Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Clinical Research Article
  • Published:

Effects of prenatal psychosocial stress and COVID-19 infection on infant attention and socioemotional development

Abstract

Background

The COVID-19 pandemic dramatically altered the psychosocial environment of pregnant women and new mothers. In addition, prenatal infection is a known risk factor for altered fetal development. Here we examine joint effects of maternal psychosocial stress and COVID-19 infection during pregnancy on infant attention at 6 months postpartum.

Method

One-hundred and sixty-seven pregnant mothers and infants (40% non-White; n = 71 females) were recruited in New York City (n = 50 COVID+, n = 117 COVID–). Infants’ attentional processing was assessed at 6 months, and socioemotional function and neurodevelopmental risk were evaluated at 12 months.

Results

Maternal psychosocial stress and COVID-19 infection during pregnancy jointly predicted infant attention at 6 months. In mothers reporting positive COVID-19 infection, higher prenatal psychosocial stress was associated with lower infant attention at 6 months. Exploratory analyses indicated that infant attention in turn predicted socioemotional function and neurodevelopmental risk at 12 months.

Conclusions

These data suggest that maternal psychosocial stress and COVID-19 infection during pregnancy may have joint effects on infant attention at 6 months. This work adds to a growing literature on the effects of the COVID-19 pandemic on infant development, and may point to maternal psychosocial stress as an important target for intervention.

Impact

  • This study found that elevated maternal psychosocial stress and COVID-19 infection during pregnancy jointly predicted lower infant attention scores at 6 months, which is a known marker of risk for neurodevelopmental disorder. In turn, infant attention predicted socioemotional function and risk for neurodevelopmental disorder at 12 months. These data suggest that maternal psychosocial stress may modulate the effects of gestational infection on neurodevelopment and highlight malleable targets for intervention.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Study sociodemographic characteristics.
Fig. 2: Prenatal psychosocial stress.
Fig. 3: Infant attention outcomes.
Fig. 4: Associations between infant attention and socioemotional development.

Similar content being viewed by others

Data availability

The data analyzed in the current study are available from the corresponding author upon reasonable request.

References

  1. Glover, V. Annual research review: prenatal stress and the origins of psychopathology: an evolutionary perspective. J. Child Psychol. Psychiatry 52, 356–367 (2011).

    Article  PubMed  Google Scholar 

  2. Morey, J. N., Boggero, I. A., Scott, A. B. & Segerstrom, S. C. Current directions in stress and human immune function. Curr. Opin. Psychol. 5, 13–17 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Gouin, J.-P. & Kiecolt-Glaser, J. K. The impact of psychological stress on wound healing: methods and mechanisms. Immunol. Allergy Clin. North Am. 31, 81–93 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kristenson, M., Eriksen, H. R., Sluiter, J. K., Starke, D. & Ursin, H. Psychobiological mechanisms of socioeconomic differences in health. Soc. Sci. Med. 58, 1511–1522 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Johnson, M. H., Gliga, T., Jones, E. & Charman, T. Annual research review: infant development, autism, and ADHD – early pathways to emerging disorders. J. Child Psychol. Psychiatry 56, 228–247 (2015).

    Article  PubMed  Google Scholar 

  6. Brandes-Aitken, A., Braren, S., Swingler, M., Voegtline, K. & Blair, C. Sustained attention in infancy: a foundation for the development of multiple aspects of self-regulation for children in poverty. J. Exp. Child Psychol. 184, 192–209 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hendry, A., Johnson, M. H. & Holmboe, K. Early development of visual attention: change, stability, and longitudinal associations. Annu. Rev. Dev. Psychol. 1, 251–275 (2019).

    Article  Google Scholar 

  8. Madigan, S. et al. A meta-analysis of maternal prenatal depression and anxiety on child socioemotional development. J. Am. Acad. Child Adolesc. Psychiatry 57, 645–657.e8 (2018).

    Article  PubMed  Google Scholar 

  9. Manzari, N., Matvienko-Sikar, K., Baldoni, F., O’Keeffe, G. W. & Khashan, A. S. Prenatal maternal stress and risk of neurodevelopmental disorders in the offspring: a systematic review and meta-analysis. Soc. Psychiatry Psychiatr. Epidemiol. 54, 1299–1309 (2019).

