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BACKGROUND: Recent clinical studies suggest that preeclampsia, characterized by uteroplacental insufficiency (UPI) and infant
intrauterine growth restriction (IUGR), may be protective against retinopathy of prematurity (ROP) in preterm infants. Experimental
models of UPI/IUGR have found an association of erythropoietin (EPO) with less severe oxygen-induced retinopathy (OIR); however,
it is unclear if EPO/EPO receptor (EPOR) signaling was involved. We hypothesized that maternal UPI and resultant infant IUGR would
protect against features of ROP through EPO/EPOR signaling.
METHODS: We compared transgenic mice with hypoactive EPOR signaling (hWtEPOR) to littermate wild-type mice (mWtEpoR) in a
novel combined model of IUGR and ROP. Thromboxane A2 (TXA2) was infused into pregnant C57Bl/6J dams to produce UPI/IUGR;
postnatal pups and their foster dams were subjected to a murine OIR model.
RESULTS: Following hyperoxia, hematocrits were similar between littermate wild-type (mWtEpoR) TXA2/OIR and vehicle/OIR pups.
mWtEpoR TXA2/OIR had increased serum EPO, retinal EPO and VEGF, and decreased avascular retinal area (AVA) compared to
vehicle/OIR pups. In comparison to the mWtEpoR TXA2/OIR pups, AVA was not reduced in hWtEPOR TXA2/OIR pups.
CONCLUSION: Our findings provide biologic evidence that UPI/OIR-induced endogenous EPOR signaling confers protection
against hyperoxia-induced vascular damage that may be related to pathophysiology in ROP.
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IMPACT:

● Maternal preeclampsia and infant growth restriction confer retinovascular protection against high oxygen-induced damage
through endogenous erythropoietin signaling.

INTRODUCTION
Hypertensive disease of pregnancy (HDP) includes a spectrum of
conditions, ranging from gestational hypertension, preeclampsia,
HELLP (Hemolysis, Elevated Liver enzymes and Low Platelets)
syndrome, and eclampsia. HDP increases the risk for preterm
birth1 and can lead to poor maternal-fetal nutrient exchange,
uteroplacental insufficiency (UPI), and intrauterine growth restric-
tion (IUGR) of the fetus.2 A question has arisen as to whether
preeclampsia, which lies in the spectrum of HDP, increases the risk
of comorbidities of prematurity, such retinopathy of prematurity
(ROP).3–5 Current medical literature regarding the role of
preeclampsia in the risk of ROP is conflicting. Some publications
reported a protective effect,6,7 whereas others found no associa-
tion7 or increased risk of ROP.8,9 A bias exists, because
preeclampsia is a risk for premature birth, and ROP occurs only
in premature infants. In order to gain insight, investigators
performed two analyses from the same group of infants and

mothers over a 20-year period in the Intermountain Health Care
database.10 When a general analysis was performed that included
mothers with or without preeclampsia and infants born with or
without prematurity, preeclampsia was found to increase the risk
for infant ROP. However, after restricting analyses to a sub-cohort
of premature, very low-birth weight infants, preeclampsia
appeared to be protective. Based on these findings, we were
interested to explore whether there were biologic effects from
preeclampsia and premature birth that were protective against
features that increase risk of ROP.
Experimental models of maternal UPI and infant IUGR have

studied retinopathy risk after oxygen-induced retinopathy (OIR).
In one study, rat dams were fed a diet low in protein (9% casein)
during the final week of gestation.11 Pups born to these dams
had greater avascular retinal area (AVA) following exposure to
high oxygen compared to pups born to dams fed a normal
protein (18% casein) diet. These findings suggested that IUGR
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during exposure to oxygen stresses increased the potential for
greater retinopathy in pups by increasing avascular retinal area,
thereby aligning with phase I of the hypothesis describing ROP.5

