Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Clinical Research Article
  • Published:

Organ dysfunction and mortality in preterm neonates with late-onset bloodstream infection

Abstract

Background

Organ dysfunction (ODF) in late-onset bloodstream infection (LBSI) is associated with increased risk of adverse outcomes. However, no established definition of ODF exists among preterm neonates. Our objective was to describe an outcome-based ODF definition for preterm infants, and assess factors associated with mortality.

Methods

This is a six-year retrospective study of neonates <35 weeks gestational age, >72 h of age, with non-CONS bacterial/fungal LBSI. Discriminatory ability of each parameter for mortality was evaluated: base deficit ≤−8 mmol/L (BD8), renal dysfunction (urine output <1 cc/kg/h or creatinine ≥100 μmol/L), hypoxic respiratory failure (HRF, ventilated, FiO2 = 1.0), or vasopressor/inotrope use (V/I). Multivariable logistic regression analysis was performed to derive a mortality score.

Results

One hundred and forty-eight infants had LBSI. BD8 had the highest individual predictive ability for mortality (AUROC = 0.78). The combination BD8 + HRF + V/I was used to define ODF (AUROC = 0.84). Fifty-seven (39%) infants developed ODF, among which 28 (49%) died. Mortality increased inversely relative to GA at LBSI-onset (aOR 0.81 [0.67, 0.98]) and directly relative to ODF occurrence (12.15 [4.48, 33.92]). Compared to no-ODF, ODF infants had lower GA and age at illness, and higher frequency of Gram-negative pathogen.

Conclusions

Among preterm neonates with LBSI, significant metabolic acidosis, HRF, and vasopressor/inotrope use may identify infants high risk for mortality. These criteria could help identify patients for future studies of adjunctive therapies.

Impact

  • Sepsis-related organ dysfunction is associated with increased risk of adverse outcomes.

  • Among preterm neonates, significant metabolic acidosis, use of vasopressors/inotropes, and hypoxic respiratory failure may identify high-risk infants.

  • This can be used to target research and quality improvement efforts toward the most vulnerable infants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Data availability

The datasets generated during the current study are not publicly available due patient confidentiality; all analyzed data are included in this article.

References

  1. Dong, Y. & Speer, C. P. Late-onset neonatal sepsis: recent developments. Arch. Dis. Child. Fetal Neonatal Ed. 100, F257–F263 (2015).

    PubMed  Google Scholar 

  2. Klinger, G., Chin, C.-N., Beyene, J. & Perlman, M. Predicting the outcome of neonatal bacterial meningitis. Pediatrics 106, 477–482 (2000).

    CAS  PubMed  Google Scholar 

  3. Lin, M.-C., Chi, H., Chiu, N.-C., Huang, F.-Y. & Ho, C.-S. Factors for poor prognosis of neonatal bacterial meningitis in a medical center in Northern Taiwan. J. Microbiol. Immunol. Infect. 45, 442–447 (2012).

    PubMed  Google Scholar 

  4. Glass, H. C. et al. Clinical neonatal seizures are independently associated with outcome in infants at risk for hypoxic-ischemic brain injury. J. Pediatr. 155, 318–323 (2009).

    PubMed  PubMed Central  Google Scholar 

  5. Martens, S. E. et al. Is hypotension a major risk factor for neurological morbidity at term age in very preterm infants? Early Hum. Dev. 75, 79–89 (2003).

    CAS  PubMed  Google Scholar 

  6. Volpe, J. J. Neurobiology of periventricular leukomalacia in the premature infant. Pediatr. Res. 50, 553–562 (2001).

    CAS  PubMed  Google Scholar 

  7. Watkins, A., West, C. & Cooke, R. Blood pressure and cerebral haemorrhage and ischaemia in very low birthweight infants. Early Hum. Dev. 19, 103–110 (1989).

    CAS  PubMed  Google Scholar 

  8. Miall-Allen, V., De Vries, L. & Whitelaw, A. Mean arterial blood pressure and neonatal cerebral lesions. Arch. Dis. Child. 62, 1068–1069 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Bada, H. S. et al. Mean arterial blood pressure changes in premature infants and those at risk for intraventricular hemorrhage. J. Pediatr. 117, 607–614 (1990).

