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BACKGROUND: Very preterm infants are at elevated risk for neurodevelopmental delays. Earlier prediction of delays allows timelier
intervention and improved outcomes. Machine learning (ML) was used to predict mental and psychomotor delay at 25 months.
METHODS: We applied RandomForest classifier to data from 1109 very preterm infants recruited over 20 years. ML selected key
predictors from 52 perinatal and 16 longitudinal variables (1–22 mo assessments). SHapley Additive exPlanations provided model
interpretability.
RESULTS: Balanced accuracy with perinatal variables was 62%/61% (mental/psychomotor). Top predictors of mental and
psychomotor delay overlapped and included: birth year, days in hospital, antenatal MgSO4, days intubated, birth weight, abnormal
cranial ultrasound, gestational age, mom’s age and education, and intrauterine growth restriction. Highest balanced accuracy was
achieved with 19-month follow-up scores and perinatal variables (72%/73%).
CONCLUSIONS: Combining perinatal and longitudinal data, ML modeling predicted 24 month mental/psychomotor delay in very
preterm infants ½ year early, allowing intervention to start that much sooner. Modeling using only perinatal features fell short of
clinical application. Birth year’s importance reflected a linear decline in predicting delay as birth year became more recent.
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IMPACT:

● Combining perinatal and longitudinal data, ML modeling was able to predict 24 month mental/psychomotor delay in very
preterm infants ½ year early (25% of their lives) potentially advancing implementation of intervention services.

● Although cognitive/verbal and fine/gross motor delays require separate interventions, in very preterm infants there is
substantial overlap in the risk factors that can be used to predict these delays.

● Birth year has an important effect on ML prediction of delay in very preterm infants, with those born more recently (1989–2009)
being increasing less likely to be delayed, perhaps reflecting advances in medical practice.

INTRODUCTION
Current worldwide estimates are that 1 in 10 infants are born
preterm and that approximately 1 million die annually as a result
of preterm birth.1 There has been increasing success at keeping
the very youngest of these infants alive, but they are at
heightened risk for neurodevelopmental delays.2–4 Given the
emotional investment of families and ongoing costs to society,
research in preterm infants’ subsequent development has been
intense. Understanding effects of biological, medical and environ-
mental risks potentially improves decision making, treatment and
early intervention, such as cognitive, communication, and motor
therapies that have been provided since before the U.S.A’s
Individuals with Disabilities Education Act. Earlier identification of
infants likely to be delayed is critical to providing intervention that
can maximize children’s potentials.5–7 Toward this end, a large
body of research aims to connect risk factors with mortality/
morbidity and to predict who will be delayed. To date, mostly

standard regression or multivariate prediction have been used (for
reviews see8,9). Crilly et al.8 suggest that prediction research might
benefit from non-linear tools such as machine learning (ML).
Recent studies of medical outcomes in preterm infants have

begun to utilize ML. Podda et al.10 utilized Artificial Neural
Networks to predict in-hospital mortality among pre-term infants
<30 weeks gestational age (GA) and reported their predictor had
“slightly better” discrimination than achieved with logistic regres-
sion. Similarly, Feng et al.11 developed a deep learning model to
predict mortality among preterm infants employing dynamically
sampled vital signs in conjunction with static clinical variables. Also
predicting mortality, Lee et al.12 used Random Forest (RF) modeling
of neonatal vital statistics, in combination with sex, race, birth
weight (BW) and GA. Their model outperformed the widely used
Clinical Risk Index for Babies and the optimal logistic regression
model. Addressing a different outcome, Lin et al. 13 applied ML to
predict length of hospital stay among very low BW infants.
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Although ML application to medical outcomes in preterm
infants has become more prevalent, it still remains uncommon for
neurodevelopmental prediction. A very ambitious neurodevelop-
mental study was executed by 165 ML model building “Fragile
Families Challenge” teams in which many variables collected from
birth to 9 were used to predict six life outcomes at age 15.14