The initial increase in avascular retinal area is believed to be a
stimulus for later pathologic intravitreal neovascularization in
phase II ROP5 and may also reduce visual field and vision by
compromising vascular support to the retina. However, another
study created maternal UPI in rat dams by bilateral partial
ligation of the uterine arteries and found reduced avascular
retinal area in pups exposed to oxygen-induced retinopathy
(OIR),12 suggesting a protective effect. Furthermore, the reduced
avascular retinal area was associated with increased serum and
retinal erythropoietin (EPO) levels compared to pups of dams
with sham-surgery. Finding increased EPO raised the question if
OIR in IUGR pups induced compensatory mechanisms that were
vasoprotective and involved EPO. EPO is increased in the serum
of low-birth-weight preterm infants and infants with ROP in non-
preeclamptic pregnancies.13,14 However, the association of EPO
does not imply causation. Or if EPO is expressed, it is unknown if
the amount is sufficient to activate signaling in all tissues,
particularly the tissue in need. Intriguingly, plasma and placental
EPO concentrations were greater in preeclamptic mothers than
in control mothers.15 In addition, studies in the setting of normal
maternal conditions without HDP found that exogenous EPO
delivered to pups reduced avascular retina during hyperoxia in
mouse OIR.16 Therefore the impetus of this current study is to
understand whether preeclampsia that leads to maternal UPI and
infant IUGR modulate the risk of ROP development via EPO. Also,
because none of these studies addressed EPO signaling through
its cognate receptor, EPOR, we will investigate this pathway
directly via a transgenic mouse showing decreased EPO
signaling.
Studying the EPO/EPOR signaling pathway is challenging

because the antibodies indicating presence or activation of EPOR
yield unreliable results, as antibodies for immunohistochemical
staining or protein analysis by Western blots have poor
specificity.17,18 Attempts to create homozygous EPO or EPOR
knockout mouse models result in nonviable embryos, further
complicating the task of examining EPO-conferred protection in
early life.19 Therefore, we used transgenic mice in which the
murine EpoR gene was replaced with the human EPOR gene,
resulting in hypoactive signaling in mice from a defective
transmembrane domain and not ligand-receptor binding.20 We
designate mice with this transgene as hWtEPOR and littermate
control wild-type mice as mWtEpoR. We tested the hypothesis

that activation of EPO/EPOR signaling in the condition of maternal
HDP, a cause of UPI and infant IUGR, was vasoprotective under
high oxygen by studying homozygous hWtEPOR and littermate
control mWtEpoR pups in a combined maternal UPI-induced pup
IUGR and OIR model (Fig. 1).

METHODS
Animals
Animal use and procedures were approved by the Institutional Animal Care
and Use Committee and Institutional Biosafety Committee of the
University of Utah (Salt Lake City, UT) prior to all experiments. Additionally,
animal procedures adhered to the University of Utah Guide for the Care
and Use of Laboratory Animals and the Association for Research in Vision
and Ophthalmology Statement for the Use of Animals in Ophthalmic and
Vision Research.
C57Bl/6J mice heterozygous for the mouse wild-type EpoR gene

(mWtEpoR) and the hWtEPOR gene were bred to produce homozygous
hWtEPOR/ hWtEPOR (denoted as hWtEPOR) and littermate homozygous
murine wild-type EpoR (denoted as mWtEpoR) litters. (The hWtEPOR mice
were produced and kindly provided by Vladimir Divoky.20) In this study,
male and female mWtEpoR or hWtEPOR mice were used for experimental
analyses. Heterozygotes were not used in analyses. Animals were
maintained on 12 h light/dark cycles with ad libitum access to food and
water. Animal were maintained on a C57/Bl6J background and genotypes
were routinely verified by Transnetyx using qPCR.

