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BACKGROUND: With the development of Artificial Intelligence (AI) techniques, smart health monitoring, particularly neonatal
cardiorespiratory monitoring with wearable devices, is becoming more popular. To this end, it is crucial to investigate the trend of
AI and wearable sensors being developed in this domain.
METHODS: We performed a review of papers published in IEEE Xplore, Scopus, and PubMed from the year 2000 onwards, to
understand the use of AI for neonatal cardiorespiratory monitoring with wearable technologies. We reviewed the advances in AI
development for this application and potential future directions. For this review, we assimilated machine learning (ML) algorithms
developed for neonatal cardiorespiratory monitoring, designed a taxonomy, and categorised the methods based on their learning
capabilities and performance.
RESULTS: For AI related to wearable technologies for neonatal cardio-respiratory monitoring, 63% of studies utilised traditional ML
techniques and 35% utilised deep learning techniques, including 6% that applied transfer learning on pre-trained models.
CONCLUSIONS: A detailed review of AI methods for neonatal cardiorespiratory wearable sensors is presented along with their
advantages and disadvantages. Hierarchical models and suggestions for future developments are highlighted to translate these AI
technologies into patient benefit.
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IMPACT:

● State-of-the-art review in artificial intelligence used for wearable neonatal cardiorespiratory monitoring.
● Taxonomy design for artificial intelligence methods.
● Comparative study of AI methods based on their advantages and disadvantages.

INTRODUCTION
The United Nations 3.2.2 Sustainable Development Goal aims to
reduce neonatal mortality to 1.2% of live births by 2030.1 Virtually
all (99%) of neonatal deaths occur in the developing world, in low-
and middle-income countries.2,3 These deaths are associated with
conditions and diseases due to lack of skilled care.4 According to
the World Health Organisation, effective care could reduce deaths
by 75%.3 A key factor to essential care is monitoring and
assessment for signs of serious health problems, particularly for
sick, low birth weight and preterm babies. The major causes of
mortality relate to cardiorespiratory conditions such as pneumo-
nia, underdeveloped lungs due to preterm birth and birth
asphyxia.2–5 Hence, cardiorespiratory monitoring is essential, as
it enables the detection, monitoring and prognosis of diseases,
allowing timely and specific care to be provided.3,4

Wearable technology enables continuous cardiorespiratory
monitoring in both hospital and home environments. In conjunc-
tion with AI, it offers the possibility of early detection of diseases,
reducing the workload for clinicians, and providing the best

possible outcomes for newborns. Wearable technologies
were reviewed in detail in part 1 of our review article. We now
focus on AI techniques for neonatal cardiorespiratory monitoring
in part 2.
In this study, AI refers to the techniques used to detect or

predict a cardiorespiratory condition or process signals to obtain
cardiorespiratory information. These techniques have ranged from
traditional ML classifiers to deep learning models. AI-driven
wearable technologies have shown promise in continuous health
monitoring for paediatric clinical practice.6 These applications
have included disease diagnosis, individualised treatment gui-
dance, and prognostic evaluation.7

Although the use of AI for neonatal monitoring has great
potential, it has not been widely studied. It is crucial to identify the
feasibility and potential of AI methods on the data sets extracted
from wearable technologies in neonatal cardiorespiratory mon-
itoring. This review will help inform the future direction of the best
AI techniques to accompany the most promising wearable
technologies in this domain.
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The search methodology used in this study is presented in
“Review methodology”. We describe the various AI technologies
used with wearable sensors for neonatal cardiorespiratory
monitoring (“AI techniques”). We present the evolution of AI
technologies, followed by a novel taxonomy design and analysis
of each technique. The proposed taxonomy helps the under-
standing of the types of AI technologies being employed in the
literature and identify appropriate AI techniques that could be
useful in clinical practice. For example, the traditional ML methods
are, in most cases, interpretable and explainable, and require less
data for training and hence are preferred by clinicians. Further-
more, the documentation of the evolution and progress of AI
technologies, and analysis of the benefits and drawbacks of each
technique, enables us to select the best AI technique based on
clinical needs. Lastly, we recommend the most popular wearable
sensors and AI methods to be used in the future, based on their
advantages and disadvantages, evolution, and taxonomy (“Dis-
cussion” and “Conclusions”).