Unfortunately, the highest R2 score attained was 0.23.
Better success has been achieved among preterm infants with

less ambitious outcomes and using ML analyzed neuroimaging.
Saha et al.15 analyzed MRIs from seventy-seven very preterm
infants to forecast abnormal neuromotor development at 2 years.
They dichotomized Neuro-Sensory Motor Developmental Assess-
ment scores to implement a Convolutional Neural Network
model achieving an F1-score of 68%. Vassar et al.16 applied ML
to diffusion tensor imaging (DTI) fractional anisotropy, mean
diffusivity, axial diffusivity, and radial diffusivity to predict
language scores at 18–22 months, achieving 89% sensitivity/86%
specificity. In a combinatorial approach, Valavani et al.17 predicted
language delay in preterm infants at 2 years with neonatal clinical
variables alone and with clinical and DTI data achieving balanced
accuracies of 83% and 91%, respectively.
These studies indicate that applying ML to neonatal brain imaging

can be effective in predicting neurodevelopmental outcomes.
However, given the risks and costs of such neuroimaging, it is not
yet universal practice even among very preterm infants. Predicting
neurodevelopmental outcomes at 2 years, using only easily
obtainable clinical variables, remains highly desirable. The goal of
this study was to apply the RF algorithm to such variables to build
an ML model to predict delay at 25 months of age in very preterm
infants using Bayley Scales of Infant Development (BSID).18,19

Initially, we restricted modeling to perinatally available clinical
variables; subsequently, we combined follow-up variables with these
to determine the earliest age at which an infant’s 25-month
developmental status can reliably be predicted.

METHODOLOGY
Participants
We leveraged 1109 longitudinal samples from a total of 3567
infants recruited from Richmond University Medical Center’s
NICU.20 Selection criteria originally included any of these:
BW < 1800 g; fetal distress with evidence of birth asphyxia;
assisted ventilation (>48 h); persistent apnea/bradycardia; abnor-
mal neurological signs; small for GA (<10th percentile BW for GA),
intrauterine growth restriction (IUGR), or dysmature; multiple
gestation (at least one meeting criteria or BW < 2000 g). Exclusion

criteria were major congenital anomalies or chromosomal
disorders. All infants with GA ≤ 33 weeks were selected. Years of
births (YOBs) spanned 1989–2009. Participants comprised 47.2%
females. They were 18.5% Latinx (black, white, Asian, and mixed
Latinx) and 81.5% non-Latinx, with 25.3% black; 65.6% white; 5.2%
Asian, 1.1% Indian, and 2.8% mixed. The research protocol was
approved by IRBs of involved institutions. Signed informed
consents were obtained from parents/guardians of all participants.
Age was corrected for preterm birth.

Measures/predictors
Perinatally available variables. There were many prenatal, peri-
natal, neonatal and maternal variables easily available to us,
primarily from hospital medical records (see Supplementary
Table 1 for complete list); some required interpretation. Intrauter-
ine growth restriction (IUGR) was a standard score of BW for
gestational age based upon norms (infants 22–50 weeks21).
Cranial Ultrasound (CUS) scoring was based on interpretation of
neonatal images. Abnormality/severity was classified as: (1) slight:
prominent choroids; tiny choroid cysts; questionable abnormality;
(2) mild: germinal matrix hemorrhage alone or with tiny cysts,
intra-ventricular hemorrhage (IVH) alone (Papile Grade I); (3)
moderate: IVH (Papile Grade II-III) alone or with cysts; ventriculo-
megaly ≤5mm; (4) strong-severe: IVH grade III-IV; ventriculome-
galy >5mm; periventricular or parenchymal leukomalacia (PVL),
hyperechoic echogenicity, or multiple cysts >3mm; subarachnoid
hemorrhage; cerebral edema >48 h with IVH or PVL; hydrocepha-
lus >10mm; hemorrhage or dilatation of III or IV ventricle; large or
multiple porencephalic cysts, parenchymal hemorrhage or infarct;
seizures requiring treatment.

Rapid neonatal neurobehavioral assessment. (RNNA)22 evaluates
infants’ neurobehavioral function as newborns and 1-month-olds,
and assesses visual and auditory attention, passive and elicited
motor behaviors, state control, feeding, and jitteriness. It was
developed for and normed on high-risk neonates and yields a
general sum score based on degree and number of abnormalities
Higher scores indicate more atypicalities.

BSIDs. BSIDs were completed at 4, 7, 10, 13, 16, 19, 22, and
25 months. Given that 25 months is the oldest age at which the
BSID was administered, and our goal was to use ML to predict as
far into the future as possible, similar to outcome ages in Valavani
et al.14 and Saha et al.12 the 25-month assessment was our
outcome variable. The BSID is an individually administered
assessment measuring mental, psychomotor and behavioral
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Fig. 1 ML methodology flowchart. M is number of features (columns); N is sample size.
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development. Mental Developmental (MDI) and Psychomotor
Developmental (PDI) Indices were analyzed. MDI reflects cogni-
tive/language domains, while PDI captures fine/gross motor
development.23 Both indices have a mean of 100 and standard
deviation of 15. We dichotomized MDI and PDI scores, operatio-
nalizing moderate-to-severe impairment as a score <85. To
understand the relationship between our MDI and PDI scores,
we calculated correlations between them at each test age and
found moderately positive correlations without dramatic differ-
ences across ages and with no discernible trend or linear
relationship (see Supplementary Table 2).