IUGR (TXA2 Model)
To model HDP and UPI with resultant IUGR in offspring, we infused a
thromboxane A2-analog (TXA2, U-46619) instilled into micro-osmotic
pumps in the last week of the mouse gestation as previously described.21

On embryonic day 12.5, heterozygous (hWtEPOR/ mWtEpoR) dams were
anesthetized by intraperitoneal injection of ketamine (40 μg/g) and
xylazine (8 μg/g). Micro-osmotic pumps (model 1007D, 0.5 μl/h, Durect
Corporation, Cupertino, CA) containing either vehicle (0.5% ethanol) or
2000 ng/h of U-46619 (TXA2 analog, catalog no. 16450, Cayman Chemical,
Ann Arbor, MI) were then placed into the retroperitoneum through a 1 cm
incision. Dams with TXA2 infusion developed hypertension within 24 h of
implantation. Implants remained for the remainder of gestation, which is
~20 days in C57Bl/6J mice. Upon birth, litters from implanted heterozygous
dams were cross-fostered to non-implanted dams to reduce potential
confounding effects from surgery. During our model inception,21 we
showed that fetal 11-dehydrothromoboxane B2 level, a stable TXA2

metabolite, was no different in pups born to dams receiving sham or
U-46619 infusion, therefore the analog did not cross the placenta to affect
the pups directly. As such, we do not believe that a direct interaction
between TXA2 and EPO would occur in this postnatal model of IUGR
and OIR.

Preeclampsia
model

Oxygen induced retinopathy

75% OO

Pregant mWtEpoR/
hWtEPOR dam

Control

Day

E0

mWtEpoR = wild type
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Humane

sacrifice at p12
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Fig. 1 TXA2/OIR schematic of the full model including mWtEpoR and hWtEPOR genotypes. TXA2 exposure in dams led to UPI and IUGR in
pups. Pups and cross foster dams were then placed into hyperoxia (75% oxygen).
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Murine oxygen-induced retinopathy (OIR)
To examine the effects of IUGR in a reproducible model, the murine OIR
model22 was selected for experimental use. On postnatal (p) day 7, pups
were placed into an OxyCycler (Biospherix, Parish, NY) to maintain at 75%
oxygen exposure for five days. On p12, pups were returned to room air.
The p12 time point represents the phase 1 of the hypothesis of ROP, in
which there is avascular retina.5 Homozygous hWtEPOR (hWtEPOR) and
littermate EpoR (mWtEpoR) pups were sacrificed on p12 for analyses.
Genotypes were treated the same way and pups were euthanized right
after being taken from hyperoxia.

Retinal dissection, staining, and vascular growth
measurements
Upon sacrifice, enucleated globes were placed into 4% paraformaldehyde
for one hour. A corneal incision was made to promote permeation of the
fixative. Following the incubation, intact retinas were removed and cleared
of hyaloid vessels and excess vitreous. Four relief incisions were made
radially, and retinas were incubated in 488 conjugated Griffonia
Simplicifolia (Bandeiraea) isolectin–GS-IB4 overnight, as previously
described.23 Stained retinas were then flat mounted on slides, and the
retinal vasculature was visualized with an inverted fluorescence micro-
scope at 20x magnification (Keyence, Illinois). Complete images were
captured using Keyence scan-slide stitching software (Molecular Devices,
Inc., San Jose, CA). Measurement of avascular retinal and total retinal areas
were carried out by two masked observers using ImageJ (NIH, Bethesda,
MD) to develop a percent of avascular area/total retinal area (AVA).
Adjudication was used to resolve disagreements in measured outcomes
between masked observers.

Hematocrit
Blood samples were collected in duplicate upon sacrifice at p12 and placed
into microhematocrit capillary tubes treated with heparin (Avantor,
Radnor, PA). Samples were centrifuged five minutes and analyzed with a
microhematocrit reader; duplicate measurements were averaged for
experimental evaluation.

