Abstract
Hyperglycemia is commonly encountered in extremely preterm newborns and physiologically can be attributed to immaturity in several biochemical pathways related to glucose metabolism. Although hyperglycemia is associated with a variety of adverse outcomes frequently described in this population, evidence for causality is lacking. Variations in definitions and treatment approaches have further complicated the understanding and implications of hyperglycemia on the immediate and long-term effects in preterm newborns. In this review, we describe the relationship between hyperglycemia and organ development, outcomes, treatment options, and potential gaps in knowledge that need further research.
Impact
-
Hyperglycemia is common and less well described than hypoglycemia in extremely preterm newborns.
-
Hyperglycemia can be attributed to immaturity in several cellular pathways involved in glucose metabolism in this age group.
-
Hyperglycemia has been shown to be associated with a variety of adverse outcomes frequently described in this population; however, evidence for causality is lacking.
-
Variations in definitions and treatment approaches have complicated the understanding and the implications of hyperglycemia on the immediate and long-term effects outcomes.
-
This review describes the relationship between hyperglycemia and organ development, outcomes, treatment options, and potential gaps in knowledge that need further research.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 13 print issues and online access
$259.00 per year
only $19.92 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout
References
Blanco, C. L., Baillargeon, J. G., Morrison, R. L. & Gong, A. K. Hyperglycemia in extremely low birth weight infants in a predominantly Hispanic population and related morbidities. J. Perinatol. 26, 737–741 (2006).
Tottman, A. C., Alsweiler, J. M., Bloomfield, F. H., Pan, M. & Harding, J. E. Relationship between measures of neonatal glycemia, neonatal illness, and 2-year outcomes in very preterm infants. J. Pediatr. 188, 115–121 (2017).
Zamir, I. et al. Hyperglycemia in extremely preterm infants-insulin treatment, mortality and nutrient intakes. J. Pediatr. 200, 104–110.e101 (2018).
van der Lugt, N. M., Smits-Wintjens, V. E., van Zwieten, P. H. & Walther, F. J. Short and long term outcome of neonatal hyperglycemia in very preterm infants: a retrospective follow-up study. BMC Pediatr. 10, 52 (2010).
Rath, C. P., Shivamallappa, M., Muthusamy, S., Rao, S. C. & Patole, S. Outcomes of very preterm infants with neonatal hyperglycaemia: a systematic review and meta-analysis. Arch. Dis. Child Fetal Neonatal Ed. 107, 269–280 (2022).
Hays, S. P., Smith, E. O. & Sunehag, A. L. Hyperglycemia is a risk factor for early death and morbidity in extremely low birth-weight infants. Pediatrics 118, 1811–1818 (2006).
Jagla, M., Szymonska, I., Starzec, K. & Kwinta, P. Preterm glycosuria - new data from a continuous glucose monitoring system. Neonatology 114, 87–92 (2018).
Mesotten, D., Joosten, K., van Kempen, A. & Verbruggen, S., ESPGHAN/ESPEN/ESPR/CSPEN working group on pediatric parenteral nutrition ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: carbohydrates. Clin. Nutr. 37, 2337–2343 (2018).
Kao, L. S. et al. Hyperglycemia and morbidity and mortality in extremely low birth weight infants. J. Perinatol. 26, 730–736 (2006).
Beardsall, K. et al. Prevalence and determinants of hyperglycemia in very low birth weight infants: cohort analyses of the nirture study. J. Pediatr. 157, 715–719.e711–e713 (2010).
Alexandrou, G. et al. Early hyperglycemia is a risk factor for death and white matter reduction in preterm infants. Pediatrics 125, e584–e591 (2010).
Szymonska, I., Jagla, M., Starzec, K., Hrnciar, K. & Kwinta, P. The incidence of hyperglycaemia in very low birth weight preterm newborns. results of a continuous glucose monitoring study-preliminary report. Dev. Period Med. 19, 305–312 (2015).
Pertierra-Cortada, A., Ramon-Krauel, M., Iriondo-Sanz, M. & Iglesias-Platas, I. Instability of glucose values in very preterm babies at term postmenstrual age. J. Pediatr. 165, 1146–1153.e1142 (2014).
Mola-Schenzle, E. et al. Clinically stable very low birthweight infants are at risk for recurrent tissue glucose fluctuations even after fully established enteral nutrition. Arch. Dis. Child Fetal Neonatal Ed. 100, F126–F131 (2015).
Mizumoto, H., Kawai, M., Yamashita, S. & Hata, D. Intraday glucose fluctuation is common in preterm infants receiving intermittent tube feeding. Pediatr. Int. 58, 359–362 (2016).
Sacks, D. B. et al. Guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus. Diabetes Care 34, e61–e99 (2011).