ML methodology
Our ML methodology (Fig. 1) was divided into classification and
feature analysis. In classification, we first preprocessed our data to
eliminate sparsity and to select important variables. Then RF was
trained on the training set, which comprised 80% of the data. The
other 20% was the test set on which we evaluated our model. In
feature analysis, we used a trained model to extract feature
ranking. Once the trained model was implemented, we used

Shapley Additive exPlanations (SHAP)24,25 for interpretability. It
showed feature effects on the predicted target value.

Data preprocessing. Three common challenges we faced in
applying ML to our longitudinal data were sparse data, class
imbalance and multicollinearity. Reasons for sparse data included
losing families to follow up, skipped visits, untestable babies, and
changes in data collection protocols. Most participants assessed at
25 months were not delayed, which resulted in class imbalance
issues. Lastly, our data’s similar subscale tests with more than 80%
correlated scores, created multicollinearity and high dimension-
ality by increasing feature numbers. To generalize our model and
produce reliable results these challenges had to be addressed.
Given the prevalence of missing values in longitudinal studies,

both training and test datasets should contain incomplete
predictor variables for modeling real clinical settings. Our data
sparsity/missing value ratios were: at-birth predictors (52 variables)
5.09%; RNNA predictors (2 variables) 15.06%; longitudinal
predictors (14 Bayley scores) 57.63%. For each target MDI
and PDI at month 25 the missing value percentage was 72%.

3567 infants from Richmond University Medical Center’s NICU were included to the study
N = 3567 infants, M = 221 variables

Exclusion criteria of variables

1. More than 80% empty columns (sparse column)
2. Longer (>= month 25) longitudinal tests
3. RNNA subscale scores

In total: M = 151 variables

N = 3567 infants
M = 70 variables

Exclusion criteria of infant sample

1. Non-NICU infants
2. ega > 34 wks infants

In total: N = 2458 infants

N = 1109 infants
M = 70 variables

Testing Set
N = 221 samples

68 predictors

Training Set
N = 888 samples

68 predictors

SMOTE over sampling

N = 1642 samples
68 predictors

Fig. 2 Data summary flowchart. M is number of features (columns); N is sample size.
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To preserve information, we applied ML missing value imputation
techniques to both the training set and test predictors, taking care
to prevent data leakage. However, it was crucial to ensure the
target values in the test set were solely comprised of genuine
observations, without data augmentation or imputation. By
preserving the test set’s authenticity, we sought to establish a
fair and unbiased evaluation of our model’s performance against
the benchmark. Due to a diversity of data types (continuous,
multi-categorical, and binary), MissForest,26 a non-parametric
missing value imputation technique based on RF, was chosen.
MissForest26 initially inputs missing values with a statistical
approach (mean/mode) and then refines them iteratively by
prediction using an RF model. To mitigate data leakage in this
process, we took measures to ensure the independence of
our training and test data before implementing MissForest.
Specifically, our training and test datasets were separated before

applying the imputation technique. MissForest was then exclu-
sively trained on the training set, ensuring that no information
from the test set was utilized during the imputation process. Once
imputation was complete, the technique was applied to the test
data. These measures ensured our model’s performance was truly
reflective of its generalization capabilities.
Imbalanced class data may cause low performance on minority

class predictions and result in models that tend to overpredict
majority class outcomes.27 Our target value class distribution
(delayed vs non-delayed) was 14%/86%. This class imbalance was
addressed by implementing an oversampling data balancing
technique, Synthetic Minority Oversampling Technique (SMOTE),28

to create augmented data for the minority class. Figure 1 shows
SMOTE28 applied only to the training set, ensuring our test data
was original and that evaluation of the model’s accuracy would
not be inflated by synthetic data.
Feature selection is a crucial step in achieving an optimal

predictor set. To retain the most significant predictors while
avoiding multicollinearity we first limited multicollinearity by
setting a collinearity threshold of 0.8. Secondly, we utilized feature
importance scores to identify the most relevant predictors.
Subsequently, clinical personnel manually reviewed predictors,
taking into consideration variable importance scores. Using these
methods, we aimed to preserve the optimal predictor set. See
Fig. 2 for preprocessing steps.