    Article  PubMed  Google Scholar 

  10. Lafortune, S. et al. Effect of natural disaster-related prenatal maternal stress on child development and health: a meta-analytic review. Int. J. Environ. Res. Public Health 18, 8332 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Anderson, P. J. & Burnett, A. Assessing developmental delay in early childhood—concerns with the Bayley-III scales. Clin. Neuropsychol. 31, 371–381 (2017).

    Article  PubMed  Google Scholar 

  12. Muthusamy, S., Wagh, D., Tan, J., Bulsara, M. & Rao, S. Utility of the ages and stages questionnaire to identify developmental delay in children aged 12 to 60 months. JAMA Pediatr. 176, 980 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Amso, D. & Scerif, G. The attentive brain: insights from developmental cognitive neuroscience. Nat. Rev. Neurosci. 16, 606–619 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Oakes, L. M. & Amso, D. Development of visual attention. in Stevens’ Handbook of Experimental Psychology and Cognitive Neuroscience (ed. Wixted, J. T.) 1–33 (John Wiley & Sons). https://doi.org/10.1002/9781119170174.epcn401 (2018).

  15. Posner, M. I., Rothbart, M. K., Sheese, B. E. & Voelker, P. Developing attention: behavioral and brain mechanisms. Adv. Neurosci. 2014, 1–9 (2014).

    Article  Google Scholar 

  16. Rueda, M. R. & Posner, M. I. Development of attention networks. in The Oxford Handbook of Developmental Psychology, Vol. 1 (ed. Zelazo, P. D.) 682–705 (Oxford University Press). https://doi.org/10.1093/oxfordhb/9780199958450.013.0024 (2013).

  17. Ungerleider, L. ‘What’ and ‘where’ in the human brain. Curr. Opin. Neurobiol. 4, 157–165 (1994).

    Article  CAS  PubMed  Google Scholar 

  18. van Essen, D. C. & Maunsell, J. H. R. Hierarchical organization and functional streams in the visual cortex. Trends Neurosci. 6, 370–375 (1983).

    Article  Google Scholar 

  19. Rose, S. A., Feldman, J. F. & Jankowski, J. J. Implications of infant cognition for executive functions at age 11. Psychol. Sci. 23, 1345–1355 (2012).

    Article  PubMed  Google Scholar 

  20. Cuevas, K. & Bell, M. A. Infant attention and early childhood executive function. Child Dev. 85, 397–404 (2014).

    Article  PubMed  Google Scholar 

  21. Johnson, M. H., Posner, M. I. & Rothbart, M. K. Components of visual orienting in early infancy: contingency learning, anticipatory looking, and disengaging. J. Cogn. Neurosci. 3, 335–344 (1991).

    Article  CAS  PubMed  Google Scholar 

  22. Papageorgiou, K. A. et al. Individual differences in infant fixation duration relate to attention and behavioral control in childhood. Psychol. Sci. 25, 1371–1379 (2014).

    Article  PubMed  Google Scholar 

  23. Miller, M., Iosif, A.-M., Young, G. S., Hill, M. M. & Ozonoff, S. Early detection of ADHD: insights from infant siblings of children with autism. J. Clin. Child Adolesc. Psychol. 47, 737–744 (2018).

    Article  PubMed  Google Scholar 

  24. Pérez-Edgar, K. Attention mechanisms in behavioral inhibition: exploring and exploiting the environment. in Behavioral Inhibition 237–261 (Springer International Publishing). https://doi.org/10.1007/978-3-319-98077-5_11 (2018).

  25. Tau, G. Z. & Peterson, B. S. Normal development of brain circuits. Neuropsychopharmacology 35, 147–168 (2010).

    Article  PubMed  Google Scholar 

  26. Plamondon, A. et al. Spatial working memory and attention skills are predicted by maternal stress during pregnancy. Early Hum. Dev. 91, 23–29 (2015).

    Article  PubMed  Google Scholar 

  27. Ronald, A., Pennell, C. E. & Whitehouse, A. J. O. Prenatal maternal stress associated with ADHD and autistic traits in early childhood. Front. Psychol. 1, 223 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Merced‐Nieves, F. M., Dzwilewski, K. L. C., Aguiar, A., Lin, J. & Schantz, S. L. Associations of prenatal maternal stress with measures of cognition in 7.5‐month‐old infants. Dev. Psychobiol. 63, 960–972 (2021).