REVIEW METHODOLOGY
A search was proposed for wearable technology and AI for
neonatal cardiorespiratory monitoring. In part 1 of our review
article, we found 107 articles related to wearable technology for
neonatal cardiorespiratory monitoring. Of these 107 articles, 14
were included as they were related to AI.
An additional search in Google Scholar was also performed with

the below query string on 05 January 2022:

1. Restrict to neonatal population

a. Search terms: “Neonatal”, “Pediatric” and “Paediatric”

2. Restrict to wearable technology

a. Search terms: “Wearables”

3. AI

a. Search terms: “Artificial Intelligence”, “Machine Learning”
and “Deep Learning”

4. Restrict to cardiorespiratory monitoring

a. Search terms: “Cardiac”, “Heart”, “Respiratory”, “Lung”,
and “Breathing”

This resulted in a total of 1680 articles. Articles that were
unrelated (i.e., not neonatal, AI, nor cardiorespiratory monitoring
focused) and missing full-text and/or minimal information
provided were removed. Two authors (C.S. and E.G.) indepen-
dently searched for additional articles. Five further papers were
obtained using a snowballing technique. In total, 56 articles were
obtained to review in this paper. The PRISMA flow diagram is
presented in Fig. 1. Based on the literature review in the neonatal
cardiorespiratory monitoring-related articles, we designed a new
taxonomy to provide more insights into AI techniques under the
study domain. Similarly, we created a stacked plot to show the
popularity of AI methods in this study.

AI TECHNIQUES
For neonatal health monitoring, AI techniques have been used on
data obtained from both wearable and non-wearable devices.8,9

To implement AI techniques in general, there are four major steps:
(i) data extraction, (ii) pre-processing, (iii) training, and (iv) testing
steps.10 For example, the continuous data obtained from wearable
technologies such as textile electrodes (e.g., electrocardiogram
(ECG)), or non-wearable devices such as digital stethoscopes (e.g.,
heart and lung sound) are pre-processed to remove artefacts and
noises, which are used for training the AI models. Furthermore, the
pre-processing task depends on the nature of extracted data. As
an example, ECG signals are notch filtered at 50 Hz11 and band-
pass filtered. Audio signals are also band-pass filtered.12 The AI
techniques identified for this application are categorised into
supervised learning,6 unsupervised learning,13 and reinforcement
learning (RL).14 In the next subsection, we focus on the evolution,
taxonomy and comparative study of AI techniques used for
cardiorespiratory monitoring of wearable data.

Evolution of AI
In this section, the evolution of AI techniques is presented using
six different perspectives.

Wearable cardiorespiratory monitoring for infants. The initial AI
work using wearable cardiorespiratory monitoring was conducted

Google Scholar
(n = 1680)

Final wearable
technology review

(N = 107)

Total articles retrieved
(N = 37)

Total articles in final
review

(N = 56)

5 related articles
added

Total articles
retrieved
(N = 14)
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to neonates, artificial

intelligence and
cardiorespiratory

Exclusion: unrelated
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intelligence

Fig. 1 PRISMA flow diagram if included studies.
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in 2012, which employed the support vector machine (SVM)
algorithm with radial basis function on pulse oximetry data
acquired from neonates.6 SVM is a popular traditional ML
algorithm, that classifies data based on hyperplanes, which can
be linear, polynomial, and radial basis functions. Patron et al.15 and
Mongan et al.16 employed the SVM algorithm and artificial neural
network (ANN) respectively, on data collected from radio-
frequency identification (RFID) tags in a wearable belt. The ANN
is a deep learning algorithm, which contains different intermedi-
ate layers for the semantic information, and requires one-
dimensional feature vector representation to train the model
during classification. Furthermore, Vu et al.11 employed different
combinations of popular traditional ML algorithms such as
Decision tree, SVM, k-nearest neighbours (K-NN), and deep
learning algorithm (ANN) as a two-stage classifier on ECG data.
First, they selected the combination of the classifiers giving the
optimal performance. Second, they used the optimal classifier for
the final classification. The decision tree algorithm is based on the
rules, which splits data into roots and nodes during classification.
De Greef et al.17 employed the traditional ML algorithm, called

