Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Prematurity-associated wheeze: current knowledge and opportunities for further investigation

Abstract

Prematurity-associated wheeze is a common complication of preterm birth, with significant impact on the health and healthcare utilization of former preterm infants. This wheezing phenotype remains poorly understood and difficult to predict. This review will discuss the current state of the literature on prematurity-associated wheeze. We will discuss etiology and pathophysiology, and offer two conceptual models for the pathogenesis of this complex condition. This review will also identify current methods of ascertainment, and discuss the strengths and limitations of each. We will explore research-backed approaches to prevention and management, and finally suggest both pre-clinical and clinical avenues for investigation. An in-depth understanding of prematurity-associated wheeze will aid clinicians in its diagnosis and management, and inspire scientists to pursue much-needed further study into causes and prevention of this common and impactful condition.

Impact

  • There is no recent, concise review on the current state of research on prematurity-associated wheeze, which is a rapidly evolving area of study.

  • This article highlights causal models of wheeze, methods of ascertainment, management strategies for the clinician, and opportunities for further research for the physician scientist.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Two conceptual theories for the development of prematurity-associated wheeze.

Similar content being viewed by others

Evdokia Dimitriadis, Daniel L. Rolnik, … Ellen Menkhorst

References

  1. Been, J. V. et al. Preterm birth and childhood wheezing disorders: a systematic review and meta-analysis. PLoS Med. 11, e1001596 (2014).

    PubMed  PubMed Central  Google Scholar 

  2. Fawke, J. et al. Lung function and respiratory symptoms at 11 years in children born extremely preterm: the EPICure study. Am. J. Respir. Crit. Care Med. 182, 237–245 (2010).

    PubMed  PubMed Central  Google Scholar 

  3. Kotecha, S. J. et al. Comparison of the associations of early-life factors on wheezing phenotypes in preterm-born children and term-born children. Am. J. Epidemiol. 188, 527–536 (2019).

    PubMed  PubMed Central  Google Scholar 

  4. Ciuffini, F., Robertson, C. F. & Tingay, D. G. How best to capture the respiratory consequences of prematurity? Eur. Respir. Rev. 27, 170108 (2018).

    PubMed  PubMed Central  Google Scholar 

  5. Priante, E. et al. Respiratory outcome after preterm birth: a long and difficult journey. Am. J. Perinatol. 33, 1040–1042 (2016).

    PubMed  Google Scholar 

  6. Stevens, C. A., Turner, D., Kuehni, C. E., Couriel, J. M. & Silverman, M. The economic impact of preschool asthma and wheeze. Eur. Respir. J. 21, 1000–1006 (2003).

    CAS  PubMed  Google Scholar 

  7. Islam, J. Y., Keller, R. L., Aschner, J. L., Hartert, T. V. & Moore, P. E. Understanding the short- and long-term respiratory outcomes of prematurity and bronchopulmonary dysplasia. Am. J. Respir. Crit. Care Med. 192, 134–156 (2015).

    PubMed  PubMed Central  Google Scholar 

  8. Hamilton, B. E. Births: Provisional Data for 2021. National Vital Statistics Reports: From the Centers for Disease Control and Prevention, National Center for Health Statistics, National Vital Statistics System 20 (2021).

  9. Hibbs, A. M. et al. One-year respiratory outcomes of preterm infants enrolled in the nitric oxide (to prevent) chronic lung disease trial. J. Pediatrics 153, 525–529.e2 (2008).

    CAS  Google Scholar 

  10. Hibbs, A. M., Babineau, D. C., Wang, X. & Redline, S. Race differences in the association between multivitamin exposure and wheezing in preterm infants. J. Perinatol. 35, 192–197 (2015).

    CAS  PubMed  Google Scholar 

  11. Pramana, I. A. et al. Respiratory symptoms in preterm infants: burden of disease in the first year of life. Eur. J. Med. Res. 16, 223–230 (2011).

    PubMed  PubMed Central  Google Scholar 

  12. Moreno-Galdó, A. et al. Recurrent wheezing during the first 3 years of life in a birth cohort of moderate-to-late preterm infants. Pediatr. Allergy Immunol. 31, 124–132 (2020).

    PubMed  Google Scholar 

  13. Blanken, M. O. et al. Population-attributable risk of risk factors for recurrent wheezing in moderate preterm infants during the first year of life. Paediatr. Perinat. Epidemiol. 30, 376–385 (2016).