Sacks, D. B. et al. Guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus. Clin. Chem. 57, e1–e47 (2011).
Overfield, C. V., Savory, J. & Heintges, M. G. Glycolysis: a re-evaluation of the effect on blood glucose. Clin. Chim. Acta 39, 35–40 (1972).
Chan, A. Y., Swaminathan, R. & Cockram, C. S. Effectiveness of sodium fluoride as a preservative of glucose in blood. Clin. Chem. 35, 315–317 (1989).
Kang, J. G., Park, C. Y., Ihm, S. H. & Park, S. W. A potential issue with screening prediabetes or diabetes using serum glucose: a delay in diagnosis. Diabetes Metab. J. 40, 414–417 (2016).
Kuwa, K., Nakayama, T., Hoshino, T. & Tominaga, M. Relationships of glucose concentrations in capillary whole blood, venous whole blood and venous plasma. Clin. Chim. Acta 307, 187–192 (2001).
Larsson-Cohn, U. Differences between capillary and venous blood glucose during oral glucose tolerance tests. Scand. J. Clin. Lab Invest. 36, 805–808 (1976).
Ramel, S. & Rao, R. Hyperglycemia in extremely preterm infants. Neoreviews 21, e89–e97 (2020).
Le, H. T., Harris, N. S., Estilong, A. J., Olson, A. & Rice, M. J. Blood glucose measurement in the intensive care unit: what is the best method? J. Diabetes Sci. Technol. 7, 489–499 (2013).
Beardsall, K. et al. Validation of the continuous glucose monitoring sensor in preterm infants. Arch. Dis. Child Fetal Neonatal Ed. 98, F136–F140 (2013).
Harris, D. L., Weston, P. J., Gamble, G. D. & Harding, J. E. Glucose profiles in healthy term infants in the first 5 days: the Glucose in Well Babies (GLOW) study. J. Pediatr. 223, 34–41.e34 (2020).
Flore, K. M. & Delanghe, J. R. Analytical interferences in point-of-care testing glucometers by icodextrin and its metabolites: an overview. Perit. Dial. Int. 29, 377–383 (2009).
Tang, Z., Louie, R. F., Payes, M., Chang, K. C. & Kost, G. J. Oxygen effects on glucose measurements with a reference analyzer and three handheld meters. Diabetes Technol. Ther. 2, 349–362 (2000).
Pitkin, A. D. & Rice, M. J. Challenges to glycemic measurement in the perioperative and critically ill patient: a review. J. Diabetes Sci. Technol. 3, 1270–1281 (2009).
Dickson, J. L., Chase, J. G., Pretty, C. G., Gunn, C. A. & Alsweiler, J. M. Hyperglycaemic preterm babies have sex differences in insulin secretion. Neonatology 108, 93–98 (2015).
Mitanchez-Mokhtari, D. et al. Both relative insulin resistance and defective islet beta-cell processing of proinsulin are responsible for transient hyperglycemia in extremely preterm infants. Pediatrics 113, 537–541 (2004).
Newsholme, E. A. & Dimitriadis, G. Integration of biochemical and physiologic effects of insulin on glucose metabolism. Exp. Clin. Endocrinol. Diabetes 109, S122–S134 (2001).
Chacko, S. K., Ordonez, J., Sauer, P. J. & Sunehag, A. L. Gluconeogenesis is not regulated by either glucose or insulin in extremely low birth weight infants receiving total parenteral nutrition. J. Pediatr. 158, 891–896 (2011).
Santalucia, T. et al. Developmental regulation of Glut-1 (Erythroid/Hep G2) and Glut-4 (Muscle/Fat) glucose transporter expression in rat heart, skeletal muscle, and brown adipose tissue. Endocrinology 130, 837–846 (1992).
Lane, R. H., Crawford, S. E., Flozak, A. S. & Simmons, R. A. Localization and quantification of glucose transporters in liver of growth-retarded fetal and neonatal rats. Am. J. Physiol. 276, E135–E142 (1999).
Salis, E. R., Reith, D. M., Wheeler, B. J., Broadbent, R. S. & Medlicott, N. J. Insulin resistance, glucagon-like peptide-1 and factors influencing glucose homeostasis in neonates. Arch. Dis. Child Fetal Neonatal Ed. 102, F162–F166 (2017).
Hardy, A. B. et al. Zip4 mediated zinc influx stimulates insulin secretion in pancreatic beta cells. PLoS One 10, e0119136 (2015).
Ilouz, R., Kaidanovich, O., Gurwitz, D. & Eldar-Finkelman, H. Inhibition of glycogen synthase kinase-3beta by bivalent zinc ions: insight into the insulin-mimetic action of zinc. Biochem. Biophys. Res. Commun. 295, 102–106 (2002).