the random forest (RF) algorithm, to classify the vital signs data
obtained from the clothing wearable sensors for newborn heart
diseases detection. At the same time, Munz and Wolf18 realised
the importance of the deep learning approach and proposed to
use of the ANN algorithm for the classification of infant breathing
patterns on data obtained from the breathing sensor. Further-
more, Acharya et al.8 utilised three classifiers (naive Bayes (NB),
logistic regression (LR), and decision trees) for respiratory
monitoring on data obtained from the abdomen and shoulder.
In the meantime, considering the efficacy of LR for the
classification, Raknim et al.19 employed multiple LR models for
neonatal sepsis monitoring on the data achieved from the
wearable ballistocardiography sensor.
Using traditional ML algorithms, Urdal et al.20 implemented the

Vu classifier for newborn resuscitation detection on ECG data.
They also used accelerometer data to observe the heart rate (HR)
during different activities. These activities included chest com-
pressions, back stimulation, tactile stimulation, drying thoroughly,
moving the baby and uncategorised movements. Furthermore,
Ostojic et al.21 proposed to use of four traditional ML algorithms
(decision tree, K-NN, NB, and SVM) on pulse oximetry data for
reducing the false alarm rate. Here, the NB algorithm considers the
prior and posterior probabilities to predict the class labels in the
data. Similarly, Shamsir et al.22 proposed deep learning methods
(convolutional neural network (CNN) and long short-term memory
(LSTM)) for the classification of neonatal breathing and blood
oxygen level data obtained from thermal sensors to detect
respiratory failure. The LSTM model captures the sequential
information of data during classification. Xu et al.23 employed
both deep learning (ANN) and traditional ML methods (LR) on the
vital signs data extracted from two patches stuck on the neonate’s
body. LR is based on the statistical model that employs the logistic
function to learn the data. Following the efficacy of traditional ML
methods, Hansen et al.24 employed the hidden Markov model
(HMM) coupling with the higher-order features obtained from the
Minkowski and Mahalanobis distances on multi-tag RFID measure-
ments from abdominal belts for respiratory monitoring.
More recently, Vahabi et al.25 proposed to use of deep learning

(ResNet-50) and traditional ML methods (SVM) on wearable
electrical impedance tomography (EIT) data for neonatal sleep
apnoea detection. Here, the ResNet-50, a 50-layer deep learning
model, extracts the semantic information of the input image using
the residual connection (the output of a layer is a convolution of
its input plus input) and batch normalisation.

Electrical-based cardiorespiratory monitoring. Four studies
reported using electrical-based sensors for cardiorespiratory
monitoring. Khodadad et al.26 devised a breath detector classifier,

which is based on the traditional ML method, on the EIT data for
lung function. This classifier relies on zero-crossing, which utilises
the optimised threshold parameters above and below the zero
value of the data for the classification. Gomez et al.27 used several
traditional ML algorithms such as RF, LR, and K-NN to detect the
HR variability for neonatal sepsis on ECG data. The RF algorithm is
an ensemble learning algorithm that creates multiple decision
trees during training and ensembles the output from multiple
trees. The K-NN algorithm classifies the ECG data based on
similarity matching. Their results show that the proposed model
can assist physicians in remote monitoring. Also, Mahmud et al.28

employed the XGBoost algorithm, a traditional ML algorithm, on
the ECG data of neonates. The XGBoost algorithm is a decision
tree ensemble algorithm, using gradient boosting. More recently,
Macfarlane et al.29 recommended a deep learning method (CNN
model) for the ECG interpretation during the monitoring of both
neonates and adults as ANN was not found to be superior. The
CNN algorithm employs the visual input and extracts the semantic
information after several levels of convolution operation across
the input image.