    CAS  PubMed  Google Scholar 

  10. Goh, G. L. et al. Risk factors for mortality from late-onset sepsis among preterm very-low-birthweight infants: a single-center cohort study from Singapore. Front. Pediatr. 9, 801955 (2021).

  11. Turhan, E. E., Gürsoy, T. & Ovalı, F. Factors which affect mortality in neonatal sepsis. Turk. Arch. Pediatr. 50, 170 (2015).

    Google Scholar 

  12. Chakraborty, R. K. & Burns, B. Systemic Inflammatory Response Syndrome (StatPearls, 2019).

  13. Matics, T. J. & Sanchez-Pinto, L. N. Adaptation and validation of a pediatric sequential organ failure assessment score and evaluation of the sepsis-3 definitions in critically ill children. JAMA Pediatr. 171, e172352 (2017).

    PubMed  PubMed Central  Google Scholar 

  14. Fujishima, S. Organ dysfunction as a new standard for defining sepsis. Inflamm. Regener. 36, 1–6 (2016).

    Google Scholar 

  15. Goldstein, B., Giroir, B. & Randolph, A. International pediatric sepsis consensus conference: definitions for sepsis and organ dysfunction in pediatrics. Pediatr. Crit. Care Med. 6, 2–8 (2005).

    PubMed  Google Scholar 

  16. Hotchkiss, R. S. et al. Sepsis and septic shock. Nat. Rev. Dis. Prim. 2, 1–21 (2016).

    Google Scholar 

  17. Wynn, J. L. & Polin, R. A. A neonatal sequential organ failure assessment score predicts mortality to late-onset sepsis in preterm very low birth weight infants. Pediatr. Res. 88, 85–90 (2020).

    PubMed  Google Scholar 

  18. Grace, J.-U. A. & Obara, S. K. A systematic review of coagulase-negative Staphylococci in neonatal sepsis. Clin. Microbiol. 8, 326 (2019).

  19. Rennie, J. M. & Roberton, N. C. Textbook of Neonatology (Churchill Livingstone, 1999).

  20. Srikrishna, S., Reddy, K. S. & Kiran, M. R. Correlation of metabolic acidosis in neonate with morbidity, mortality and neurodevelopmental outcome. Asian J. Clin. Pediatr. Neonatol. 7, 40–45 (2019).

    Google Scholar 

  21. Aramburo, A. et al. Lactate clearance as a prognostic marker of mortality in severely ill febrile children in East. Africa 16, 1–12 (2018).

    Google Scholar 

  22. Maitland, K. et al. Mortality after fluid bolus in African children with severe infection. N. Engl. J. Med. 364, 2483–2495 (2011).

    CAS  PubMed  Google Scholar 

  23. Bruel, A. et al. Critical serum creatinine values in very preterm newborns. PLoS ONE 8, e84892 (2013).

    PubMed  PubMed Central  Google Scholar 

  24. Kellum, J. A. & Lameire, N. Diagnosis, evaluation, and management of acute kidney injury: a KDIGO summary (Part 1). Crit. Care 17, 204 (2013).

  25. Kunitake, R. C., Kornblith, L. Z., Cohen, M. J. & Callcut, R. A. Trauma early mortality prediction tool (TEMPT) for assessing 28-day mortality. Trauma Surg. Acute Care Open 3, e000131 (2018).

  26. Mohammad, M. A. et al. Development and validation of an artificial neural network algorithm to predict mortality and admission to hospital for heart failure after myocardial infarction: a nationwide population-based study. Lancet Digit. Health 4, e37–e45 (2022).

    CAS  PubMed  Google Scholar 

  27. Graham, P. L. Simple strategies to reduce healthcare associated infections in the neonatal intensive care unit: line, tube, and hand hygiene. Clin. Perinatol. 37, 645–653 (2010).

    PubMed  Google Scholar 

  28. Sadeghi, K. et al. Immaturity of infection control in preterm and term newborns is associated with impaired toll-like receptor signaling. J. Infect. Dis. 195, 296–302 (2007).