Cameron, A. R., Anil, S., Sutherland, E., Harthill, J. & Rena, G. Zinc-dependent effects of small molecules on the insulin-sensitive transcription factor Foxo1a and gluconeogenic genes. Metallomics 2, 195–203 (2010).
Collins, J. W. Jr et al. A controlled trial of insulin infusion and parenteral nutrition in extremely low birth weight infants with glucose intolerance. J. Pediatr. 118, 921–927 (1991).
Louik, C., Mitchell, A. A., Epstein, M. F. & Shapiro, S. Risk factors for neonatal hyperglycemia associated with 10% dextrose infusion. Am. J. Dis. Child 139, 783–786 (1985).
Phadke, D., Beller, J. P. & Tribble, C. The disparate effects of epinephrine and norepinephrine on hyperglycemia in cardiovascular surgery. Heart Surg. Forum 21, E522–E526 (2018).
Hay, W. W. Jr & Rozance, P. J. Neonatal hyperglycemia-causes, treatments, and cautions. J. Pediatr. 200, 6–8 (2018).
Eisenstein, A. B. & Strack, I. Amino acid stimulation of glucagon secretion by perifused islets of high-protein-fed rats. Diabetes 27, 370–376 (1978).
Kuhara, T., Ikeda, S., Ohneda, A. & Sasaki, Y. Effects of intravenous infusion of 17 amino acids on the secretion of Gh, glucagon, and insulin in sheep. Am. J. Physiol. 260, E21–E26 (1991).
Galsgaard, K. D. et al. Alanine, arginine, cysteine, and proline, but not glutamine, are substrates for, and acute mediators of, the liver-alpha-cell axis in female mice. Am. J. Physiol. Endocrinol. Metab. 318, E920–E929 (2020).
Larsson, H. & Ahren, B. Glucose-dependent arginine stimulation test for characterization of islet function: studies on reproducibility and priming effect of arginine. Diabetologia 41, 772–777 (1998).
Sunehag, A., Ewald, U. & Gustafsson, J. Extremely preterm infants (< 28 weeks) are capable of gluconeogenesis from glycerol on their first day of life. Pediatr. Res. 40, 553–557 (1996).
Sunehag, A. L. The role of parenteral lipids in supporting gluconeogenesis in very premature infants. Pediatr. Res. 54, 480–486 (2003).
Sunehag, A. L. Parenteral glycerol enhances gluconeogenesis in very premature infants. Pediatr. Res. 53, 635–641 (2003).
Chacko, S. K. & Sunehag, A. L. Gluconeogenesis continues in premature infants receiving total parenteral nutrition. Arch. Dis. Child Fetal Neonatal Ed. 95, F413–F418 (2010).
Salle, B. L. & Ruiton-Ugliengo, A. Effects of oral glucose and protein load on plasma glucagon and insulin concentrations in small for gestational age infants. Pediatr. Res. 11, 108–112 (1977).
Cowett, R. M., Andersen, G. E., Maguire, C. A. & Oh, W. Ontogeny of glucose homeostasis in low birth weight infants. J. Pediatr. 112, 462–465 (1988).
Brownlee, M. Biochemistry and molecular cell biology of diabetic complications. Nature 414, 813–820 (2001).
Marik, P. E. & Raghavan, M. Stress-hyperglycemia, insulin and immunomodulation in sepsis. Intensive Care Med. 30, 748–756 (2004).
Turina, M., Fry, D. E. & Polk, H. C. Jr Acute hyperglycemia and the innate immune system: clinical, cellular, and molecular aspects. Crit. Care Med. 33, 1624–1633 (2005).
Liu, B. F. et al. Low phagocytic activity of resident peritoneal macrophages in diabetic mice: relevance to the formation of advanced glycation end products. Diabetes 48, 2074–2082 (1999).
Delamaire, M. et al. Impaired leucocyte functions in diabetic patients. Diabet. Med. 14, 29–34 (1997).
Wierusz-Wysocka, B., Wysocki, H., Wykretowicz, A. & Klimas, R. The influence of increasing glucose concentrations on selected functions of polymorphonuclear neutrophils. Acta Diabetol. Lat. 25, 283–288 (1988).
Nielson, C. P. & Hindson, D. A. Inhibition of polymorphonuclear leukocyte respiratory burst by elevated glucose concentrations in vitro. Diabetes 38, 1031–1035 (1989).
McMillan, D. E. Elevation of complement components in diabetes mellitus. Diabete Metab. 6, 265–270 (1980).
Saiepour, D., Sehlin, J. & Oldenborg, P. A. Hyperglycemia-induced protein kinase C activation inhibits phagocytosis of C3b- and immunoglobulin G-opsonized yeast particles in normal human neutrophils. Exp. Diabesity Res. 4, 125–132 (2003).