Optical-based cardiorespiratory monitoring. Three studies report
optical sensors for data extraction during cardiorespiratory
monitoring. Villarroel et al.30 employed the deep learning models
(VGG-16 and ResNet-50) to monitor the vital signs on video and
pulse oximeter data collected from preterm infants. The original
VGG-16 model comprises 16 deep layers to extract the semantic
information of the input image (e.g., video frame) during its
analysis. Hunter et al.31 employed the traditional ML methods
(SVM and XGBoost algorithms) on pulse oximeter data for the
clinical judgement of capillary refill time in children aged 1 to 12.
The XGBoost algorithm is a decision tree ensemble algorithm,
using gradient boosting. Recently, Huang et al.32 employed both
video and PPG data obtained from pulse oximeter data to train
the deep learning model (LSTM model) for neonatal HR
monitoring.

Mechanical-based cardiorespiratory monitoring. The first AI work
for cardiorespiratory monitoring using mechanical sensors for
newborns was carried out in 2001. The researchers implemented
the deep learning method (ANN algorithm) on data captured from
a digital stethoscope attached to the infant After 14 years, there
was a gradual increase in mechanical sensors for neonatal
cardiorespiratory monitoring. Amiri et al.33 proposed the use of
an RF algorithm, a traditional ML method, for heart murmur
detection on phonocardiogram (PCG) data achieved from a digital
stethoscope that was connected to a mobile phone. Bokov et al.34

employed the SVM algorithm for wheeze detection on the audio
data recorded using smartphones in the paediatric population. In
2016, Sola et al.35 proposed to use traditional ML algorithms
(Gaussian mixture model (GMM) and HMM) on the Mel-frequency
filter bank from audio signals obtained from the digital stetho-
scope to detect childhood pneumonia. The GMM helps learn the
unsupervised pattern of data, whereas the HMM helps find the
sequential pattern of data.
In 2018, three groups reported cardiorespiratory monitoring

using mechanical sensors. Shelevytsky et al.36 proposed to use of
the traditional ML method (SVM) for the classification of PCG data
during the heart condition classification of the newborn. Bardou
et al.13 employed different algorithms such as K-NN, SVM, GMM,
and CNN algorithms on the audio data extracted by digital
stethoscopes from the heart of different age groups, including
newborns and adults. To train the traditional ML algorithms (K-NN,
SVM, and GMM), the handcrafted features for audio data were
used, whereas, for the deep learning method (CNN), the spectro-
gram, which is the visual representation of audio data, was used.
In their work, handcrafted features include the Mel frequency
cepstral coefficients and texture features. Ramanathan et al.37
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underscored the application of the deep learning method (ANN)
being used in a digital stethoscope used for extracting audio
signals from the human body, including children and newborns.
In 2020, Grooby et al.38 a applied SVM, Decision trees, K-NN, and

dynamic classifiers for the classification during the quality
assessment of chest sounds obtained from a digital stethoscope.
Here, the dynamic classifier is based on the ensemble approach,
which selects the optimal base classifiers or their combination to
improve the performance. Their result shows that the dynamic
classifier outperforms the individual classifiers.
By 2021, there was an increasing number of studies using AI for

cardiorespiratory monitoring. Gomez-Quintana et al.39 employed
the XGBoost algorithm, for the classification of neonatal PCG
signals that were obtained from a digital stethoscope. Apart from
traditional ML methods in the same year, Jani et al.40 suggested
using a deep learning method (ANN) on the PCG data obtained
from the digital stethoscope for heart murmur detection from
neonatal to adult health monitoring. Similarly, Oliveira et al.41

highlighted the application of heart murmur detection using ANN
and logistic regression, from a paediatric and neonatal population
on PCG data. Grooby et al.42,43 proposed to use deep learning
algorithms (e.g., YAMNet), and traditional ML algorithms (e.g., non-
negative matrix co-factorisation (NMCF), SVM, decision trees, K-NN,
and LR) for neonatal chest sound separation, which contains both
noisy and mixed samples as well as heart/lung quality assessment
problems on digital stethoscope data. Lastly, Gomez-Quintana
et al.12 employed the XGBoost algorithm for the classification of
neonatal PCG signals. The XGBoost algorithm was responsible for
detecting patent ductus arteriosus in neonates.