    Article  PubMed  Google Scholar 

  29. Tu, H.-F., Skalkidou, A., Lindskog, M. & Gredebäck, G. Maternal childhood trauma and perinatal distress are related to infants’ focused attention from 6 to 18 months. Sci. Rep. 11, 24190 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Beijers, R., Buitelaar, J. K. & de Weerth, C. Mechanisms underlying the effects of prenatal psychosocial stress on child outcomes: beyond the HPA axis. Eur. Child Adolesc. Psychiatry 23, 943–956 (2014).

    Article  PubMed  Google Scholar 

  31. Hantsoo, L., Kornfield, S., Anguera, M. C. & Epperson, C. N. Inflammation: a proposed intermediary between maternal stress and offspring neuropsychiatric risk. Biol. Psychiatry 85, 97–106 (2019).

    Article  PubMed  Google Scholar 

  32. Mazza, M. G. et al. Anxiety and depression in COVID-19 survivors: Role of inflammatory and clinical predictors. Brain Behav. Immun. 89, 594–600 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Thomason, M. E., Werchan, D. & Hendrix, C. L. COVID-19 patient accounts of illness severity, treatments and lasting symptoms. Sci. Data 9, 2 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Thomason, M. E., Hendrix, C. L., Werchan, D. & Brito, N. H. Perceived discrimination as a modifier of health, disease, and medicine: empirical data from the COVID-19 pandemic. Transl. Psychiatry 12, 284 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Taquet, M., Luciano, S., Geddes, J. R. & Harrison, P. J. Bidirectional associations between COVID-19 and psychiatric disorder: retrospective cohort studies of 62 354 COVID-19 cases in the USA. Lancet Psychiatry 8, 130–140 (2021).

    Article  PubMed  Google Scholar 

  36. Boldrini, M., Canoll, P. D. & Klein, R. S. How COVID-19 affects the brain. JAMA Psychiatry 78, 682 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Iadecola, C., Anrather, J. & Kamel, H. Effects of COVID-19 on the nervous system. Cell 183, 16–27.e1 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mukerji, S. S. & Solomon, I. H. What can we learn from brain autopsies in COVID-19? Neurosci. Lett. 742, 135528 (2021).

    Article  CAS  PubMed  Google Scholar 

  39. Beurel, E., Toups, M. & Nemeroff, C. B. The bidirectional relationship of depression and inflammation: double trouble. Neuron 107, 234–256 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Provenzi, L. et al. Prenatal maternal stress during the COVID-19 pandemic and infant regulatory capacity at 3 months: a longitudinal study. Dev. Psychopathol. 35, 35–43. https://doi.org/10.1017/S0954579421000766 (2023).

  41. Bianco, C. et al. Pandemic beyond the virus: maternal COVID-related postnatal stress is associated with infant temperament. Pediatr. Res. 93, 253–259 (2023).

    Article  CAS  PubMed  Google Scholar 

  42. Fiske, A., Scerif, G. & Holmboe, K. Maternal depressive symptoms and early childhood temperament before and during the COVID‐19 pandemic in the United Kingdom. Infant Child Dev. 31, e2354 (2022).

  43. Sperber, J. F., Hart, E. R., Troller‐Renfree, S. V., Watts, T. W. & Noble, K. G. The effect of the COVID‐19 pandemic on infant development and maternal mental health in the first 2 years of life. Infancy 28, 107–135 (2023).

    Article  PubMed  Google Scholar 

  44. Shuffrey, L. C. et al. Association of birth during the COVID-19 pandemic with neurodevelopmental status at 6 months in infants with and without in utero exposure to maternal SARS-CoV-2 infection. JAMA Pediatr. 176, e215563 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Werchan, D. M. et al. Behavioral coping phenotypes and associated psychosocial outcomes of pregnant and postpartum women during the COVID-19 pandemic. Sci. Rep. 12, 1209 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hendrix, C. L. et al. Geotemporal analysis of perinatal care changes and maternal mental health: an example from the COVID-19 pandemic. Arch. Womens Ment. Health 25, 943–956 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Thomason, M. E., Graham, A. & VanTieghem, M. R. The COPE-IS: Coronavirus Perinatal Experiences–Impact Survey (2020). COVGEN. https://www.covgen.org/cope-surveys

  48. Kraybill, J. H., Kim-Spoon, J. & Bell, M. A. Infant attention and age 3 executive function. Yale J. Bio. Med. 92, 3–11 (2019).