Morigi, M. et al. Leukocyte-endothelial interaction is augmented by high glucose concentrations and hyperglycemia in a Nf-Kb-dependent fashion. J. Clin. Invest. 101, 1905–1915 (1998).
Catalan, M. P., Reyero, A., Egido, J. & Ortiz, A. Acceleration of neutrophil apoptosis by glucose-containing peritoneal dialysis solutions: role of caspases. J. Am. Soc. Nephrol. 12, 2442–2449 (2001).
Esposito, K. et al. Inflammatory cytokine concentrations are acutely increased by hyperglycemia in humans: role of oxidative stress. Circulation 106, 2067–2072 (2002).
Jeschke, M. G., Einspanier, R., Klein, D. & Jauch, K. W. Insulin attenuates the systemic inflammatory response to thermal trauma. Mol. Med. 8, 443–450 (2002).
Thaiss, C. A. et al. Hyperglycemia drives intestinal barrier dysfunction and risk for enteric infection. Science 359, 1376–1383 (2018).
Alsweiler, J. M., Harding, J. E. & Bloomfield, F. H. Neonatal hyperglycaemia increases mortality and morbidity in preterm lambs. Neonatology 103, 83–90 (2013).
Blanco, C. L., McGill-Vargas, L. L., McCurnin, D. & Quinn, A. R. Hyperglycemia increases the risk of death in extremely preterm baboons. Pediatr. Res. 73, 337–343 (2013).
Tayman, C. et al. Effects of hyperglycemia on the developing brain in newborns. Pediatr. Neurol. 51, 239–245 (2014).
Callaway, D. A. et al. Prematurity disrupts glomeruli development, whereas prematurity and hyperglycemia lead to altered nephron maturation and increased oxidative stress in newborn baboons. Pediatr. Res. 83, 702–711 (2018).
Rao, R., Nashawaty, M., Fatima, S., Ennis, K. & Tkac, I. Neonatal hyperglycemia alters the neurochemical profile, dendritic arborization and gene expression in the developing rat hippocampus. NMR Biomed. 31, e3910 (2018).
Au, S. C., Tang, S. M., Rong, S. S., Chen, L. J. & Yam, J. C. Association between hyperglycemia and retinopathy of prematurity: a systemic review and meta-analysis. Sci. Rep. 5, 9091 (2015).
Lee, J. H. et al. Insulin, hyperglycemia, and severe retinopathy of prematurity in extremely low-birth-weight infants. Am. J. Perinatol. 33, 393–400 (2016).
Conejo, R. & Lorenzo, M. Insulin signaling leading to proliferation, survival, and membrane ruffling in C2c12 myoblasts. J. Cell Physiol. 187, 96–108 (2001).
Tacchini, L., Dansi, P., Matteucci, E. & Desiderio, M. A. Hepatocyte growth factor signalling stimulates hypoxia inducible factor-1 (HIF-1) activity in HEPG2 hepatoma cells. Carcinogenesis 22, 1363–1371 (2001).
Joussen, A. M. et al. Suppression of diabetic retinopathy with angiopoietin-1. Am. J. Pathol. 160, 1683–1693 (2002).
Chiarelli, F. et al. Vascular endothelial growth factor (VEGF) in children, adolescents and young adults with type 1 diabetes mellitus: relation to glycaemic control and microvascular complications. Diabet. Med. 17, 650–656 (2000).
Kermorvant-Duchemin, E. et al. Neonatal hyperglycemia inhibits angiogenesis and induces inflammation and neuronal degeneration in the retina. PLoS One 8, e79545 (2013).
Poulaki, V. et al. Acute intensive insulin therapy exacerbates diabetic blood-retinal barrier breakdown via hypoxia-inducible factor-1alpha and VEGF. J. Clin. Invest. 109, 805–815 (2002).
Tamura, Y. The role of zinc homeostasis in the prevention of diabetes mellitus and cardiovascular diseases. J. Atheroscler. Thromb. 28, 1109–1122 (2021).
Brion, L. P., Heyne, R. & Lair, C. S. Role of zinc in neonatal growth and brain growth: review and scoping review. Pediatr. Res. 89, 1627–1640 (2021).
Levenson, C. W. & Morris, D. Zinc and neurogenesis: making new neurons from development to adulthood. Adv. Nutr. 2, 96–100 (2011).
Al-Naama, N., Mackeh, R. & Kino, T. C2h2-type zinc finger proteins in brain development, neurodevelopmental, and other neuropsychiatric disorders: systematic literature-based analysis. Front. Neurol. 11, 32 (2020).