Multi-sensor-based cardiorespiratory monitoring. Research using
multi-sensor-based cardiorespiratory monitoring began in 2013.
The purpose of their AI method is to predict the mortality of
infants. Furthermore, Rinta-Koski et al.44 used a Gaussian process
classifier on standard clinical features, which includes HR and
blood pressure, to predict mortality. Gaussian process classifier is

based on Laplace approximation, which focuses on the posterior
probabilities of the variables. Following the similar trend of using
traditional ML algorithms, Pais et al.45 employed the LDA
algorithm for the classification of ECG and pulse oximetry data
to determine HR variability. The LDA algorithm expresses the data
as the linear combination of features that discriminate between
two or more classes. Here, the LDA algorithm is responsible for
detecting apnoea in neonates.
Similarly, Jalali et al.46 proposed to use of the SVM classifier for

the classification of periventricular leukomalacia after cardiac
surgery. Their method utilises vital signs of neonates, including HR
data achieved from pulse oximetry. In their method, SVM is used
to predict periventricular leukomalacia based on vital signs data.
Moreover, Joshi et al.47 proposed to use the XGBoost algorithm
trained on HR, respiratory rate (RR), and pulse oximetry data
obtained from neonates to predict critical cardiorespiratory
conditions. Hassan et al.48 employed the ANN to detect sleep
apnoea on temperature and pulse oximeter data from neonates.
Similarly, Pini49 utilised the random forest and K-NN algorithms for
the maternal, foetal, and neonatal profiling of the physiological
signals with qualitative data such as maternal lifestyle factors.
Recently in 2021, Zuzarte et al.50 employed GMM and LR

methods for the classification of cardiorespiratory and movement
features achieved from the pulse oximeter and ECG electrodes.
The GMM and LR methods are used to detect neonatal apnoeic
events. Their results suggest that the use of such technologies
helps reduce morbidity and mortality. Cabrera-Quiros et al.51

utilised LR, NB, and nearest mean classifiers for the detection of
late-onset sepsis on continuous high-resolution ECG and chest
impedance data in neonates. The nearest mean classifier, also
called the Rocchio classifier, classifies the data to the nearest mean
of the training data belonging to the class.

Review papers. Here we discuss review papers on neonatal,
paediatric, and/or adult health monitoring, including cardiorespiratory,
using AI techniques on either wearable- or non-wearable-based data.
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In 2019, Chisi et al.52 suggested using AI for overall health
monitoring of clinical data obtained from wearable sensors such as
ECG and pulse oximeter data in the paediatric population. Tandon
et al.53 also highlighted the efficacy of ML algorithms for the detection
of paediatric cardiovascular disease on continuous physiological data
(CPD) obtained from wearable biosensors.

Ranjit and Kissoon14 discussed different applications of AI,
particularly RL for early detection of sepsis and septic shock in the
paediatric population on different data such as RR, HR, and SpO2.
During the same year, Chong et al.54 highlighted the use of decision
trees and RF for the health monitoring of HR, RR, and oxygen
saturation in the paediatric population. Goulooze et al.55 explained
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algorithms such as RF and decision trees for paediatric and neonatal
health monitoring such as sepsis detection on the early results of
laboratory tests and nursing observations. Johnson et al.56 under-
scored the importance of ML algorithms for health monitoring,
including neonatal population on clinical features such as HR, RR and
oxygen level. They highlighted these data could be extracted using
mobile devices and body-worn wearable sensors. Memon et al.57

