and physicians providing early asthma care for preschool
children. Such a tool would help identify high-risk children early
on and provide appropriate interventions, avoiding unnecessary
treatment while ensuring that high-risk children receive early and
effective treatment to prevent or manage their symptoms.
In recent years, machine learning (ML) approaches have gained

popularity in healthcare research due to their ability to integrate
heterogeneous data, handle complex interactions between
variables, and identify patterns from large datasets. Compared
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to traditional regression-based approaches, ML models have the
potential to identify predictors that may have been overlooked
and capture nonlinear and complex interactions between
variables, particularly for disease prediction.3–5

In the context of asthma, previous studies have applied ML
methods to predict asthma diagnosis or identify different
subtypes of asthma, known as endotypes. These studies have
shown promising results, demonstrating the potential of ML
models in predicting asthma. For instance, a Support Vector
Machine (SVM) model was used to predict asthma at age 10 years
by age 4 years (AUROC of 0.82) and differentiate between allergic
and non-allergic asthma (AUROC of 0.79).6,7

However, the studies mentioned above had limitations such as
small sample sizes and a lack of ethnic diversity among study
populations, which restricted the generalizability of their findings
to larger populations. Despite these limitations, the potential of
ML in predicting on-going childhood asthma diagnosis and
identifying endotypes suggests a pressing need for developing a
clinically adaptable predictive tool for childhood asthma that can
provide appropriate interventions for high-risk children.
To address this gap, we utilized the CHILD Study, a longitudinal

study conducted across four Canadian provinces, to predict
childhood asthma in a large, multi-ethnic population. Our study
collected data on family medical history, early-life clinical and
environmental factors for children up to 4 years of age, and
leveraged five different types of ML models and two sets of
ensemble algorithms to predict asthma diagnosis at 5 years of
age. Our primary objective was to identify the earliest time point
for accurate asthma prediction and to determine the relative
importance of each predictor over time, thereby laying the
foundation for the development of a clinically applicable asthma
prediction tool that can aid in clinical identification and treatment
of high-risk children.

METHODS
Study design
This study utilized data from the CHILD Cohort Study, one of the largest
ongoing longitudinal birth cohort studies in Canada that gathered data on
asthma and allergy research from mid-pregnancy through childhood. The

study recruited pregnant women from multiple sites across four Canadian
provinces between 2008 and 2012.8,9 The study was approved centrally by
the Hamilton Integrated Research Ethics Board (HiREB #07-2929).
For this study, only children with complete CHILD questionnaires and

physician-diagnosed asthma outcomes from clinical visits at age 5 years
were included. The dataset was then stratified by asthma status and
randomly split into two subsets: a training dataset (85%) used for training
and tuning ML models, and a holdout dataset (15%) for assessing the
models’ performance. The training dataset comprised data from 1484
children, including 1395 non-asthmatic and 89 asthmatic children, while
the holdout dataset comprised data from 270 children, with 250 non-
asthmatic and 20 asthmatic children. The test set was then set aside while
the training set was exclusively used for model tuning and feature
selection.
To identify the best ML algorithms for predicting childhood asthma, the

study compared the predictive performance of five different models:
Logistic Regression, Random Forest, eXtreme Gradient Boost, Decision
Tree, and Support Vector Machine. Hyperparameters for each algorithm
were tuned using a grid search space for asthmatic data, with threefold
cross-validation used for both feature selection and model tuning. After
tuning each algorithm with the training dataset, two sets of ensemble
methods (voting and stacking algorithms) were generated to determine if
combining individual models could improve predictive performance. Last,
the final models were applied to the test set to assess their generalization
in previously unseen data. The ML workflow is illustrated in Fig. 1.

Variable inclusion
We used 132 variables from six time points (birth, 6 months, 1 year, 2 years,
3 years, and 4 years) as input for each ML algorithm to predict physician-
diagnosed asthma at the 5-year clinic visit. All available longitudinal data
with <10% missing observations are included in the model to perform
feature selection and longitudinal investigation. Data such as gut
microbiome, breastfeeding microbiome, and dust phthalate, were left
out of the current study due to low sample sizes in these sets (n < 1000),
relative to the full dataset (n > 1500). The data included for modeling
reflected three aspects of the birth cohort: parental information (e.g.,
maternal and paternal diagnosed asthma, parental allergies, maternal
psychological health), children’s clinical information (e.g., anthropometrics,
mode of delivery, sex, gestational age, atopy, wheezing status, respiratory
infection history), and environmental information (e.g., home environment,
breastfeeding history, antibiotic exposure). Supplement Table 1 provides
more details on the variables together with the definitions for both
outcome and variables used in the study.