Barthel, A., Ostrakhovitch, E. A., Walter, P. L., Kampkotter, A. & Klotz, L. O. Stimulation of phosphoinositide 3-kinase/Akt signaling by copper and zinc ions: mechanisms and consequences. Arch. Biochem. Biophys. 463, 175–182 (2007).
Wu, Y. et al. Zinc stimulates glucose consumption by modulating the insulin signaling pathway in L6 myotubes: essential roles of Akt-Glut4, Gsk3beta and Mtor-S6k1. J. Nutr. Biochem. 34, 126–135 (2016).
Barman, S. & Srinivasan, K. Zinc supplementation alleviates hyperglycemia and associated metabolic abnormalities in streptozotocin-induced diabetic rats. Can. J. Physiol. Pharm. 94, 1356–1365 (2016).
Qi, Y. et al. Zinc supplementation alleviates lipid and glucose metabolic disorders induced by a high-fat diet. J. Agric. Food Chem. 68, 5189–5200 (2020).
Simon, S. F. & Taylor, C. G. Dietary zinc supplementation attenuates hyperglycemia in Db/Db mice. Exp. Biol. Med. (Maywood) 226, 43–51 (2001).
Fernandez-Cao, J. C. et al. Dietary zinc intake and whole blood zinc concentration in subjects with type 2 diabetes versus healthy subjects: a systematic review, meta-analysis and meta-regression. J. Trace Elem. Med. Biol. 49, 241–251 (2018).
Jayawardena, R. et al. Effects of zinc supplementation on diabetes mellitus: a systematic review and meta-analysis. Diabetol. Metab. Syndr. 4, 13 (2012).
Capdor, J., Foster, M., Petocz, P. & Samman, S. Zinc and glycemic control: a meta-analysis of randomised placebo controlled supplementation trials in humans. J. Trace Elem. Med. Biol. 27, 137–142 (2013).
de Sena, K. C. et al. Effects of zinc supplementation in patients with type 1 diabetes. Biol. Trace Elem. Res. 105, 1–9 (2005).
Cunningham, J. J., Fu, A., Mearkle, P. L. & Brown, R. G. Hyperzincuria in individuals with insulin-dependent diabetes mellitus: concurrent zinc status and the effect of high-dose zinc supplementation. Metabolism 43, 1558–1562 (1994).
Brion, L. P. et al. Adjustable feedings plus accurate serial length measurements decrease discharge weight-length disproportion in very preterm infants: quality improvement project. J. Perinatol. 39, 1131–1139 (2019).
Brion, L. P. et al. Correction to: Adjustable feedings plus accurate serial length measurements decrease discharge weight-length disproportion in very preterm infants: quality improvement project. J. Perinatol. 39, 1694 (2019).
Steculorum, S. M. & Bouret, S. G. Maternal diabetes compromises the organization of hypothalamic feeding circuits and impairs leptin sensitivity in offspring. Endocrinology 152, 4171–4179 (2011).
Fu, J., Tay, S. S., Ling, E. A. & Dheen, S. T. High glucose alters the expression of genes involved in proliferation and cell-fate specification of embryonic neural stem cells. Diabetologia 49, 1027–1038 (2006).
Plagemann, A. et al. Alterations of hypothalamic catecholamines in the newborn offspring of gestational diabetic mother rats. Brain Res. Dev. Brain Res. 109, 201–209 (1998).
Razi, E. M., Ghafari, S. & Golalipour, M. J. Effect of gestational diabetes on purkinje and granule cells distribution of the rat cerebellum in 21 and 28 days of postnatal life. Basic Clin. Neurosci. 6, 6–13 (2015).
Satrom, K. M. et al. Neonatal hyperglycemia induces Cxcl10/Cxcr3 signaling and microglial activation and impairs long-term synaptogenesis in the hippocampus and alters behavior in rats. J. Neuroinflammation 15, 82 (2018).
Chandna, A. R. et al. Chronic maternal hyperglycemia induced during mid-pregnancy in rats increases rage expression, augments hippocampal excitability, and alters behavior of the offspring. Neuroscience 303, 241–260 (2015).
Ornoy, A. Growth and neurodevelopmental outcome of children born to mothers with pregestational and gestational diabetes. Pediatr. Endocrinol. Rev. 3, 104–113 (2005).
He, X. J., Dai, R. X., Tian, C. Q. & Hu, C. L. Neurodevelopmental outcome at 1 year in offspring of women with gestational diabetes mellitus. Gynecol. Endocrinol. 37, 88–92 (2021).
Ornoy, A., Wolf, A., Ratzon, N., Greenbaum, C. & Dulitzky, M. Neurodevelopmental outcome at early school age of children born to mothers with gestational diabetes. Arch. Dis. Child Fetal Neonatal Ed. 81, F10–F14 (1999).