underscored the application of ML algorithms on the data extracted
from the RFID-based abdominal band sensors capturing the RR of
neonates. Hasan et al.58 also discussed the ML algorithms for neonatal
health monitoring using vital signs data (e.g., HR, oxygen level, etc.)
achieved from the wearable sensors.
Sobhan et al.59 elaborated on the popular AI techniques (e.g., LR

and SVM) for the heart and respiration functions on the health data
(e.g., ECG and SCG) collected using wearable or non-wearable sensors
for both adult and non-adult populations. Lin et al.60 discussed using
deep learning methods for the classification of heart sound signals on
wearable data, including ECG and PCG for both neonatal and adult
health monitoring. Furthermore, Lyu et al.61 also underscored the use
of deep learning algorithms (e.g., ANN, CNN and LSTM) on the
wearable data (e.g., ECG and blood pressure,) for both neonatal and
adult health monitoring in 2021.

The overall evolution of AI techniques ranging from 2001 to 2021 is
summarised using a stacked bar plot (Fig. 2) and a timeline (Fig. 3).
From Fig. 4, we observed that the SVM algorithms are the most
popular (12 publications), whereas the ANNs (10 publications) are the
second most used algorithms in the literature. This data shows that
the traditional ML algorithm (e.g., SVM) is still dominant for neonatal
cardiorespiratory monitoring despite the great promise of the deep
learning algorithm (ANN) in this domain.

Taxonomy of AI techniques used with wearable technology
for neonatal cardiorespiratory monitoring purpose
Based on the research works using several AI methods for
cardiorespiratory monitoring in the literature, we categorise them
into three broad categories: traditional ML (e.g., SVM,38 Decision
trees,11 etc.), deep learning-based (e.g., CNN,22 LSTM,22 etc.) and
reward/punishment-based AI methods (e.g., RL method14). Deep
learning-based methods22 extract the higher-order information
from the input data to improve performance. The higher-order
information is achieved by using different operations such as
convolution and activation; however, traditional ML AI techniques
do not produce such types of information during their learning
process. The reward/punishment AI techniques (e.g., RL algorithm)
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Fig. 5 Taxonomy of artificial intelligence (AI) techniques used in neonatal cardiorespiratory monitoring. ANN artificial neural network,
CNN convolutional neural network, GMM Gaussian mixture model, HMM hidden Markov model, K-NN k-nearest neighbour, LDA linear
discriminant analysis, LR logistic regression, LSTM long short-term model, NB naive Bayes, NMCF non-negative matrix co-factorisation, RF
random forest, RL reinforcement learning, SVM support vector machine, XGBoost extreme graduate boosting.
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Table 1. Comparison between different artificial intelligence (AI) techniques with wearables for neonatal cardiorespiratory monitoring.

AI techniques Advantages Disadvantages

Artificial neural network • Ability to extract complex non-linear relationship
• Model trained in one domain can be used for other domains,
also called transferable.

• Black box
• Extensive empirical testing is required to tune the hyper-
parameters

Support vector machine • Efficient for high-dimension feature vector
• Relatively memory-efficient

• Not good for big data
• Performance degrades if more outliers are present
• Non-transferable

Random forest • Ensemble learning and performance improvement
• Can be used for both classification and regression

• Higher complexity
• Longer computation time

Gaussian mixture model • Works for overlapped clusters, which might not be possible
from K-NN and DBSCAN
• Easy to implement
• Fast algorithm

• Sensitive to noise and outliers
• Requires a large number of parameters
• Requires more data to get good results

Hidden Markov model • Interpretable
• Simple and easy to understand

• Uses the Viterbi algorithm, which is expensive
computationally
• Slower

Linear discriminant analysis • Simple and fast algorithm
• Interpretable and explainable

• Requires normal distribution of data

Decision tree • Interpretable and explainable
• Can work on a limited data

• Requires a higher time for the higher-dimensional data
• Higher computational complexity