    PubMed  Google Scholar 

  14. Isayama, T., Lewis-Mikhael, A.-M., O’Reilly, D., Beyene, J. & McDonald, S. D. Health services use by late preterm and term infants from infancy to adulthood: a meta-analysis. Pediatrics 140, e20170266 (2017).

    PubMed  Google Scholar 

  15. McLaurin, K. K., Hall, C. B., Jackson, E. A., Owens, O. V. & Mahadevia, P. J. Persistence of morbidity and cost differences between late-preterm and term infants during the first year of life. Pediatrics 123, 653–659 (2009).

    PubMed  Google Scholar 

  16. Rona, R. J., Gulliford, M. C. & Chinn, S. Effects of prematurity and intrauterine growth on respiratory health and lung function in childhood. BMJ 306, 817–820 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. von Mutius, E., Nicolai, T. & Martinez, F. D. Prematurity as a risk factor for asthma in preadolescent children. J. Pediatr. 123, 223–229 (1993).

    Google Scholar 

  18. Elder, D. E., Hagan, R., Evans, S. F., Benninger, H. R. & French, N. P. Recurrent wheezing in very preterm infants. Arch. Dis. Child Fetal Neonatal Ed. 74, F165–F171 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Jobe, A. H. & Bancalari, E. Bronchopulmonary dysplasia. Am. J. Respir. Crit. Care Med. 163, 1723–1729 (2001).

    CAS  PubMed  Google Scholar 

  20. Vrijlandt, E. Why do preterm infants wheeze? Clues from epidemiology. in Respiratory Outcomes in Preterm Infants 15–29 (Springer International Publishing AG, 2017).

  21. Ganguly, A. & Martin, R. J. Vulnerability of the developing airway. Respir. Physiol. Neurobiol. 270, 103263 (2019).

    PubMed  PubMed Central  Google Scholar 

  22. Keller, R. L. et al. Bronchopulmonary dysplasia and perinatal characteristics predict 1-year respiratory outcomes in newborns born at extremely low gestational age: a prospective cohort study. J. Pediatr. 187, 89–97.e3 (2017).

    PubMed  PubMed Central  Google Scholar 

  23. Parad, R. B. et al. Prediction of respiratory outcome in extremely low gestational age infants. Neonatology 107, 241–248 (2015).

    PubMed  Google Scholar 

  24. Dessardo, N. S. et al. Chronic lung disease of prematurity and early childhood wheezing: is foetal inflammatory response syndrome to blame? Early Hum. Dev. 90, 493–499 (2014).

    PubMed  Google Scholar 

  25. Becroft, D. M. O., Thompson, J. M. D. & Mitchell, E. A. Placental chorioamnionitis at term: epidemiology and follow-up in childhood. Pediatr. Dev. Pathol. 13, 282–290 (2010).

    PubMed  Google Scholar 

  26. Doyle, L. W. et al. Ventilation in extremely preterm infants and respiratory function at 8 years. N. Engl. J. Med. 377, 329–337. https://doi.org/10.1056/NEJMoa1700827 (2017).

  27. Mayer, C. A., Martin, R. J. & MacFarlane, P. M. Increased airway reactivity in a neonatal mouse model of continuous positive airway pressure. Pediatr. Res. 78, 145–151 (2015).

    PubMed  PubMed Central  Google Scholar 

  28. Hartman, W. R. et al. Oxygen dose responsiveness of human fetal airway smooth muscle cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 303, L711–L719 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Vogel, E. R. et al. Moderate hyperoxia induces extracellular matrix remodeling by human fetal airway smooth muscle cells. Pediatr. Res. 81, 376–383 (2017).

    CAS  PubMed  Google Scholar 

  30. Wang, H. et al. Severity of neonatal hyperoxia determines structural and functional changes in developing mouse airway. Am. J. Physiol. Lung Cell Mol. Physiol. 307, L295–L301 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Raffay, T. M. & Martin, R. J. Intermittent hypoxia and bronchial hyperreactivity. Semin. Fetal Neonatal Med. 25, 101073. https://doi.org/10.1016/j.siny.2019.101073 (2020).

  32. van Zanten, H. A. et al. The risk for hyperoxaemia after apnoea, bradycardia and hypoxaemia in preterm infants. Arch. Dis. Child Fetal Neonatal Ed. 99, F269–F273 (2014).

    PubMed  Google Scholar 

  33. Di Fiore, J. M. et al. Early inspired oxygen and intermittent hypoxemic events in extremely premature infants are associated with asthma medication use at 2 years of age. J. Perinatol. 39, 203–211 (2019).