    Google Scholar 

  49. Gustafsson, H. C. et al. Innovative methods for remote assessment of neurobehavioral development. Dev. Cogn. Neurosci. 52, 101015 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Werchan, D. M., Thomason, M. E. & Brito, N. H. OWLET: an automated, open-source method for infant gaze tracking using smartphone and webcam recordings. Behav. Res. Methods 1–15. https://doi.org/10.3758/s13428-022-01962-w (2022).

  51. Derogatis, L. R. BSI 18, Brief Symptom Inventory 18: Administration, Scoring and Procedures Manual (NCS Pearson, Incorporated., 2001).

  52. Blevins, C. A., Weathers, F. W., Davis, M. T., Witte, T. K. & Domino, J. L. The Posttraumatic Stress Disorder Checklist for DSM-5 (PCL-5): development and initial psychometric evaluation. J. Trauma Stress 28, 489–498 (2015).

    Article  PubMed  Google Scholar 

  53. Jankowski, J. J., Rose, S. A. & Feldman, J. F. Modifying the distribution of attention in infants. Child Dev. 72, 339–351 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Colombo, J., Mitchell, D. W., Coldren, J. T. & Freeseman, L. J. Individual differences in infant visual attention: are short lookers faster processors or feature processors? Child Dev. 62, 1247–1257 (1991).

    Article  CAS  PubMed  Google Scholar 

  55. Hou, X. & Zhang, L. Saliency detection: a spectral residual approach. in 2007 IEEE Conference on Computer Vision and Pattern Recognition 1–8 (IEEE). https://doi.org/10.1109/CVPR.2007.383267 (2007).

  56. Itti, L. & Koch, C. A saliency-based search mechanism for overt and covert shifts of visual attention. Vis. Res. 40, 1489–1506 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Gartstein, M. A. & Rothbart, M. K. Studying infant temperament via the Revised Infant Behavior Questionnaire. Infant Behav. Dev. 26, 64–86 (2003).

    Article  Google Scholar 

  58. Rothbart, M. K., Derryberry, D. & Hershey, K. Stability of temperament in childhood: laboratory infant assessment to parent report at seven years. in Temperament and Personality Development Across the Life Span 85–119 (Lawrence Erlbaum Associates Publishers, 2000).

  59. Colombo, J. & Cheatham, C. L. The emergence and basis of endogenous attention in infancy and early childhood. Adv. Child Dev. Behav. 34, 283–322. https://doi.org/10.1016/S0065-2407(06)80010-8 (2006).

  60. Hendry, A. et al. Developmental change in look durations predicts later effortful control in toddlers at familial risk for ASD. J. Neurodev. Disord. 10, 3 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Gartstein, M. A., Bridgett, D. J., Young, B. N., Panksepp, J. & Power, T. Origins of effortful control: infant and parent contributions. Infancy 18, 149–183 (2013).

    Article  PubMed  Google Scholar 

  62. Carter, A. S., Briggs-Gowan, M. J., Jones, S. M. & Little, T. D. The Infant-Toddler Social and Emotional Assessment (ITSEA): factor structure, reliability, and validity. J. Abnorm. Child Psychol. 31, 495–514 (2003).

    Article  PubMed  Google Scholar 

  63. Karabekiroglu, K., Briggs-Gowan, M. J., Carter, A. S., Rodopman-Arman, A. & Akbas, S. The clinical validity and reliability of the Brief Infant–Toddler Social and Emotional Assessment (BITSEA). Infant Behav. Dev. 33, 503–509 (2010).

    Article  PubMed  Google Scholar 

  64. Cox, J. L., Holden, J. M. & Sagovsky, R. Detection of postnatal depression. Br. J. Psychiatry 150, 782–786 (1987).

    Article  CAS  PubMed  Google Scholar 

  65. Werchan, D. M., Lynn, A., Kirkham, N. Z. & Amso, D. The emergence of object‐based visual attention in infancy: a role for family socioeconomic status and competing visual features. Infancy 24, 752–767. https://doi.org/10.1111/infa.12309 (2019).

  66. Peugh, J. L. & Enders, C. K. Missing data in educational research: a review of reporting practices and suggestions for improvement. Rev. Educ. Res. 74, 525–556 (2004).