CHILD cohort
dataset

Domain-based data
curation & split

Machine learning model development

Feature engineering

Standardization

Post hoc analysis

(Holdout Dataset)

(Train & Evalulation
Dataset)

Transformation &
standardization

Robustness evalulation
(bootstrap)

Scoring (ROC AUC
Average Precision)

Algorithmic
feature selection

Gridsearch
hyperparameter

optimization

Stratified threefolds CV

Model performance

Model training

Fig. 1 ML workflow diagram. All data were obtained from the CHILD Cohort Study. After the collected data was curated, the complete
dataset was split into two subsets: (1) Training & Evaluation Dataset and (2) Holdout Dataset. ML models were developed using the training &
evaluation dataset. We identified the optimal feature engineering type using trial and error observation. We used the minimal and maximal
scaling technique for the standardization of all the input data for the comparability of features. A stratified K-fold cross-validation (K= 3 in our
study) was applied for the processes of algorithmic feature selection and model hyperparameter optimization. After the features and
hyperparameters were identified, we used the developed models to observe its performance on the holdout dataset. Thereafter, a bootstrap
technique was adopted to observe the range of scoring of model predictive power. Finally, we performed a post hoc analysis on the features’
importance at different time points.
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Preprocessing
To prepare the dataset for use with ML algorithms, a series of
preprocessing steps were taken, as illustrated in Supplement Fig. 1.
Different feature engineering schemes were applied to highlight the
importance of each feature, including converting continuous scores into
categorical data by binning them into different bands and labeling them
based on existing literature (such as Apgar scoring and PSS/CES-D
scoring),10–12 log-transforming highly dispersed data (e.g., hospital stay
duration after birth), and splitting categorical features into several binary
features to assess their impact (e.g., mode of delivery). To impute missing
values, we used a MissForest (based on random forest)13 imputer for
correlated features (e.g., weight for age), and the median values were
used for uncorrelated values (e.g., number of pregnancies before
delivery). For categorical features, the most frequent values were applied
to fill in missing values. Highly correlated features with a correlation
coefficient of 0.98 or higher were removed to avoid the effects of
multicollinearity. Finally, a minimal-maximal scaler was applied to all
features to enable feature comparison and interpretation of their
importance.

Feature selection
In view of the high dimensionality, complexity, and collinearity of our
dataset, we employed Sequential Feature Floating Selection (SFFS),14 an
algorithmic feature selection technique, to identify the subset of features
that provided the best model performance by sequentially scanning
each input variable for predicting asthma and selecting the appropriate
subset of features for model building. To investigate the longitudinal
importance of each feature in predicting age 5-year asthma, we grouped
all input variables at each time point, and at each time point, SFFS
was used to identify the optimal subset of features for each type of
ML algorithm used in the study. This feature selection process was
conducted in a time-sequential, cumulative manner, where the
previously optimally selected subset of features, combined with the
newly available variables at the next time point, were used as the input
feature set for feature selection at the next time point. During the feature
selection process, we employed a stratified threefold cross-validation
within the training set to assess the averaged model performance given
each selected subset of features.

Model performance evaluation
The area under the receiver-operating characteristic curve (AUROC) is a
widely used metric to evaluate the performance of ML models.6,7 However,
when dealing with imbalanced datasets, studies have shown that the
precision-recall curve provides a more informative measure of perfor-
mance. The area under the precision-recall curve (AUPRC) can be utilized
as a summary statistic to evaluate the performance of models on
imbalanced datasets. In this study, we used both AUROC and AUPRC to
evaluate the predictive performance of each model on the holdout
dataset. The holdout dataset was identical for all tests, ensuring that the
class imbalance was consistent, allowing for a direct comparison of AUROC
and AUPRC values between models and time points.