    PubMed  Google Scholar 

  34. Stevens, T. P., Dylag, A., Panthagani, I., Pryhuber, G. & Halterman, J. Effect of cumulative oxygen exposure on respiratory symptoms during infancy among VLBW infants without bronchopulmonary dysplasia. Pediatr. Pulmonol. 45, 371–379 (2010).

    PubMed  Google Scholar 

  35. Dylag, A. M. et al. Early neonatal oxygen exposure predicts pulmonary morbidity and functional deficits at 1 year. J. Pediatr. 223, 20–28.e2 (2020).

    PubMed  PubMed Central  Google Scholar 

  36. Colin, A. A., McEvoy, C. & Castile, R. G. Respiratory morbidity and lung function in preterm infants of 32 to 36 weeks’ gestational age. Pediatrics 126, 115–128 (2010).

    PubMed  Google Scholar 

  37. McEvoy, C. et al. Respiratory function in healthy late preterm infants delivered at 33-36 weeks of gestation. J. Pediatr. 162, 464–469 (2013).

    PubMed  Google Scholar 

  38. Proietti, E. et al. Can infant lung function predict respiratory morbidity during the first year of life in preterm infants? Eur. Respir. J. 43, 1642–1651 (2014).

    PubMed  Google Scholar 

  39. Bird, T. M. et al. Late preterm infants: birth outcomes and health care utilization in the first year. Pediatrics 126, e311–e319 (2010).

    PubMed  Google Scholar 

  40. Perez, G. F. et al. Age-related effect of viral-induced wheezing in severe prematurity. Children (Basel) 3, E19 (2016).

    Google Scholar 

  41. Scheible, K. M. et al. T cell developmental arrest in former premature infants increases risk of respiratory morbidity later in infancy. JCI Insight 3, e96724 (2018).

  42. Korsten, K. et al. RSV hospitalization in infancy increases the risk of current wheeze at age 6 in late preterm born children without atopic predisposition. Eur. J. Pediatr. 178, 455–462 (2019).

    PubMed  Google Scholar 

  43. Blanken, M. O. et al. Respiratory syncytial virus and recurrent wheeze in healthy preterm infants. N. Engl. J. Med. 368, 1791–1799 (2013).

    CAS  PubMed  Google Scholar 

  44. Halterman, J. S. et al. Environmental exposures and respiratory morbidity among very low birth weight infants at 1 year of life. Arch. Dis. Child. 94, 28–32 (2009).

    CAS  PubMed  Google Scholar 

  45. Guarnieri, M. & Balmes, J. R. Outdoor air pollution and asthma. Lancet 383, 1581–1592 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Thurston, G. D. et al. Outdoor air pollution and new-onset airway disease. an official American Thoracic Society Workshop Report. Ann. Am. Thorac. Soc. 17, 387–398 (2020).

    PubMed  PubMed Central  Google Scholar 

  47. Pénard-Morand, C. et al. Long-term exposure to close-proximity air pollution and asthma and allergies in urban children. Eur. Respir. J. 36, 33–40 (2010).

    PubMed  Google Scholar 

  48. Wai, K. C. et al. Maternal black race and persistent wheezing illness in former extremely low gestational age newborns: secondary analysis of a randomized trial. J. Pediatr. 198, 201–208.e3 (2018).

    PubMed  PubMed Central  Google Scholar 

  49. Ryan, R. M. et al. Black race is associated with a lower risk of bronchopulmonary dysplasia. J. Pediatr. 207, 130–135.e2 (2019).

    PubMed  PubMed Central  Google Scholar 

  50. Preterm by race/ethnicity: United States, 2018–2020 Average. March of Dimes|PeriStats https://www.marchofdimes.org/peristats/data?reg=99&top=3&stop=63&lev=1&slev=1&obj=1.

  51. David, R. J. & Collins, J. W. Differing birth weight among infants of U.S.-born blacks, African-born blacks, and U.S.-born whites. N. Engl. J. Med. 337, 1209–1214 (1997).

    CAS  PubMed  Google Scholar 

  52. Burris, H. H. & Hacker, M. R. Birth outcome racial disparities: a result of intersecting social and environmental factors. Semin Perinatol. 41, 360–366 (2017).

    PubMed  PubMed Central  Google Scholar 

  53. Asher, M. I. et al. International Study of Asthma and Allergies in Childhood (ISAAC): rationale and methods. Eur. Respir. J. 8, 483–491 (1995).