    CAS  PubMed  Google Scholar 

  29. Schultz, C. et al. Immature anti‐inflammatory response in neonates. Clin. Exp. Immunol. 135, 130–136 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Kharrat, A. & Jain, A. Hemodynamic dysfunction in neonatal sepsis. Pediatr. Res. 91, 413–424 (2022).

    PubMed  Google Scholar 

  31. Wynn, J. L. & Wong, H. R. Pathophysiology and treatment of septic shock in neonates. Clin. Perinatol. 37, 439–479 (2010).

    PubMed  PubMed Central  Google Scholar 

  32. Kermorvant-Duchemin, E., Laborie, S., Rabilloud, M., Lapillonne, A. & Claris, O. Outcome and prognostic factors in neonates with septic shock. Pediatr. Crit. Care Med. 9, 186–191 (2008).

    PubMed  Google Scholar 

  33. Wilkinson, J. D. et al. Mortality associated with multiple organ system failure and sepsis in pediatric intensive care unit. J. Pediatr. 111, 324–328 (1987).

    CAS  PubMed  Google Scholar 

  34. Leteurtre, S. et al. Validation of the paediatric logistic organ dysfunction (PELOD) score: prospective, observational, multicentre study. Lancet 362, 192–197 (2003).

    PubMed  Google Scholar 

  35. Proulx, F., Fayon, M., Farrell, C. A., Lacroix, J. & Gauthier, M. J. C. Epidemiology of sepsis and multiple organ dysfunction syndrome in children. Chest 109, 1033–1037 (1996).

    CAS  PubMed  Google Scholar 

  36. Vincent, J. L. et al. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med. 22, 707–710 (1996).

  37. Abraham, E. & Singer, M. Mechanisms of sepsis-induced organ dysfunction. Crit. Care Med. 35, 2408–2416 (2007).

    PubMed  Google Scholar 

  38. Despond, O., Proulx, F., Carcillo, J. A. & Lacroix, J. Pediatric sepsis and multiple organ dysfunction syndrome. Curr. Opin. Pediatr. 13, 247–253 (2001).

    CAS  PubMed  Google Scholar 

  39. Leclerc, F. et al. Cumulative influence of organ dysfunctions and septic state on mortality of critically ill children. Am. J. Respir. Crit. Care Med. 171, 348–353 (2005).

    PubMed  Google Scholar 

  40. Typpo, K. V. et al. Day one MODS is associated with poor functional outcome and mortality in the pediatric intensive care unit. Pediatr. Crit. Care Med. 10, 562 (2009).

    PubMed  PubMed Central  Google Scholar 

  41. Agyeman, P. K. et al. Epidemiology of blood culture-proven bacterial sepsis in children in Switzerland: a population-based cohort study. Lancet Child Adolesc. Health 1, 124–133 (2017).

    PubMed  Google Scholar 

  42. Duke, T., Butt, W. & South, M. Predictors of mortality and multiple organ failure in children with sepsis. Intensive Care Med. 23, 684–692 (1997).

    CAS  PubMed  Google Scholar 

  43. Jat, K. R., Jhamb, U. & Gupta, V. K. Serum lactate levels as the predictor of outcome in pediatric septic shock. Indian J. Crit. Care Med. 15, 102 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Hatherill, M., Waggie, Z., Purves, L., Reynolds, L. & Argent, A. Mortality and the nature of metabolic acidosis in children with shock. Intensive Care Med. 29, 286–291 (2003).

    PubMed  Google Scholar 

  45. Singer, M. et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 315, 801–810 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Schlapbach, L. J., Straney, L., Bellomo, R., MacLaren, G. & Pilcher, D. Prognostic accuracy of age-adapted SOFA, SIRS, PELOD-2, and qSOFA for in-hospital mortality among children with suspected infection admitted to the intensive care unit. Intensive Care Med. 44, 179–188 (2018).

    PubMed  Google Scholar 

  47. Balamuth, F. et al. Protocolized treatment is associated with decreased organ dysfunction in pediatric severe sepsis. Pediatr. Crit. Care Med. 17, 817 (2016).