RF classifier. Seventy features and a binary category cut-off of 85
on MDI/PDI Scaled scores were examined with the RF Classifier
model from Python’s sklearn package, (Fig. 1). Table 1 summarizes
the design of the training and test datasets. RF is an ML algorithm
utilizing an ensemble of decision trees to improve model
generalizability and mitigate the risk of overfitting. Compared to
base models like Logistic Regression, which assume linear
relationships between variables and are sensitive to outliers, RF
effectively handles high-dimensional, complex data sets and
accommodates various data types. We compared RF to Logistic
Regression, AdaBoost and XGBoost ML algorithms. RF outper-
formed them all (details in Supplementary Table 3). Given these
factors, RF was chosen for our study.
Consistent with the goal of predicting, at birth using neonatal

features, who will become delayed, an aim shared by many
preterm studies,15–17 we began modeling with 52 perinatal

Table 1. Train/Test data split with missing value and data sampling information.

Training set (# samples: 888) Test set (# samples: 221)

SMOTE MissForest (Missing ratio) SMOTE MissForest (Missing ratio)

Target value YES YES (0.89) NO NO (0.00)

Predictors YES YES (0.21) NO YES (0.06)

Table 2. Predictor information for models 1–9.

# Features Variables Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9

52 At-birth X X X X X X X X X

2 RNNA X X X X X X X X

2 Bayley 04 X

2 Bayley 07 X

2 Bayley 10 X

2 Bayley 13 X

2 Bayley 16 X

2 Bayley 19 X

2 Bayley 22 X

Total Variables 52 54 56 56 56 56 56 56 56

Table 3. Top 15 most important features from model 1.

Mental Delay (MDI) Psychomotor Delay (PDI)

1 Birth year Birth year

2 Mom education Days in hospital

3 Days in hospital Mom education

4 MgSO4 (Yes/No) Abnormal CUS

5 Days intubated Days intubated

6 Birth weight Gestational age (wks)

7 Abnormal CUS Mom age (yrs)

8 Gestational age (wks) Birth weight

9 Mom age (yrs) MgSO4 (Yes/No)

10 Intrauterine growth
restriction

1min Apgar score

11 Toxicology done Late/No prenatal care (Yes/
No)

12 Late/No prenatal care (Yes/
No)

Intrauterine growth
restriction

13 Head circumference Patent ductus arteriosus

14 Days on CPAP Head circumference

15 1min Apgar score Days on CPAP
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variables. We then added longitudinal follow-up data to improve
accuracy, resulting in 9 separate models with two target values
each. Predictor information is summarized in Table 2 and was
used twice, once for predicting delay from MDI and once from PDI
scores. In addition to classification, we ran RF classifier to extract
feature importance. While training the model using its random
selection of features and multiple individual trees, RF assigns an
importance score to each feature. Then feature ranking can be
extracted from the trained model.

Evaluation metrics. Evaluation of model predictions utilized:
sensitivity= True Positives/(True Positives+ False Negatives),

specificity= True Negatives/(True Negatives+ False Positives),
and balanced accuracy= (Sensitivity+ Specificity)/2, which is
considered a good measure of overall accuracy for imbalanced
datasets like ours.29 In our study, true positives are correctly
predicted delayed infants, sensitivity indicates the probability that
a delayed infant will be predicted as delayed, and specificity is the
probability that a non-delayed infant will be predicted as non-
delayed.

SHAP feature analysis. We implemented SHAP explainability to
help interpret how a given feature impacts our models’
predictions. ML explainability pertains to interpreting output from

Table 4. Participant characteristics for model 1 top 15 features and 2 outcomes.