Western blot
Dissected retinas were sonicated in radio immunoprecipitation assay
lysis buffer supplemented with 1X protease inhibitor (Millipore Sigma,
Burlington, MA), and 1X phosphatase inhibitor (ThermoFisher Scientific,
Rockford, IL). Lysed samples were centrifuged at 13,000 rpm for five
minutes at 4 °C, the supernatants were collected, and protein
concentrations were quantified using a Pierce Bicinchoninic Acid

Protein Assay Kit (ThermoFisher Scientific, Rockford, IL). The purified
retinal proteins were then mixed in sample buffer and denatured at
95 °C for five minutes prior to being subjected to electrophoresis
through 4–12% NuPAGE BisTris Gels (Invitrogen, Carlsbad, CA). Proteins
were then transferred to an immobilon-P polyvinylidene difluoride
membrane and membranes were incubated in 5% bovine serum
albumin (BSA) in 1X Tris-buffered saline (TBS, blocking solution) for
one hour at room temperature. Membranes were then incubated
overnight at 4 °C in blocking buffer supplemented with the following
primary antibodies: rabbit anti-EPO (1:500, Santa Cruz Biotechnology,
Santa Cruz, CA) or rabbit anti-vascular endothelial growth factor (VEGF,
1:500, Santa Cruz Biotechnology, Santa Cruz, CA). Following overnight
incubation, membranes were washed three times in 0.1% Tween-20 TBS
solution (washing buffer). Membranes were subsequently incubated for
one hour at room temperature in blocking solution supplemented with
the species appropriate secondary antibody, horseradish peroxidase
(HRP) conjugated goat anti-rabbit (1:3000, Cell Signaling Technology,
Danvers, MA), and HRP conjugated β-actin (1:3000, Santa Cruz
Biotechnology, Dallas, TX). Images were captured using the C-DiGit
Blot Scanner (LI-COR Biotechnology, Lincoln, NE) and Image Studio
software (v5.2, LI-COR Biotechnology, Lincoln, NE). FIJI software was
used to perform densitometry analysis, and the results were normalized
to β-actin.

ELISA
Blood samples collected at sacrifice on p12 were maintained at 4 °C and
allowed to coagulate for two hours in non-heparin-treated tubes then
centrifugated for 25min at 2000 × g. Serum supernatant was assayed for
EPO and VEGF using Mouse EPO and VEGF Enzyme Linked Immunosorbent
Assay kits (ELISAs; R&D, Minneapolis, MN) following manufacturer’s
protocols.

Statistical Analysis
All sample size estimates were determined with assistance from a
biostatistician (GJS). At least 3 litters were used for each question to
account for biologic variability and after accounting for the design effect of
lack of independence from data clustering, 5 pups/group were required for
80% power with a two-sided alpha 0.05 comparison for the primary
outcome of AVA. Secondary analyses included body weight and
western blots.
All statistical analyses were performed in Stata-17 (StataCorp LLC,

College Station, TX). For the in vivo experiments, the data were analyzed
with a mixed effects linear regression model with eyes nested with animal
(for eye level variables), animals nested with litters, and litters nested
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within individual experimental settings, using AVA, western blot densito-
metries, quantitative ELISA data, or weight as the continuous outcome
variables. Predictor variables were implant group limited to a specific
genotype for some models, and genotype-implant combinations for other
models. Results are presented as mean ± standard error (SE), and a p value
< 0.05 was considered statistically significant.

RESULTS
Increased endogenous EPO expression in the IUGR model
after high oxygen
Compared to the vehicle controls, pups naturally born to dams
infused with TXA2 had lower birth weights (p= 0.035, Fig. 2a)
duplicating our previous finding in IUGR.21 Following OIR at p12,
catch-up growth occurred in pups born to TXA2-exposed dams
and placed into OIR (TXA2/OIR) to cause weights that were
commensurate with those of pups born to dams implanted with
vehicle (vehicle/OIR) (Fig. 2a, b). There was no significant
difference in hematocrit between pups in the TXA2/OIR group
and pups in the vehicle/OIR group at p12 (p= 0.387, Fig. 2c).
However, serum EPO (p= 0.027, Fig. 2d), but not serum VEGF
(p= 0.417, Fig. 2e), was significantly increased in pups born to
TXA2/OIR group compared to vehicle/OIR group at p12. In
addition, retinal EPO (p= 0.031, Fig. 2f) and retinal VEGF
(p= 0.013, Fig. 2g) were increased in TXA2/OIR compared to
vehicle/OIR at p12. Therefore, the murine TXA2/OIR model
demonstrated catch-up growth and increased serum EPO aligning
with a previous rat IUGR/OIR model.12 Also, hematocrit, which
clinically affects ROP,24 was no different between groups at the
p12 time point. These outcomes provided confidence to use the
TXA2 model at p12 to test our hypothesis.