Gaussian process classifier • Easy to implement
• Flexible
• Faster

• More hyper-parameter tuning
• Lose efficiency in higher dimension space

Breath detector • Easy to implement as it uses a simple decision approach
• Easy to understand as it uses threshold in the algorithm

• Higher computational complexity because of zero-crossing
algorithm
• The selection of appropriate threshold requires
extensive study

Logistic regression • Simple to interpret the output
• Less complex

• Difficultly in modelling complex relationship

Convolutional neural network • Capture the spatial information
• High order semantic information
• Transferable

• Prone to overfitting
• Huge data set required
• Black box

eXtreme gradient boosting • Parallelisation
• Can learn the non-linear pattern
• Uses different regularisation to avoid overfitting

• Ineffective for sparse and unstructured data
• Sensitive to outliers

ResNet-50 • Comparatively lower-sized weight file for fine-tuning and
transfer learning
• Transferable
• The higher number of intermediate layers to produce more
semantic information than VGG-16

• Lack of interpretability and explainability if used alone
• Increased complexity of model architecture

k-nearest neighbour • Easy to implement
• Can work for classification and regression
• Interpretable and explainable

• Slow
• Not useful with the higher-dimensional feature vector
• Outliers’ sensitivity

Vu classifier • Easy to implement
• Ensemble approach

• No approach for class imbalance problem
• Requires more data for good accuracy
• Prone to over-fitting
• Computational issues

Dynamic classifier • Easy to use ensemble learning
• Performance improvement than normal standalone classifier

• Computationally complex
• Limited algorithms available for the experiment to
this date

Naive Bayes • Fast
• Can work on a limited data set
• Interpretable and explainable

• Assumes all variables as an independent
• Provides zero frequency if the testing data are not in the
training

Reinforcement learning • Can solve complex problems
• Correct error during training
• In absence of training data, it learns from experience

• Not useful for solving simple problems
• Data-hungry
• Curse of dimensionality limits the performance

Non-negative matrix factorisation • Low storage
• Work on a limited data
• Interpretability

• Sensitive with respect to initialisation
• Might not be useful for big data

Long short-term memory • Capture the temporal sequence information
• Transferable
• Provides a higher-order semantic information

• Black box
• Prone to overfitting
• Needs extensive works for hyper-parameter tuning
• Produce a lower performance

YAMNet • Transferable
• Imparts several high-order information from several layers for
the input audio

• Black box
• Prone to overfitting if we re-train from scratch

VGG-16 • Few layers to extract useful information, so easy to
experiment
• Transferable

• Black box
• Big weight file during transfer learning, so not good for
edge computing

Nearest mean classifier Efficient and easy to implement
Interpretable

May not work properly if data is not linearly separable
May not work properly for data having semantically similar
information

Rule-based Easy to implement
Interpretable

Unable to work in a complex case with multiple conditions
Problem in generalisability
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learn the data based on rewards and punishment strategy as
discussed in “Evolution of AI”. Under the traditional AI techniques,
there are several algorithms, for example, SVM, RF, Logistic
regression, etc. The deep learning AI techniques are further
divided into two groups: pre-trained and non-pre-trained AI
techniques. Pre-trained AI techniques (e.g., ResNet-50, VGG-16,
etc.) have been already pre-trained with large data sets (e.g.,
image data sets), which help produce features based on them,
whereas non-pre-trained AI techniques (e.g., LSTM) need to be
trained from scratch. The taxonomy is presented in Fig. 5.

Comparison of AI techniques used with wearable technology
for neonatal cardiorespiratory monitoring
The AI technologies used for neonatal cardiorespiratory monitor-
ing have their own peculiarities and importance in terms of
applicability and viability. For example, most of the traditional AI
techniques are more appropriate for small data sets common in
biomedical research. Also, they have a higher level of interpret-
ability, which helps establish trust and acceptability among
clinicians and healthcare professionals. Tables 1 and 2 summarise
the comparison of different AI techniques used in cardiorespira-
tory monitoring alongside their advantages and disadvantages.
We compare the AI methods based on several factors such as
model complexity, performance, and interpretability.