Model robustness estimation
To evaluate the reliability of our model performance metrics, we employed
a bootstrap method to calculate the 95% confidence interval for each
performance measure and ML algorithm employed. We accomplished this
by repeatedly resampling our model results 30 times with replacement,
utilizing these samples to determine the 2.5th and 97.5th percentile values.
We then employed these values as the lower- and upper-confidence
bounds, respectively, for the 95% confidence interval.

Ensemble modeling
Our study also explored the efficacy of two different sets of ensemble
algorithms to enhance the predictive performance of the distinctive
individual models.15 One set consists of voting classifiers, which utilize
averaged or weighted probabilities obtained from the individual models to
arrive at the final prediction of the ensemble model. The voting technique
is aimed at leveraging the collective intelligence of the individual models.
The other set is referred to as stacking classifiers, where the predictions of
all the individual models serve as new features for a final estimator or
meta-estimator. This approach allows us to exploit the strengths of each
individual estimator in a non-linear manner.

RESULTS
Longitudinal model performance across early
childhood stages
In this study, the predictive performance of five distinct types of
ML models was tested using recursively selected variables at six
different time points (birth, 6 months, 1 year, 2 years, 3 years, and
4 years), as illustrated in Fig. 2a. The performance of each trained
model was assessed using the AUROC and AUPRC metrics, with
bootstrapped 95% confidence intervals.
In general, as shown in Fig. 2a, b, both individual and ensemble

models exhibited a consistent improvement in performance from
early life to 4 years of age. Nonetheless, there was a noticeable
decline in performance between birth and 6 months for certain
models such as SVM and Decision Tree. This drop in performance,
along with the generally poor performance during this period,
suggested a considerable degree of uncertainty in predicting
asthma during the first year of life. The most significant increase in
model predictive power was observed between 2 years and 3
years of age, coinciding with the inclusion of new observation of
variables at 3 years of age. At 4 years of age, the predictive power
of all models appeared to remain at the same level as that
observed at 3 years of age, with a slight decrease in AUPRC for
certain models (Logistic Regression and SVM).
Most individual ML models had AUROC scores below 0.75 when

using features from before 1 year of age. Performance improved
to around 0.80 AUROC with new observations at 2 years of age,
and was further enhanced to over 0.90 with the inclusion of new
features available at 3 and 4 years of age. The highest AUROC
score of 0.99 was achieved at age 4 (Fig. 2a, b). Similarly, AUPRC
scores followed a similar pattern, increasing from <0.25 at <1 year
of age to >0.8 at 3 and 4 years of age, with the highest AUPRC
score of 0.91.
In addition to longitudinal differences, the predictive perfor-

mance of each type of ML algorithm was assessed. Logistic
regression, Random Forest, and SVM achieved their highest
predictive power at age 3 years and remained highly predictive
at age 4, with SVM even reaching 0.92 AUROC as early as age 2
years. In contrast, Decision Tree models performed the poorest
and showed high instability (as seen in Fig. 2a). All ML models,
except for Decision Tree models, demonstrated narrower con-
fidence intervals when developed with data up to 3 and 4 years of
age, indicating a stronger association between features available
at 3 years of age and beyond with asthma diagnosis at age
5 years.
Our adopted ensemble models exhibited a consistent trend in

performance over time, with the best performance obtained using
features available at 4 years of age for soft-weighted voting
algorithms, as illustrated in Fig. 2a, b. Notably, the predictive
power of the ensemble models was comparable to that of the
individual models. The voting-based ensemble algorithms with 3-
and 4-year features demonstrated exceptional performance,
achieving AUROCs of 0.98 and 0.99, respectively, with narrower
confidence intervals. These models emerged as the best-
performing in all our analyses. In contrast, stacking algorithms
showed similar or lower performance than the individual models,
with decision tree as the mega-estimator exhibiting the lowest
and most unstable predictive power.