TXA2/OIR model reduces vascular loss in hyperoxia due to
EPOR signaling
We then sought to determine if maternal UPI, which increased
pup serum and retinal EPO, lent protection to pup retinal
capillaries following high oxygen. To assess this postulate, we
measured AVA at p12 in retinal flat mounts from TXA2/OIR and
vehicle/OIR pups. Compared to 30.8% AVA in the vehicle/OIR
group, AVA was significantly decreased to 27.9% in the TXA2/OIR
group at p12 (Fig. 3a, b), supporting the notion that maternal UPI
was associated with pup retinal vasoprotection during high
oxygen. To investigate the role of endogenously-induced EPO
signaling through its receptor, EPOR, on vasoprotection, we
compared pups born to TXA2-implanted or vehicle-implanted
dams in the hypoactive EPOR-signaling transgenic mouse
model.20 With hyperoxia alone, there was a pattern towards
reduced AVA in the vehicle exposed hWtEPOR mice compared to
the vehicle exposed wild-type mice but it did not reach statistical
significance. In contrast to the reduced AVA found from TXA2/OIR

in mWtEPOR, there was no significant difference in AVA between
the vehicle/OIR and TXA2/OIR hWtEPOR pups (Fig. 3a, b). Taken
together, the data support the postulate that endogenously-
induced EPOR signaling participates in vascular protection in pup
retina following high oxygen.

DISCUSSION
With the advancement in obstetric and neonatal care, younger
gestational age and extremely low-birth weight infants are
surviving. Survival may be accompanied by morbidities, such as
blindness and neurodevelopmental delays. One common preg-
nancy complication that often leads to the need for early delivery
is HDP whereby diminished uteroplacental blood flow compro-
mises fetal growth causing IUGR. Controversy currently exists as to
whether HDP spectrum of diseases is protective or detrimental to
the development of retinal vessels in these highly vulnerable
infants after exposure to ex utero hyperoxia. Furthermore, the
molecular mechanisms underlying such potential protection
remain elusive.
In this study, we found that pups born to dams exposed to TXA2

had increased serum and retinal EPO with associated reduction in
AVA following hyperoxia. In alignment with the previous findings
in the mouse OIR model, retinal VEGF was also increased.22 We
previously observed similar increased EPO and reduced AVA in a
rat UPI/OIR model.12 In face of hyperoxia, downregulation of EPO,
which can be induced by hypoxia-inducible factors, might have
occurred. All the dams in hyperoxia were heterozygous, so it is not
certain that EPO came from a maternal source. However, in the rat
UPI/OIR model, because EPO does not cross the placenta, the
source of EPO was from the pup and believed to be a tissue
protective response.12 We postulated that increased EPO binding
to its EPOR would then activate EPO signaling to reduce AVA in
mWtEpoR/OIR pups born to dams exposed to TXA2. This
observation suggests that EPO signaling is involved in the
vasoprotection following hyperoxia. To test this postulate, we
used a hypoactive EPOR-signaling mouse model in OIR (hWtEPOR/
OIR) and found that pups born to dams implanted with either
vehicle or TXA2 had similar AVA. These findings contrast with
mWtEpoR/OIR mice born to dams implanted with TXA2 that had
increased EPO and reduced AVA following hyperoxia compared to
vehicle-infused mWtEpoR/OIR mice. Hypoactive EPOR-signaling in
hWtEPOR mice is due to the human transmembrane EPOR
domains having a lower affinity towards the formation of
homodimers, reducing overall erythropoietic activity when
expressed on the murine cell membrane rather than due to
receptor/ligand binding.25 This transgenic model thus provides a
reliable means to assess EPOR-signaling in vivo since antibodies
used to assess EPOR or its activation do not have the necessary
specificity for analysis in immunohistochemistry17,18. We recognize
that this transgenic model is not specific to the retina or the
vasculature, and future studies assessing the role of EPOR
signaling in endothelial or other cell types in the retina will be
important.
The hWtEPOR mice are known to have high circulating EPO as a