Nelson, C. A., Wewerka, S. S., Borscheid, A. J., Deregnier, R. A. & Georgieff, M. K. Electrophysiologic evidence of impaired cross-modal recognition memory in 8-month-old infants of diabetic mothers. J. Pediatr. 142, 575–582 (2003).
Bolanos, L., Matute, E., Ramirez-Duenas Mde, L. & Zarabozo, D. Neuropsychological impairment in school-aged children born to mothers with gestational diabetes. J. Child Neurol. 30, 1616–1624 (2015).
Fraser, A., Nelson, S. M., Macdonald-Wallis, C. & Lawlor, D. A. Associations of existing diabetes, gestational diabetes, and glycosuria with offspring IQ and educational attainment: the Avon Longitudinal Study of Parents and Children. Exp. Diabetes Res. 2012, 963735 (2012).
Nomura, Y. et al. Exposure to gestational diabetes mellitus and low socioeconomic status: effects on neurocognitive development and risk of attention-deficit/hyperactivity disorder in offspring. Arch. Pediatr. Adolesc. Med. 166, 337–343 (2012).
Li, M. et al. The association of maternal obesity and diabetes with autism and other developmental disabilities. Pediatrics 137, e20152206 (2016).
Kong, L., Norstedt, G., Schalling, M., Gissler, M. & Lavebratt, C. The risk of offspring psychiatric disorders in the setting of maternal obesity and diabetes. Pediatrics 142, e20180776 (2018).
Nold, J. L. & Georgieff, M. K. Infants of diabetic mothers. Pediatr. Clin. North Am. 51, 619–637, viii (2004).
Georgieff, M. K. The effect of maternal diabetes during pregnancy on the neurodevelopment of offspring. Minn. Med. 89, 44–47 (2006).
Tunay, Z. O., Ozdemir, O., Acar, D. E., Oztuna, D. & Uras, N. Maternal diabetes as an independent risk factor for retinopathy of prematurity in infants with birth weight of 1500 g or more. Am. J. Ophthalmol. 168, 201–206 (2016).
Opara, C. N. et al. Maternal diabetes mellitus as an independent risk factor for clinically significant retinopathy of prematurity severity in neonates less than 1500g. PLoS One 15, e0236639 (2020).
Bental, Y. et al. Impact of maternal diabetes mellitus on mortality and morbidity of preterm infants (24-33 weeks’ gestation). Pediatrics 128, e848–e855 (2011).
Rehan, V. K., Moddemann, D. & Casiro, O. G. Outcome of very-low-birth-weight (< 1,500 grams) infants born to mothers with diabetes. Clin. Pediatr. (Philos.) 41, 481–491 (2002).
Soghier, L. M. & Brion, L. P. Multivariate analysis of hyperglycemia in extremely low birth weight infants. J. Perinatol. 26, 723–725 (2006).
Heimann, K. et al. Are recurrent hyperglycemic episodes and median blood glucose level a prognostic factor for increased morbidity and mortality in premature infants </=1500 g? J. Perinat. Med. 35, 245–248 (2007).
Stensvold, H. J. et al. Early enhanced parenteral nutrition, hyperglycemia, and death among extremely low-birth-weight infants. JAMA Pediatr. 169, 1003–1010 (2015).
Auerbach, A. et al. Long duration of hyperglycemia in the first 96 h of life is associated with severe intraventricular hemorrhage in preterm infants. J. Pediatr. 163, 388–393 (2013).
Dweck, H. S. & Cassady, G. Glucose intolerance in infants of very low birth weight. I. Incidence of hyperglycemia in infants of birth weights 1,100 grams or less. Pediatrics 53, 189–195 (1974).
Hey, E. Hyperglycaemia and the very preterm baby. Semin. Fetal Neonatal Med. 10, 377–387 (2005).
Beardsall, K. et al. Real-time continuous glucose monitoring in preterm infants (REACT): an international, open-label, randomised controlled trial. Lancet Child Adolesc. Health 5, 265–273 (2021).
Hall, N. J., Peters, M., Eaton, S. & Pierro, A. Hyperglycemia is associated with increased morbidity and mortality rates in neonates with necrotizing enterocolitis. J. Pediatr. Surg. 39, 898–901 (2004).
Rowen, J. L., Atkins, J. T., Levy, M. L., Baer, S. C. & Baker, C. J. Invasive fungal dermatitis in the < or = 1000-gram neonate. Pediatrics 95, 682–687 (1995).
Chavez-Valdez, R., McGowan, J., Cannon, E. & Lehmann, C. U. Contribution of early glycemic status in the development of severe retinopathy of prematurity in a cohort of ELBW infants. J. Perinatol. 31, 749–756 (2011).