    CAS  PubMed  Google Scholar 

  54. JENKINS, M. A. et al. Validation of questionnaire and bronchial hyperresponsiveness against respiratory physician assessment in the diagnosis of asthma. Int. J. Epidemiol. 25, 609–616 (1996).

    CAS  PubMed  Google Scholar 

  55. Hibbs, A. M. et al. Effect of vitamin D supplementation on recurrent wheezing in black infants who were born preterm: the D-Wheeze randomized clinical trial. JAMA 319, 2086–2094 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. SUPPORT Study Group of the Eunice Kennedy Shriver NICHD Neonatal Research Network. et al. Target ranges of oxygen saturation in extremely preterm infants. N. Engl. J. Med. 362, 1959–1969 (2010).

    PubMed Central  Google Scholar 

  57. Boggs, E., Minich, N. & Hibbs, A. M. Performance of commonly used respiratory questionnaire items in a cohort of infants born preterm. Open J. Pediatr. 3, 260–265 (2013).

    PubMed  PubMed Central  Google Scholar 

  58. Stocks, J., Godfrey, S., Beardsmore, C., Bar-Yishay, E. & Castile, R. Plethysmographic measurements of lung volume and airway resistance. Eur. Respir. J. 17, 302–312 (2001).

    CAS  PubMed  Google Scholar 

  59. ATS/ERS Statement. Raised volume forced expirations in infants. Am. J. Respir. Crit. Care Med. 172, 1463–1471 (2005).

    Google Scholar 

  60. Morris, M. G. et al. The bias flow nitrogen washout technique for measuring the functional residual capacity in infants. Eur. Respir. J. 17, 529–536 (2001).

    CAS  PubMed  Google Scholar 

  61. Vogt, B., Falkenberg, C., Weiler, N. & Frerichs, I. Pulmonary function testing in children and infants. Physiol. Meas. 35, R59–R90 (2014).

    CAS  PubMed  Google Scholar 

  62. Jat, K. R. Spirometry in children. Prim. Care Respir. J. 22, 221–229 (2013).

    PubMed  PubMed Central  Google Scholar 

  63. Cloutier, M. M., Teach, S. J., Lemanske, R. F. Jr & Blake, K. V. The 2020 Focused Updates to the NIH Asthma Management Guidelines: key points for pediatricians. Pediatrics 147, e2021050286 (2021).

    PubMed  Google Scholar 

  64. Holt, E. W., Tan, J. & Hosgood, H. D. The impact of spirometry on pediatric asthma diagnosis and treatment. J. Asthma 43, 489–493 (2006).

    CAS  PubMed  Google Scholar 

  65. Bentsen, M. H. L., Eriksen, M., Olsen, M. S., Markestad, T. & Halvorsen, T. Electromagnetic inductance plethysmography is well suited to measure tidal breathing in infants. ERJ Open Res. 2, 00062–02016 (2016).

    PubMed  PubMed Central  Google Scholar 

  66. Klinger, A. P. et al. Non-invasive forced oscillometry to quantify respiratory mechanics in term neonates. Pediatr. Res. 88, 293–299 (2020).

    PubMed  PubMed Central  Google Scholar 

  67. Malmberg, L. P. et al. Lung function measured by the oscillometric method in prematurely born children with chronic lung disease. Eur. Respir. J. 16, 598–603 (2000).

    CAS  PubMed  Google Scholar 

  68. McEvoy, C. T., Schilling, D., Go, M. D., Mehess, S. & Durand, M. Pulmonary function in extremely low birth weight infants with bronchopulmonary dysplasia before hospital discharge. J. Perinatol. 41, 77–83. https://doi.org/10.1038/s41372-020-00856-z (2021).

  69. Young, S., Arnott, J., O’Keeffe, P. T., Souef, P. L. & Landau, L. I. The association between early life lung function and wheezing during the first 2 yrs of life. Eur. Respir. J. 15, 151–157 (2000).

    CAS  PubMed  Google Scholar 

  70. Yuksel, B., Greenough, A., Giffin, F. & Nicolaides, K. H. Tidal breathing parameters in the first week of life and subsequent cough and wheeze. Thorax 51, 815–818 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. American College of Obstetricians and Gynecologists’ Committee on Practice Bulletins—Obstetrics. Prediction and prevention of spontaneous preterm birth: ACOG Practice Bulletin, Number 234. Obstet. Gynecol. 138, e65–e90 (2021).