DISCUSSION
AI techniques, sensor technologies and their evolution being
adopted in neonatal cardiorespiratory monitoring are discussed in
this section.
For data collected from wearable sensors, AI has been used

mainly for apnoea detection, along with sepsis and general critical
health detection. However, as presented in “Wearable cardior-
espiratory monitoring for infants” and Supplementary Table 1,
there have been few studies that evaluate the use of wearable
sensor collected data. While many of the existing AI techniques
presented for neonatal cardiorespiratory monitoring in this
paper seem suitable, further research and clinical validation would
be required. This is especially important as wearable sensor data is
typically more prone to noise such as motion artefact and typically
provides weaker physiological signals. Therefore, it would be
expected these AI techniques would either not work off-the-shelf
or provide lower accuracy than reported. In future, the use of AI to
improve the signal quality of wearable sensor collected data
would be of interest to resolve this limitation. Furthermore,
wearable sensors typically offer the opportunity of multiple
physiological signals and vitals which has yet to be fully utilised
in AI techniques.
According to Figs. 2–4, more AI techniques, including both

traditional ML and deep learning, have been used for neonatal
cardiorespiratory monitoring. Also, we noted that the SVM
algorithm is the most popular AI technique to date, particularly
prior to 2019. After 2019, there are several emerging AI
techniques, including K-NN, ANN, SVM, RF, LR, and XGBoost.
Furthermore, the number of traditional ML methods outnumbers
the number of deep learning and reward/punishment methods
(Fig. 2). In addition, some classifiers such as Gaussian process
classifiers that were published before 2019 are less popular in
recent years, whereas methods such as XGBoost and LR are on
the rise along with deep learning methods such as LSTM and
ResNet-50.
The taxonomy diagram in Fig. 5 illustrates that AI techniques for

cardiorespiratory monitoring of wearable data are moving
towards more traditional ML methods. As an example, the SVM
classifier, one of the most popular algorithms, is being used mostly
for classification problems. The reasons for their popularity could
be explained twofold. First, traditional ML models59 are easy to
implement and have fewer hyperparameters, thereby reducingTa
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the time for the optimal model deployment. Second, health
practitioners/clinicians prefer interpretable and explainable AI
models. The traditional AI methods are mostly interpretable and
explainable and could work on limited data. We observe that both
deep learning methods and traditional ML methods have both
advantages and disadvantages in their application (Table 1). For
instance, SVM may work for higher dimensional data, but it fails to
produce the expected result using big data. However, deep
learning methods30 such as ResNet-50 and VGG-16, might be
more useful with big data, but less so with limited data.
Furthermore, we compared AI methods in terms of explain-

ability and performance. From Table 2, we observed that the
highest-performing algorithms are ANN and K-NN, which provide
the highest specificity of 100% and 99.46%, respectively.
Regarding explainability and interpretability features, the ANN
algorithm is difficult to explain and interpret, whereas K-NN is
interpretable and explainable.
While AI offers great promise in the home and hospital

environment, further studies are required in two areas. First, the
impact of the AI algorithms needs to be investigated to
demonstrate the benefit of these algorithms to improve health
(reduction in mortality and morbidity) and financial (reduction in
clinician workload and health interventions) outcomes. Second,
studies determining the acceptability and key concerns of these AI
algorithms from clinicians in the hospital environment and
parents in the home environment are required. These two areas
are important to see the translation of these AI techniques from
research into clinical practice.

CONCLUSIONS
We reviewed several AI techniques for neonatal cardiorespiratory
monitoring on wearable data and designed a hierarchical
taxonomy and AI timeline based on them. We found the rising
popularity of traditional AI methods (e.g., SVM, XGBoost) compared
to deep learning methods (e.g., ANN, CNN). Our study also found
that the application of AI methods in this domain is still in its
infancy. As more sensor technology develops and produces more
data, we need to identify the best AI methods in this domain.
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