compensatory effect of the hWtEPOR genotype.20 Serum EPO level
may trigger other signaling mechanisms and affect outcomes
through its hormonal effects or through local tissue effects, such
as the EPOR/β common receptor (βCR) or VEGFR2-EPOR
pathways.26,27 The βCR has been implicated in tissue protective
effects. The tissue protective receptor has subunits that associate
following tissue injury and hypoxia composed of the βCR, EPOR,
and in some tissue types, VEGFR.28 Under hypoxic conditions,
VEGFR2 forms complexes with βCR-EPOR to support tissue health
by inducing the production of nitric oxide.28 These mechanisms
might additionally explain potential protective interactions
between increased retinal VEGF in TXA2/OIR mice and EPOR
signaling.28,29 In addition, these alternative mechanisms may
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explain the apparent pattern of reduced AVA in vehicle exposed
hWtEPOR mice compared to the vehicle exposed murine wild-type
mice, both in OIR. In contrast to other experimental or clinical
studies of exogenous EPO30–33, the current study addressed
endogenously-induced EPOR signaling rather than exogenous
EPO delivery and, therefore, may not be comparable. Longitudinal
clinical studies, including the recent PENUT trial, examined the
efficacy of high dose exogenous EPO in preterm infants.34,35 These
studies did not observe a significant difference in the neurode-
velopmental outcomes or rates of ROP in preterm infants
administered exogenous EPO compared to placebo. Results were
limited by available methods for analysis of neurocognition in
two- and five-year old children and relatively short duration of the
studies.34,36 The cohort of patients with documented ROP in the
PENUT study was small, further complicating the interpretation of
the results. Follow up on the participants of these studies through
anatomic maturation will be needed to assess neurocognitive
studies in older children as well as in their retinal structure and
function. In addition, there may be other yet unclear mechanisms
how endogenous EPOR signaling may have benefits not seen with
exogenous EPO or that triggering of endogenous EPOR signaling
may interact with exogenous EPO delivery in ways that are
unexpected. Also, lower dose EPO or derivatives of EPO, such as
darbepoetin, are routinely used to prevent anemia of prematurity
in infants and have been reported to have benefit in some clinical
studies.37 Therefore, studying EPO or derivatives and their
signaling effects on features involved in ROP pathophysiology is
highly important and clinically relevant.33

We recognize certain limitations exist in our study. Human ROP
is a disease of prematurity, whereas the mouse develops its retinal
vasculature postnatally and does not experience the stresses of
prematurity.5 It is this predictability in vascular plexus develop-
ment in normoxia that makes the study robust in its design when
a secondary insult such as hyperoxia is imposed. We also
understand that we have not dissected the interactions between
EPO and VEGF in this model given that VEGF is a major driving
force behind ROP development. Studies are ongoing to under-
stand the interplay between EPO and VEGF.
In conclusion, our study is the first to combine two well-

established mouse models of maternal HDP and infant IUGR with
OIR to evaluate the effects on high oxygen-induced vascular
damage. Our current observations support the hypothesis that
HDP confers retinal vasoprotection to offspring during high
oxygen in part via endogenous EPOR signaling. Future studies are
indicated to assess if UPI confers long term protection.

DATA AVAILABILITY
Data will be available upon request and after publication.
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