    PubMed  PubMed Central  Google Scholar 

  48. Wynn, J. L. Defining neonatal sepsis. Curr. Opin. Pediatr. 28, 135–140 (2016).

    PubMed  PubMed Central  Google Scholar 

  49. Abdel-Hady, H., Shouman, B. & Aly, H. Early weaning from CPAP to high flow nasal cannula in preterm infants is associated with prolonged oxygen requirement: a randomized controlled trial. Early Hum. Dev. 87, 205–208 (2011).

    PubMed  Google Scholar 

  50. Peters, O., Ryan, S., Matthew, L., Cheng, K. & Lunn, J. Randomised controlled trial of acetate in preterm neonates receiving parenteral nutrition. Arch. Dis. Child. Fetal Neonatal Ed. 77, F12–F15 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Wernly, B. et al. Acidosis predicts mortality independently from hyperlactatemia in patients with sepsis. Eur. J. Intern. Med. 76, 76–81 (2020).

    CAS  PubMed  Google Scholar 

  52. Plötz, F. B. et al. Effect of acute renal failure on outcome in children with severe septic shock. Pediatr. Nephrol. 20, 1177–1181 (2005).

    PubMed  Google Scholar 

  53. Walker, O., Kenny, C. B. & Goel, N. Neonatal sepsis. Paediatr. Child Health 29, 263–268 (2019).

    Google Scholar 

  54. Mathur, N., Singh, A., Sharma, V. & Satyanarayana, L. Evaluation of risk factors for fatal neonatal sepsis. Indian Pediatr. 33, 817–822 (1996).

    CAS  PubMed  Google Scholar 

  55. Chisti, M. J. et al. Clinical predictors and outcome of metabolic acidosis in under-five children admitted to an urban hospital in Bangladesh with diarrhea and pneumonia. PLoS ONE 7, e39164 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. O’Dell, E., Tibby, S. M., Durward, A. & Murdoch, I. A. Hyperchloremia is the dominant cause of metabolic acidosis in the postresuscitation phase of pediatric meningococcal sepsis. Crit. Care Med. 35, 2390–2394 (2007).

    PubMed  Google Scholar 

  57. Bissinger, R. et al. Secondary surfactant administration in neonates with respiratory decompensation. J. Perinatol. 28, 192–198 (2008).

    CAS  PubMed  Google Scholar 

  58. Abdel Mohsen, A. H. & Amin, A. S. Risk factors and outcomes of persistent pulmonary hypertension of the newborn in neonatal intensive care unit of Al-Minya University hospital in Egypt. J. Clin. Neonatol. 2, 78–82 (2013).

    PubMed  PubMed Central  Google Scholar 

  59. Fahmey, S. S., Hodeib, M., Refaat, K. & Mohammed, W. Evaluation of myocardial function in neonatal sepsis using tissue Doppler imaging. J. Matern. Fetal Neonatal Med. 33, 3752–3756 (2020).

  60. Verma, B., Daga, S. R. & Mahapankar, A. Persistent pulmonary hypertension among neonates with sepsis. Indian J. Pediatr. 73, 250–251 (2006).

    PubMed  Google Scholar 

  61. Tomerak, R. H., El-Badawy, A. A., Hussein, G., Kamel, N. R. & Razak, A. R. A. Echocardiogram done early in neonatal sepsis: what does it add? J. Investig. Med. 60, 680–684 (2012).

    PubMed  Google Scholar 

  62. Wong, J. et al. Inotrope use among extremely preterm infants in Canadian NICUs: variations and outcomes. Paediatr. Child Health 17, 34A–34A (2012).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

A.K. and A.J. conceived, designed, and planned the study, contributed to planning data extraction and analysis, interpretation of results, wrote first and final draft of the publication, and approved the final publication. M.B. and F.Z. contributed to data collection, critically reviewed the manuscript, and approved the final publication. D.W. critically reviewed the study design and the manuscript and approved the final publication. X.Y.Y. performed the statistical analysis and contributed to and approved the final publication.

Corresponding author

Correspondence to Ashraf Kharrat.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

Patient consent was not required for this study.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kharrat, A., Zhu, F., Baczynski, M. et al. Organ dysfunction and mortality in preterm neonates with late-onset bloodstream infection. Pediatr Res 94, 1044–1050 (2023). https://doi.org/10.1038/s41390-023-02541-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41390-023-02541-1

Search

Quick links