Longitudinal feature importance across early
childhood stages
To identify the features with the greatest impact on predicting
asthma diagnosis at age 5 years, we computed feature importance
at each time point using all the ML models trained on the training
dataset. We derived feature importance by combining the linear
model coefficients, mean decrease in impurity from the tree-based
models, and permutation importance for SVM. We then ranked
the features based on their overall contributions to our models.
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Our analysis revealed that the top predictors for 5-year asthma
diagnosis at birth were parental asthma (maternal or paternal),
gestational age, and maternal psychological status during
pregnancy (Fig. 3). Other influential features included parental
ethnicity (Supplemental Table 2), sex, birth weight, and jaundice.
However, many of these features lost importance as data from
later time points were included, suggesting they may be proxies
for later features or less predictive than features at later time
points for 5-year asthma prediction.
At 6 months, children’s wheezing status, particularly cumulative

wheezing and wheezing in the absence of a cold, became the

most important predictor for 5-year asthma diagnosis. Maternal
psychological wellbeing, gestational age, and exclusive breast-
feeding at 6 months continued to have a significant effect, while
the presence of smoke at home had a negative influence.
By 1 year of age, the child’s atopic status, lower respiratory tract

infections, and antibiotic exposures became highly important
predictors of asthma diagnosis at age 5 years, along with
wheezing status. Parental ethnicity, sex, birth weight, and
breastfeeding lost their importance. However, models from birth
to 1 year had poor predictive performance (AUROC ≤ 0.8 and
AUPRC ≤ 0.35).
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Fig. 2 ML model performance for asthma prediction at age 5 years in the CHILD Cohort. a Five types of individual ML model predictive
performance across six different time points for 5-year physician-diagnosed asthma in the CHILD Cohort. The orange line represents the
model performance metric area under receiver operating curve (AUROC), whereas the blue line represents the area under precision recall
curve (AUPRC) for the model developed at different time points. The shaded band at each time point represents the 95% confidence interval
for the corresponding metrics calculated from 30 iterations of bootstrapped training samples. b Ensemble model predictive performance
along different time points. The “Soft” in Soft Vote and Soft Weighted means the voting algorithms are ensemble algorithms based on
predicted probability outcome rather than binary outcome from individual models. The “LR,” “RF,” “XGB,” “DT,” and “SVM” following the
“Stacking” in the naming suggests the final estimator used for the stacking ensemble algorithms. They are Logistic Regression, Random
Forest, eXtreme Gradient Boost, Decision Tree, and Support Vector Machine, respectively.
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At 2 years of age, the most recent wheezing status was the most
important predictor, and atopy, respiratory infections, antibiotic
exposure, maternal asthma, and gestational days remained
significant. Most models had a higher performance (AUROC >
0.80 and AUPRC > 0.40) compared to models from birth to 1 year.

Including data up to age 3 years, wheezing status and atopy at
3 years (wheezing status in the 3-year clinic visit and recurrent
wheeze at 36 months of age) were highly predictive for asthma
diagnosis at age 5 years, producing the best performing models
with AUROC ≥ 0.90 and AUPRC ≥ 0.80. Respiratory infection
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Rlfrequency earlier 12m

Number of antibiotics course 12m

Antibiotics usage 12m

Recurrent wheeze 1y

Wheeze 1yCLA

Crackles 1yCLA

Epi noncold wheeze 1y

Wheeze 2yh

Cumulative wheeze 18m

Epi noncold wheeze 2y

Cumulative wheeze 24m

Wheeze 2y

Wheeze 18m

Epi noncold wheeze 18m

Noncold wheeze 2y

PSS 18m high stress

CESD 24m low depression

Wheeze 3yCLA

Cumulative wheeze 36m

Recurrent wheeze 3y

Child atopy 3y

Rlseverity later 36m

Child food 3y

Cumulative wheeze 30m

Pulse rate 3yCLA

Noncold wheeze 2hy

Epi noncold wheeze 4y

Cumulative wheeze 48m

Wheeze 4y

Weight for age 3m

Noncold wheeze 3m

PSS 36week moderate stress

F10min mask ventilation
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history, antibiotic exposure, and maternal asthma also continued
to have an impact. At age 4 years, wheezing status and atopy
remained very important, along with antibiotic exposure and
respiratory infections.
When we compared feature importance across the 4-year

period, we found that several early-life factors, including birth
weight, sex, and ethnicity, lost their predictive importance as data
from later time points were included. In contrast, certain factors,
such as maternal asthma, non-cold wheezing history, lower
respiratory tract infections, and antibiotic exposures, demon-
strated consistent and meaningful contributions to asthma
prediction across time. These findings suggest that a longitudinal
approach to modeling asthma risk is crucial, as certain risk factors
may not be as informative in isolation or at a single time point.
Additionally, our results highlight the importance of considering
both genetic and environmental factors in predicting asthma risk,
as maternal asthma and early-life respiratory infections and
antibiotic exposures consistently emerged as key predictors in
our analyses.