Almeida, A. C. et al. Correlation between hyperglycemia and glycated albumin with retinopathy of prematurity. Sci. Rep. 11, 22321 (2021).
Garg, R., Agthe, A. G., Donohue, P. K. & Lehmann, C. U. Hyperglycemia and retinopathy of prematurity in very low birth weight infants. J. Perinatol. 23, 186–194 (2003).
Ertl, T., Gyarmati, J., Gaal, V. & Szabo, I. Relationship between hyperglycemia and retinopathy of prematurity in very low birth weight infants. Biol. Neonate 89, 56–59 (2006).
Bozdag, S. et al. Serum fructosamine and retinopathy of prematurity. Indian J. Pediatr. 78, 1503–1509 (2011).
Kaempf, J. W. et al. Hyperglycemia, insulin and slower growth velocity may increase the risk of retinopathy of prematurity. J. Perinatol. 31, 251–257 (2011).
Mohamed, S., Murray, J. C., Dagle, J. M. & Colaizy, T. Hyperglycemia as a risk factor for the development of retinopathy of prematurity. BMC Pediatr. 13, 78 (2013).
Mohsen, L. et al. A prospective study on hyperglycemia and retinopathy of prematurity. J. Perinatol. 34, 453–457 (2014).
Nicolaeva, G. V., Sidorenko, E. I. & Iosifovna, A. L. Influence of the blood glucose level on the development of retinopathy of prematurity in extremely premature children. Arq. Bras. Oftalmol. 78, 232–235 (2015).
Scheurer, J. M., Gray, H. L., Demerath, E. W., Rao, R. & Ramel, S. E. Diminished growth and lower adiposity in hyperglycemic very low birth weight neonates at 4 months corrected age. J. Perinatol. 36, 145–150 (2016).
Ramel, S. E. et al. Neonatal hyperglycemia and diminished long-term growth in very low birth weight preterm infants. J. Perinatol. 33, 882–886 (2013).
Tottman, A. C. et al. Long-term outcomes of hyperglycemic preterm infants randomized to tight glycemic control. J. Pediatr. 193, 68–75.e61 (2018).
Zamir, I. et al. Postnatal nutritional intakes and hyperglycemia as determinants of blood pressure at 6.5 years of age in children born extremely preterm. Pediatr. Res. 86, 115–121 (2019).
Paulsen, M. E. et al. Long-term outcomes after early neonatal hyperglycemia in VLBW infants: a systematic review. Neonatology 118, 509–521 (2021).
Heald, A., Abdel-Latif, M. E. & Kent, A. L. Insulin infusion for hyperglycaemia in very preterm infants appears safe with no effect on morbidity, mortality and long-term neurodevelopmental outcome. J. Matern. Fetal Neonatal Med. 25, 2415–2418 (2012).
Gonzalez Villamizar, J. D., Haapala, J. L., Scheurer, J. M., Rao, R. & Ramel, S. E. Relationships between early nutrition, illness, and later outcomes among infants born preterm with hyperglycemia. J. Pediatr. 223, 29–33.e22 (2020).
Alsweiler, J. M., Kuschel, C. A. & Bloomfield, F. H. Survey of the management of neonatal hyperglycaemia in Australasia. J. Paediatr. Child Health 43, 632–635 (2007).
Van Kempen, A. A. et al. Adaptation of glucose production and gluconeogenesis to diminishing glucose infusion in preterm infants at varying gestational ages. Pediatr. Res. 53, 628–634 (2003).
Sauer, P. J., Van Aerde, J. E., Pencharz, P. B., Smith, J. M. & Swyer, P. R. Glucose oxidation rates in newborn infants measured with indirect calorimetry and [U-13c]Glucose. Clin. Sci. (Lond.) 70, 587–593 (1986).
Forsyth, J. S. & Crighton, A. Low birthweight infants and total parenteral nutrition immediately after birth. I. Energy expenditure and respiratory quotient of ventilated and non-ventilated infants. Arch. Dis. Child Fetal Neonatal Ed. 73, F4–F7 (1995).
Osborn, D. A., Schindler, T., Jones, L. J., Sinn, J. K. & Bolisetty, S. Higher versus lower amino acid intake in parenteral nutrition for newborn infants. Cochrane Database Syst. Rev. 3, CD005949 (2018).
Burattini, I. et al. Targeting 2.5 versus 4 g/kg/day of amino acids for extremely low birth weight infants: a randomized clinical trial. J. Pediatr. 163, 1278–1282.e1271 (2013).
Burgess, L., Morgan, C., Mayes, K. & Tan, M. Plasma arginine levels and blood glucose control in very preterm infants receiving 2 different parenteral nutrition regimens. JPEN J. Parenter. Enter. Nutr. 38, 243–253 (2014).