    Article  Google Scholar 

  67. Welch, M. G. Calming cycle theory: the role of visceral/autonomic learning in early mother and infant/child behaviour and development. Acta Paediatrica 105, 1266–1274. https://doi.org/10.1111/apa.13547 (2016).

  68. Belsky, J. & van IJzendoorn, M. H. Genetic differential susceptibility to the effects of parenting. Curr. Opin. Psychol. 15, 125–130 (2017).

    Article  PubMed  Google Scholar 

  69. Ellis, B. J. & Boyce, W. T. Biological sensitivity to context. Curr. Dir. Psychol. Sci. 17, 183–187 (2008).

    Article  Google Scholar 

  70. Menon, V. Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cogn. Sci. 15, 483–506 (2011).

    Article  PubMed  Google Scholar 

  71. Hendry, A. et al. Developmental change in look durations predicts later effortful control in toddlers at familial risk for ASD. J. Neurodev. Disord. 10, 1–14 (2018).

    Article  Google Scholar 

  72. Hendry, A. et al. Atypical development of attentional control associates with later adaptive functioning, autism and ADHD traits. J. Autism Dev. Disord. 50, 4085–4105 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Gliga, T. et al. Enhanced visual search in infancy predicts emerging autism symptoms. Curr. Biol. 25, 1727–1730 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Briggs-Gowan, M. J. & Carter, A. S. Applying the Infant-Toddler Social & Emotional Assessment (ITSEA) and Brief-ITSEA in early intervention. Infant Ment. Health J. 28, 564–583 (2007).

    Article  PubMed  Google Scholar 

  75. Werchan, D. M., Brandes‐Aitken, A. & Brito, N. H. Signal in the noise: dimensions of predictability in the home auditory environment are associated with neurobehavioral measures of early infant sustained attention. Dev. Psychobiol. 64, e22325 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Werchan, D. M. & Amso, D. Top-down knowledge rapidly acquired through abstract rule learning biases subsequent visual attention in 9-month-old infants. Dev. Cogn. Neurosci. 42, 100761 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Richards, J. E. & Anderson, D. R. Attentional inertia in children’s extended looking at television. Adv. Child Dev. Behav. 32, 163–212. https://doi.org/10.1016/S0065-2407(04)80007-7 (2004).

  78. Ludwig, R. J., & Welch, M. G. How babies learn: The autonomic socioemotional reflex. Early Human Development 151, 105183. https://doi.org/10.1016/j.earlhumdev.2020.105183 (2020).

  79. Kingsbury, M. A., & Bilbo, S. D. The inflammatory event of birth: How oxytocin signaling may guide the development of the brain and gastrointestinal system. Front Neuroendocrinol., 55, 100794. https://doi.org/10.1016/j.yfrne.2019.100794 (2019).

  80. Carter, C. S., & Kingsbury, M. A. Oxytocin and oxygen: the evolution of a solution to the ‘stress of life.’ Phil. Trans. R. Soc. B 377 https://doi.org/10.1098/rstb.2021.0054 (2022).

  81. Hane, A. A. et al. The Welch Emotional Connection Screen: validation of a brief mother-infant relational health screen. Acta Paediatrica 108, 615–625. https://doi.org/10.1111/apa.14483 (2029).

Download references

Funding

This work was funded by NIH R01MH125870 and the NYU COVID Catalyst grant (to N.H.B.), NIH R01MH126468 (to M.E.T.), and by a NARSAD Young Investigator Grant from the Brain and Behavior Foundation (to D.M.W.).

Author information

Authors and Affiliations

Authors

Contributions

D.M.W., C.L.H., M.E.T. and N.H.B. conceptualized the study questions. D.M.W. analyzed the data and wrote the manuscript with input from C.L.H., N.H.B. and M.E.T. A.M.H. and M.Z. collected and coded data. D.M.W., C.L.H. and M.E.T. revised the manuscript.

Corresponding author

Correspondence to Denise M. Werchan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

The Institutional Review Board at NYU Langone Health approved all study protocols, and informed written consent was obtained electronically prior to testing. Each participant provided informed consent prior to participation.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Werchan, D.M., Hendrix, C.L., Hume, A.M. et al. Effects of prenatal psychosocial stress and COVID-19 infection on infant attention and socioemotional development. Pediatr Res 95, 1279–1287 (2024). https://doi.org/10.1038/s41390-023-02807-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41390-023-02807-8

This article is cited by

Search

Quick links