Total (N= 1109) Mental Delay
(MDI < 85)

NO Mental Delay Psychomotor Delay
(PDI < 85)

NO Psychomotor
Delay

Birth Yr < 2000
Birth Yr ≥ 2000

37.1%
62.9%

41.4%
36.5%

58.6%
63.5%

58.6%
39.2%

41.4%
60.8%

Mom’s education 14.3 ± 2.4
(10–22)

13.3 ± 2.6
(6–21)

14.3 ± 2.4
(10–22)

13.8 ± 2.7
(6–22)

14.1 ± 2.4
(10–19)

Days in hospital 43.3 ± 30.5
(5–247)

55.6 ± 35.2
(5–180)

40.9 ± 25.2
(5–143)

56.6 ± 33.1
(6–180)

36.8 ± 23.6
(5-106)

YES MgSO4 35.5% 23.2% 37.6% 23.5% 40.1%

NO MgSO4 25.9% 23.1% 16.9% 19.0% 19.8%

Missing 38.6% 53.7% 45.5% 57.5% 40.1%

Days intubated 6.6 ± 13.0
(0–90)

10.4 ± 15.8
(0–90)

5.5 ± 9.8
(0–45)

10.3 ± 15.1
(0–90)

4.5 ± 8.9
(0–44)

Birth weight (gm) 1398 ± 437
(369–2948)

1283 ± 433
(539–2268)

1441 ± 424
(510–2608)

1278 ± 432
(539–2353)

1478 ± 414
(510–2608)

Abnormal CUS

None 54.6% 45.4% 57.1% 41.2% 63.7%

Slight 24.3% 18.2% 21.2% 18.3% 21.7%

Mild 10.9% 17.4% 11.1% 19.6% 7.6%

Moderate 5.1% 8.3% 6.4% 9.8% 4.5%

Severe 5.1% 10.7% 4.2% 11.1% 2.5%

Gestational age (wks) 30.3 ± 2.5
(23–33)

29.6 ± 2.7
(24–33)

30.4 ± 2.2
(24–33)

29.5 ± 2.6
(24–33)

30.7 ± 2.1
(24–33)

Mom’s age (yrs) 30.0 ± 6.0
(15.0–49.9)

30.1 ± 6.1
(15.6–45.5)

31.1 ± 6.0
(16.6–49.9)

30.9 ± 5.8
(17.0–49.9)

30.5 ± 6.2
(15.6–44.2)

IUGR measure −0.70 ±+1.1
(−4.7 -+4.9)

−0.79 ±+1.0
(−3.1 -+2.3)

−0.62 ±+1.0
(−4.7 -+2.0)

−0.71 ±+1.1
(−3.1 -+2.3)

−0.66 ±+1.0
(−4.7 -+2.0)

Toxicology

Done 17.2% 15.7% 19.0% 15.0% 20.4%

Not Done 66.8% 50.4% 59.3% 51.0% 60.5%

Missing 16.0% 33.9% 21.7% 34.0% 19.1%

Prenatal Care

Yes 87.1% 77.0% 90.4% 85.2% 85.3%

No/late 12.9% 23.0% 9.6% 14.8% 14.7%

HC (cm) 28.1 ± 2.7
(21–35)

27.5 ± 3.0
(21–36)

28.1 ± 2.7
(21–35)

27.3 ± 3.0
(21–36)

28.4 ± 2.6
(21–35)

Days on CPAP 11.2 ± 14.3
(0–135)

11.9 ± 13.6
(0–72)

9.2 ± 12.0
(0–67)

12.1 ± 13.6
(0–72)

8.4 ± 11.5
(0–60)

Apgar 1min 6.5 ± 1.9
(0–9)

6.0 ± 2.2
(0–9)

6.6 ± 2.0
(1–9)

5.8 ± 2.2
(0–9)

6.9 ± 1.7
(1–9)

YES PDA
NO PDA

34.6%
65.4%

45.5%
54.5%

38.7%
61.3%

55.8%
44.2%

28.7%
71.3%

Mental Dev Index
(MDI)

N/A 72.4 ± 11.2
(49–84)

101.8 ± 10.5
(86–137)

81.7 ± 17.6
(66–137)

98.8 ± 13.7
(66–137)

Psychomotor Dev
Index (PDI)

N/A 75.4 ± 16.0
(49–110)

90.7 ± 12.9
(57–133)

71.4 ± 10.1
(49–84)

97.7 ± 7.9
(85–133)
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a complex non-linear model. SHAP methodology utilizes a game-
theoretic framework to assign a “contribution” value to each
feature in the model. This value signifies the degree to which a
given feature influences the model’s output, allowing SHAP to
explain the correlation between a particular feature and the
prediction. Thus, the output obtained using SHAP may be referred
to as an explainable ML result. It not only addresses feature
importance, but the direction of its effect. SHAP also provides an
explanation based on the magnitude of feature attributions.
Feature effects on predictions may be linear or non-linear. SHAP
plots depict these relationships, accordingly, allowing a more
comprehensive understanding of the influence of each feature.
SHAP represents its output decisions visually using figures.