DISCUSSION
Childhood asthma is a chronic respiratory disease that often
persists throughout an individual’s lifetime, imposing a significant
burden on both patients and healthcare systems. Despite
numerous treatment options, there are currently no curative
therapies available for asthma, and patients often require ongoing
treatment to manage their symptoms and prevent exacerbations.
As such, early identification of children at risk of developing
asthma is of utmost importance, as this will enhance early
prognostication of patients for families. Identifying children at risk
of asthma in early childhood may therefore reduce family
uncertainty and potentially improve long-term outcomes for
patients and their families.

Identification of early-life pediatric asthma using ML
ML has emerged as a promising tool in various medical settings,
owing to its ability to capture complex and non-linear relationships
among multiple predictors and their synergistic effects on the target
variable. The highly heterogeneous nature of asthma outcomes,
which result from the interplay of genetic, environmental, and
clinical factors, makes it a prime candidate for ML prediction models.
While several studies have utilized ML to predict various clinical
outcomes of pediatric asthma, including hospitalization, exacerba-
tion, response to treatment, and remission,16 research on the early
identification of pediatric asthma through ML predictive modeling
using as extensive predictors over time remains scarce.17 Conse-
quently, there is a pressing need for further exploration of ML’s
potential in predicting early-life asthma risk, which could aid in
timely and personalized prognosis by distinguishing between those
most likely to have transient vs. persistent symptoms. These findings
are consistent with previous studies that have highlighted the value
of ML in medical decision-making.4,16,17

By leveraging the CHILD study cohort, we have identified a
short list of salient features and ML models that offer promising
prospects for identifying children at high risk of asthma. Analysis
of these features across different time points has revealed that

early-life asthma diagnosis risk prediction is feasible but challen-
ging before 1 year of age. However, accurate asthma diagnosis
prediction at the age of 5 years is achievable with high sensitivity,
specificity, and precision (AUROC > 0.9, AUPRC > 0.8) when clinical
information on parental asthma, wheezing, atopy, respiratory
infections, and antibiotics usage is available at age 3 years.

Identification of important predictors for pediatric asthma
Our ML models demonstrate the significance of a short list of
established predictors of asthma and are highly consistent with
previous research on risk and protective factors while demonstrat-
ing the limited predictive benefit of other correlated factors.18–28

Among the features that our models identified as most
important for predicting asthma were wheezing status, atopic
status, parental asthma, history of respiratory infection, and
antibiotics usage. Parental (primarily maternal) asthma emerged
as the earliest and most consistent predictor of asthma diagnosis
at age 5 years in our models, in agreement with established
research.18,19

While our models revealed an association between maternal
psychological stress and childhood asthma, in agreement with
previous research,20,21 this relationship appeared to be limited to
the first year of life. Our findings support the notion that early
antibiotic exposure is associated with an increased risk of
childhood asthma,8,22 and suggest that strategies to mitigate
the impacts of antibiotics may be useful. In addition, our models
showed that lower respiratory tract illness in early childhood
increases the risk of developing asthma, in agreement with
previous studies linking early, lower respiratory illness and later-
life asthma.23,24 Finally, our models supported the protective effect
of exclusive breastfeeding and longer gestational age, consistent
with previous researches.25–28

Strengths
Our study boasts several notable strengths, including its long-
itudinal design, which enables investigation through data
collected at multiple time points with short intervals. Specifically,
we tracked participants from birth up to four years of age to
predict physician-diagnosed asthma at the 5-year mark. By
collecting data at various time points, we were able to uncover
the relative importance of putative predictors across these time
intervals, as well as identify trends in asthma predictive capacity
using multiple ML algorithms, both individual and ensemble.
Additionally, our study adopted an agnostic approach to

evaluate the importance of all 132 variables without any manual
intervention during the feature selection process. This approach
was facilitated through ML algorithm discovery, which allowed for
the automatic identification of important variables without any
prior bias or preconceptions. Notably, this methodology achieved
high consistency with established factors for impacting asthma
prediction while also revealing less well-known factors such as
maternal stress, gestational age, and jaundice as significant
contributors to asthma prediction.29