Tottman, A. C. et al. Relationships between early nutrition and blood glucose concentrations in very preterm infants. J. Pediatr. Gastroenterol. Nutr. 66, 960–966 (2018).
Vlaardingerbroek, H. et al. Safety and efficacy of early parenteral lipid and high-dose amino acid administration to very low birth weight infants. J. Pediatr. 163, 638–644.e631–e635 (2013).
Kwok, T. C., Dorling, J. & Gale, C. Early enteral feeding in preterm infants. Semin. Perinatol. 43, 151159 (2019).
Koletzko, B. et al. Scientific basis and practical application of nutritional care for preterm infants. World Rev. Nutr. Diet. 122, XIII–XIV (2021).
Meetze, W., Bowsher, R., Compton, J. & Moorehead, H. Hyperglycemia in extremely- low-birth-weight infants. Biol. Neonate 74, 214–221 (1998).
Ogilvy-Stuart, A. L. & Beardsall, K. Management of hyperglycaemia in the preterm infant. Arch. Dis. Child Fetal Neonatal Ed. 95, F126–F131 (2010).
Alsweiler, J. M., Harding, J. E. & Bloomfield, F. H. Tight glycemic control with insulin in hyperglycemic preterm babies: a randomized controlled trial. Pediatrics 129, 639–647 (2012).
Thabet, F., Bourgeois, J., Guy, B. & Putet, G. Continuous insulin infusion in hyperglycaemic very-low-birth-weight infants receiving parenteral nutrition. Clin. Nutr. 22, 545–547 (2003).
Finch, C. W. Review of trace mineral requirements for preterm infants: what are the current recommendations for clinical practice? Nutr. Clin. Pract. 30, 44–58 (2015).
Sinclair, J. C., Bottino, M. & Cowett, R. M. Interventions for prevention of neonatal hyperglycemia in very low birth weight infants. Cochrane Database Syst. Rev. 10, CD007615 (2011).
Falorni, A., Massi-Benedetti, F., Gallo, G. & Trabalza, N. Blood glucose, serum insulin and glucagon response to arginine in premature infants. Biol. Neonate 27, 271–278 (1975).
King, K. C., Adam, P. A., Yamaguchi, K. & Schwartz, R. Insulin response to arginine in normal newborn infants and infants of diabetic mothers. Diabetes 23, 816–820 (1974).
Roth, E. Nonnutritive effects of glutamine. J. Nutr. 138, 2025S–2031S (2008).
Becker, R. M. et al. Reduced serum amino acid concentrations in infants with necrotizing enterocolitis. J. Pediatr. 137, 785–793 (2000).
Beardsall, K. et al. Early insulin therapy in very-low-birth-weight infants. N. Engl. J. Med. 359, 1873–1884 (2008).
Klonoff, D. C. et al. Continuous glucose monitoring: an Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 96, 2968–2979 (2011).
Harris, D. L., Weston, P. J., Signal, M., Chase, J. G. & Harding, J. E. Dextrose gel for neonatal hypoglycaemia (the Sugar Babies Study): a randomised, double-blind, placebo-controlled trial. Lancet 382, 2077–2083 (2013).
Facchinetti, A., Sparacino, G. & Cobelli, C. Modeling the error of continuous glucose monitoring sensor data: critical aspects discussed through simulation studies. J. Diabetes Sci. Technol. 4, 4–14 (2010).
McKinlay, C. J. D. et al. Continuous glucose monitoring in neonates: a review. Matern. Health Neonatol. Perinatol. 3, 18 (2017).
Thomson, L. et al. Targeting glucose control in preterm infants: pilot studies of continuous glucose monitoring. Arch. Dis. Child Fetal Neonatal Ed. 104, F353–F359 (2019).
Galderisi, A. et al. Continuous glucose monitoring in very preterm infants: a randomized controlled trial. Pediatrics 140, e20171162 (2017).
Beardsall, K., Thomson, L., Elleri, D., Dunger, D. B. & Hovorka, R. Feasibility of automated insulin delivery guided by continuous glucose monitoring in preterm infants. Arch. Dis. Child Fetal Neonatal Ed. 105, 279–284 (2020).
Author information
Authors and Affiliations
Contributions
D.A. contributed to the concept of the paper, wrote the initial and revised drafts of this manuscript, and approved the final manuscript as submitted. M.A.J. and L.P.B. critically reviewed the manuscript and approved the final version.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Angelis, D., Jaleel, M.A. & Brion, L.P. Hyperglycemia and prematurity: a narrative review. Pediatr Res 94, 892–903 (2023). https://doi.org/10.1038/s41390-023-02628-9
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41390-023-02628-9