RESULTS
Model 1–prediction using only perinatally available variables
Table 3 reports the top 15 features for Model 1; Table 4 reports
means for those features the top 15 predictors were very similar
for both mental and psychomotor developmental models.
The classification model accuracy results for Model 1 cognitive/

verbal and fine/gross motor delay respectively were sensitivity=

91.9%; 93.4%, specificity= 31.8%; 29.4%, and balanced accu-
racy= 61.9%; 61.4%. The high sensitivities indicate that we miss
few infants who go on to be delayed, but low specificities indicate
there are many false alarms—we predict infants will be delayed
who will not be.

Model 2–9 prediction using perinatally available and
longitudinal assessment variables
Results from adding longitudinal data to the modeling process are
summarized in Table 5 for both MDI and PDI targets. We expected
that including assessments administered closer to the 25-month
targets would progressively improve the models’ balanced
accuracies. However, there was no linear relationship across
balanced accuracies indicating this. Model 8, which included
month 19 MDI and PDI scores, had the highest balanced accuracy.

SHAP analyses and model explainability
We applied SHAP explainability to Model 1, which used clinical
perinatally available variables as predictors, and Model 8, the
model with the highest balanced accuracy. We re-trained these
models’ predictors to apply SHAP analysis. In SHAP’s pictorial
results red represents higher values of a feature while blue

Table 5. Model accuracies for target value of mental and psychomotor delay at month 25.

Mental Development (MDI) Psychomotor Development (PDI)

Model/Age Sensitivity Specificity Balanced Accuracy Sensitivity Specificity Balanced Accuracy

1 (birth) 91.9 31.8 61.9 93.4 29.4 61.4

2 (1 mo) 86.8 31.3 59.0 95.3 28.3 61.8

3 (4 mo) 86.0 35.5 60.7 96.0 30.2 63.1

4 (7 mo) 92.3 35.6 63.9 95.3 30.4 62.9

5 (10 mo) 91.7 33.9 62.8 94.7 30.4 62.6

6 (13 mo) 94.4 34.5 64.5 93.3 36.0 64.7

7 (16 mo) 89.6 35.8 62.7 95.5 40.2 67.9

8 (19 mo) 88.7 54.8 71.7 93.9 51.7 72.8

9 (22 mo) 93.8 39.8 66.8 87.1 43.9 65.5

Emphasized in bold are the highest values.
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represents lower values. Mixed or speckled colors reflect a non-
linear relationship between the variable and prediction of delay. In
our analyses, a target value of 0 was designated as non-delayed
and 1 as delayed. Thus, a positive SHAP value (x-axis) indicates a
greater likelihood of predicting delay.
Figures 3 and 5 depict SHAP values for Models 1 and 8,

respectively, representing the top 15 features and the direction
and magnitude of their effects on the targets for mental and
psychomotor development. In Fig. 3, a lower value of YOB (blue)
contributed to a prediction of both mental and psychomotor
developmental delay, and a higher value (red) contributed to not
being delayed. Expressed differently, being born earlier contrib-
uted more to a prediction of being delayed while being born more
recently contributed to a prediction of non-delayed. Similarly, in
Fig. 5, a lower value (blue) of 19-mo MDI contributed to a
prediction of delay for both MDI and PDI. One last example, in
Figs. 3 and 5, higher values (red) of days intubated contributed to

the likelihood of predicting delay. In both models 1 and 8 SHAP
summary plots, each feature produces similar output. That was
expected because SHAP calculates the marginal effect of each
predictor individually Fig. 4.
SHAP also can produce dependence plots which provide detailed

depictions of individual features’marginal effects. Dependence plots
for YOB and mom’s education are in Fig. 5. For YOB, there is a clear
linear decrease in SHAP values as YOB becomes more recent. The
effect of mom’s education is more complex, having almost no effect
on cognitive/verbal delay except when education is less than high
school, but for fine/gross motor delay, the effect is u-shaped. Both
lower and higher education are associated with delay. Dependence
plots for 19-month MDI and PDI (Fig. 6), show that delayed 19-
month scores (≤85) contributed to delay at 25 months in an almost
linear fashion, but scores above 85 contribute little to a change in
SHAP values. (See Supplementary Figs. 1–13 for dependence plots
for other top predictors).
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DISCUSSION
Providing intervention services to very preterm infants at the
earliest possible time is important to maximizing their poten-
tial.30–33 Using a diverse, retrospective dataset of infants
(N= 1109) born over a 20-year period, we applied ML to predict
neurodevelopmental delay at 25 months of age. We succeeded in
developing a model that predicted likely cognitive/verbal and
fine/gross motor delay ½ year in advance, potentially allowing
intervention to start that much sooner. For 25-month-olds, that
represents one quarter of their lives.
It would be ideal to predict who would be delayed as early as