Lastly, development and testing of ML predictive models is a
complex process that requires careful consideration of several
critical factors. Our study stands out by meeting all of these
criteria, including the use of an adequate sample size, high-

Fig. 3 Feature importance progression for asthma prediction across six time points in the CHILD Cohort. At each time point, all the feature
importance scores are normalized based on the highest score, which is set to +/−1. The background colors indicate the directionality of the
feature—those in red indicate they might be a risk factor (positive association with asthma at age 5 years), those in blue indicate they might
have protective effect (negative association with asthma at age 5 years). In the naming of features, “F10min” represents the measures taken
within 10min after a child is delivered. CESD represents “Center for Epidemiologic Studies Depression,” an indicator for mental wellbeing. PSS
represents “Psychological Stress Scale.” “BF” represents “Breastfeeding,” “Epi” represents “Episodes,” “RIseverity” represents “the severity of
(lower tract) respiratory infections,” whereas the “RIfrequency” represents “the frequency of respiratory infections,” “Cumulative wheeze” refer
to the “total number of wheeze,” and “CLA” refer to “clinically assessed by a physician” rather than the rest “self-reported” information.
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quality training data, algorithmic-based selection of input
features, cross-validated tuning and validation of ML algorithms,
appropriate and careful study design, and continual clinical
involvement during ML model development.4,16,17,30 By meeting
these requirements, our models achieve high performance and
provide reliable and accurate predictions, making them highly
applicable in clinical settings. Furthermore, our approach not
only contributes to the field of asthma prediction but also serves
as a valuable blueprint for the development of ML models in
other areas of healthcare.

Limitations
While the present study utilized data from the large-scale
observational CHILD Cohort, it is important to recognize that a
large proportion of the data used for developing the ML models
were derived from gathered questionnaires and clinical assess-
ments completed by parents and clinicians. Despite using rigorous
quality control measures to mitigate survey bias, the data may still
be susceptible to other forms of bias, including desirability bias,
response bias, and recall bias, which can introduce non-objectivity
and noise into the data and ultimately lead to reduced predictive
performance of the ML models.
To overcome this limitation and potentially enhance the

predictive performance of the models, future studies may benefit
from the incorporation of objective measurements, such as
biological and genetic markers. However, these types of
measurements are often associated with high costs, time
constraints, and specialized equipment requirements, which may
limit their availability to a much smaller subset of individuals and
affect the generalizability of the model to the broader population
such as our study. Nevertheless, further research is warranted to
evaluate the feasibility and potential benefits of including such
measurements to improve the predictive performance of the ML
models, particularly at earlier stages of asthma development.

CONCLUSIONS
The present study demonstrates the potential of ML models in
effectively predicting asthma diagnosis at age 5 years using early-life
data from children. Our results indicate that individual models,
including Logistic Regression, Random Forest, SVM, and weighted
soft voting ensemble models, were effective in predicting asthma
diagnosis. Importantly, our findings suggest that physician-
diagnosed asthma at age 5 years could be reliably predicted using
non-biological and non-genetic data by the age of 3 years, whereas
accurate prediction before 1 year of age using existing clinical
dataset was challenging. These results have significant implications
for early detection and intervention strategies for asthma.
Furthermore, our study identified parental asthma, wheezing,

atopy, lower respiratory infections, and antibiotic exposures as the
most important and stable predictors for asthma diagnosis at age
5 years, which are established significant risk factors for asthma.
These findings reinforce the importance of early-life exposure to
these risk factors and suggest their potential long-term implica-
tions for asthma development.
To conclude, our study highlights the potential of ML models in

predicting asthma diagnosis at age 5 years and emphasizes the
significance of early-life risk factors in the development of asthma.
These results have implications for the development of targeted
prevention and intervention strategies for asthma and call for
further investigation into the utility of ML models in predicting
other complex health outcomes.
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