the newborn period. Considering that goal, we began ML
modeling using newborn data. Of 52 perinatal variables, the top
predictors included: YOB, mom’s education, days in hospital,
antenatal MgSO4, days intubated, BW, abnormal CUS, GA, mom’s
age, IUGR, toxicology done, no/late prenatal care, head circum-
ference, 1 min Apgar score, and PDA. There was extensive feature
overlap for prediction of cognitive/verbal and fine/gross motor
delay. Balanced accuracies for these models fell short of clinical
application. High sensitivity was offset by low specificity. They
were good at not missing infants who would be delayed but fell
short on predicting those who would not be delayed.
Similar to Ambalavanan’s34 and Salganik’s.14 approach, but at

different time scales, we then added longitudinal features from
follow-up assessments to improve accuracy, resulting in 9 models
with two target values each. In contrast to Salganik et al.14 who
were predicting outcome at older ages, this was somewhat
successful. Contrary to expectations, there was no linear increase
in the models’ accuracies as the assessments included were nearer
the 25-month target. Highest balanced accuracies (72%/73%)
were achieved with 19 not 22-month scores. SHAP dependence
plots provided a detailed picture of 19-month score effects. Scores
above ~85 contributed little to predicting 25-month delay, but
lower, delayed scores increased the likelihood of delay. This was
most prominent for MDI scores where the increase in predicting
delay dropped almost linearly for scores below 85, but was flat for
those above, suggesting if a child is delayed at 19-months, they
will likely continue to be delayed at 25 months. If intervention has
not already begun, it should be started immediately rather than
waiting for the child to “grow out of it” or “catch up” as is
sometimes recommended. Although it is beyond the scope of our

study to answer the question of why the 19-month assessment
seemed more predictive than at other ages, we suggest it may be
related to cascading effects on subsequent development of a
delay in the 18–19 month “vocabulary growth spurt”.35 Related to
this and to the timeline used, we conducted supplementary
analyses investigating effects of altering the target value timeline,
such as changing it from month 4 to month 25. A series of
changes in the target values did not exhibit a linear relationship
with accuracy performance, but feature importance rankings
derived from clinical at-birth variables remained notably consis-
tent regardless of the target value. See Supplementary Table 14
for details.
Our study was ambitious in attempting to apply ML to a diverse

sample collected over 20 years with the potential advantage of
producing more transportable models, but possibly exacerbating
other challenges often accompanying longitudinal data. To train
the ML model, we implemented data augmentation which
addressed the imbalance between delayed and non-delayed
children. Care was given to assure our test dataset consisted only
of original values in the target field for both data imputation and
SMOTE. Thus, although we synthesized data to impute missing
entries and address class imbalance, evaluation was only
performed by comparing the predicted target values with actual
target values, not synthetic ones. This may help explain our less
favorable results compared to work such as Valavani, et al.17 which
predicts preterm verbal delay with balanced accuracies of 83%
(clinical variables) and 91% (clinical and DTI variables). Their
validation assessment adopted SMOTE to resample their entire
dataset, synthetic target values as well as real ones. When we
implemented their validation scheme, our balanced accuracies
increased by over 20%, to 86%/86% (MDI/PDI delay - perinatal
features); and to 92%/88% (MDI/PDI - perinatal features and 19-
month scores). However, given that synthetic data is not
guaranteed to reflect the true population distribution, using it to
evaluate accuracy can be misleading. Adopting a more rigorous
approach to model assessment increases the possibility that the
model will be transportable.
The focus of our study was early prediction of neurodevelop-

mental delay. In ML it is the model in its entirety—the black box –
that accomplishes this. However, to clinicians and developmen-
talists, feature ranking and SHAP’s further description of the
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magnitude and direction of feature effects are of interest. That
said, many key features emerging from our models are consistent
with recent ML preterm research including antenatal MgSO4, days
intubated, BW, GA, and maternal age.17 CUS, a high-ranking
feature in our models, is quite different from AI analyzed MRI/DTI
images, important in other preterm outcome modeling.15–17

However, SHAP’s association of CUS damage with greater
likelihood of delay is consistent with this research and with the
role of CNS injury frequently reported in non-ML studies.36,37 Our
study was limited by reliance on clinical rather than AI
interpretations of our CUSs. Direct AI analyses of CUSs, which
are universally performed in very preterm infants, is a goal for
future work.
Along with sample breadth, another distinctive aspect of our

study was modeling multiple outcome domains in the same data.
The few ML studies closely related to ours have focused on a
single domain or on combined outcomes. Valavani et al.17 and

Vassar et al.16 predicted verbal delay, while Saha et al.15 restricted
predictions to the motor domain (Neuro-sensory Motor Develop-
mental Assessment), and Ambalavanan et al.34 combined MDI,
death, cerebral palsy, deafness, or blindness into one outcome. We
applied the same set of models to both cognitive/verbal delay and
fine/gross motor delay. This potentially allowed us to examine
how perinatal and longitudinal features differentially affected
these separate outcomes. What is clear from our results is that the
top predictive features for both are very closely aligned and
exhibit similar explainability in SHAP analyses. Although specia-
lized interventions are needed to address delays in these different
domains, it may be possible to broadly target infants most likely to
run into difficulty with a similar set of red flags.
In the context of an epigenetic developmental perspective,

successful prediction of outcomes past the perinatal stage will
likely have limitations without incorporating environmental and
longitudinal variables, except in cases of extreme brain injury.
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And the further into the future the prediction, the greater the
challenge. Most of our top features were clinical, with only a
limited few - maternal age, maternal education (considered
indicative of perinatal SES,38 toxicology report requested, and
no/poor prenatal care - likely to reflect environmental-biological
interactions. Consistent with our results, maternal education has
often been associated with neurodevelopmental outcomes.39,40

However our SHAP plots suggested, especially for cognitive/verbal
delay, the effect was not linear but strongest if mom’s education
was high school or less. A feature less commonly considered in
similar studies, perhaps due to apriori clinical rather than ML
selection, is no/poor prenatal care. Prenatal care is most often
researched in relation to low BW and other adverse obstetric, not
neurodevelopmental, outcomes. Surprisingly, even from the
obstetric viewpoint, the importance of prenatal care has been
debated.41–43 Our results clearly connect late/no prenatal care
with increased likelihood of predicting cognitive/verbal and fine/
gross motor delay, thus supporting the importance of prenatal
care to positive neurodevelopmental outcomes, although we
recognize that this variable can be a surrogate for a spectrum of
additional environmental variables, particularly in a society where
access is unequal.
YOB ranked first as a predictor in the at-birth only model and

third in the 19-month model. The high ranking of YOB is likely
related to the 20-year time span encompassed by our data. Year of
birth is not typically included in risk modeling. Its appearance as a
top feature suggests practice guidelines for ML modeling. Models
used clinically will require periodic updating as medical/clinical
practices and technology advance. Given the importance of YOB
to our study, we quantitatively assessed its impact on model
performance. We re-ran our classification model omitting YOB.
This reduced RF balanced accuracy approximately 5% for mental
and motor delay. SHAP visualizations of YOB depict a clear linear
decline in likelihood of delay as YOB moves from the 1990s into
the 21st century, with more recent YOB less likely to predict delay.
It suggests that infants in our study born more recently did better
in both cognitive/verbal and fine/gross motor domains. This
presents a positive picture for the field of pediatrics, particularly
neonatology, suggesting that continued improvements in medical
care for infants born very preterm have resulted in better
neurodevelopmental outcomes. Although our modeling strongly
suggests this our study is limited in that the data are from one
medical center and we cannot conclusively rule out other
explanations. Nonetheless, this is a positive take home message
consistent with numerous other reports.44–46

CONCLUSION
To provide the earliest intervention to very preterm infants, it would
be ideal to predict, at birth, who will be delayed and in need of
services. The combination of both longitudinal and perinatal
features produced an ML model that predicted 25-month delay at
19 months, potentially rolling back intervention by ½ year, 25% of
the child’s life. Despite ML modeling using 52 perinatal variables, the
goal of at-birth prediction remained elusive. Our models lacked
clinical-ready precision, with high sensitivity but low specificity,
missing few who would be delayed but overpredicting delay. From a
developmental epigenetic viewpoint, it is not surprising that
perinatally available variables have limitations in accurately predict-
ing subsequent development. The precision of future ML models
might be improved by applying AI interpretation to perinatal CUSs
and by including additional longitudinal variables that capture
ongoing environmental interactions.
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