    Google Scholar 

  72. Raju, T. N. K., Higgins, R. D., Stark, A. R. & Leveno, K. J. Optimizing care and outcome for late-preterm (near-term) infants: a summary of the workshop sponsored by the National Institute of Child Health and Human Development. Pediatrics 118, 1207–1214 (2006).

    PubMed  Google Scholar 

  73. Ada, M. L. et al. Trends in provider-initiated versus spontaneous preterm deliveries, 2004–2013. J. Perinatol. 37, 1187–1191 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Shah, N. R. & Bracken, M. B. A systematic review and meta-analysis of prospective studies on the association between maternal cigarette smoking and preterm delivery. Am. J. Obstet. Gynecol. 182, 465–472 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Isayama, T. et al. Adverse impact of maternal cigarette smoking on preterm infants: a population-based cohort study. Am. J. Perinatol. 32, 1105–1111 (2015).

    PubMed  Google Scholar 

  76. Robison, R. G. et al. Maternal smoking during pregnancy, prematurity and recurrent wheezing in early childhood. Pediatr. Pulmonol. 47, 666–673 (2012).

    PubMed  PubMed Central  Google Scholar 

  77. Chamberlain, C. et al. Psychosocial interventions for supporting women to stop smoking in pregnancy. Cochrane Database Syst. Rev. 2, CD001055 (2017).

    PubMed  Google Scholar 

  78. McEvoy, C. T. et al. Vitamin C supplementation for pregnant smoking women and pulmonary function in their newborn infants: a randomized clinical trial. JAMA 311, 2074–2082 (2014).

    PubMed  PubMed Central  Google Scholar 

  79. Stevens, T. P. et al. Respiratory outcomes of the surfactant positive pressure and oximetry randomized trial. J. Pediatr. 165, 240–249.e4 (2014).

    PubMed  PubMed Central  Google Scholar 

  80. McEvoy, C. et al. Pulmonary function and outcomes in infants randomized to a rescue course of antenatal steroids. Pediatr. Pulmonol. 52, 1171 (2017).

    PubMed  PubMed Central  Google Scholar 

  81. Davis, J. M. et al. Pulmonary outcome at 1 year corrected age in premature infants treated at birth with recombinant human CuZn superoxide dismutase. Pediatrics 111, 469–476 (2003).

    PubMed  Google Scholar 

  82. Belfort, M. B., Cohen, R. T., Rhein, L. M. & McCormick, M. C. Preterm infant growth and asthma at age 8 years. Arch. Dis. Child Fetal Neonatal Ed. 101, F230–F234 (2016).

    PubMed  Google Scholar 

  83. Lowe, J., Kotecha, S. J., Watkins, W. J. & Kotecha, S. Effect of fetal and infant growth on respiratory symptoms in preterm-born children. Pediatr. Pulmonol. 53, 189–196 (2018).

    PubMed  Google Scholar 

  84. Taveras, E. M. et al. Higher adiposity in infancy associated with recurrent wheeze in a prospective cohort of children. J. Allergy Clin. Immunol. 121, 1161–1166.e3 (2008).

    PubMed  PubMed Central  Google Scholar 

  85. Cerasani, J. et al. Human milk feeding and preterm infants’ growth and body composition: a literature review. Nutrients 12, E1155 (2020).

    Google Scholar 

  86. Spiegler, J. et al. Does breastmilk influence the development of bronchopulmonary dysplasia? J. Pediatr. 169, 76–80.e4 (2016).

    PubMed  Google Scholar 

  87. Cacho, N. T., Parker, L. A. & Neu, J. Necrotizing enterocolitis and human milk feeding: a systematic review. Clin. Perinatol. 44, 49–67 (2017).

    PubMed  Google Scholar 

  88. Bharwani, S. K. et al. Systematic review and meta-analysis of human milk intake and retinopathy of prematurity: a significant update. J. Perinatol. 36, 913–920 (2016).

    CAS  PubMed  Google Scholar 

  89. Oddy, W. H. et al. Breast feeding and respiratory morbidity in infancy: a birth cohort study. Arch. Dis. Child. 88, 224–228 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Verduci, E., Banderali, G., Peroni, D., Lassandro, C. & Radaelli, G. Duration of exclusive breastfeeding and wheezing in the first year of life: a longitudinal study. Allergol. Immunopathol. (Madr.) 45, 316–324 (2017).

    PubMed  Google Scholar 

  91. Committee on Infectious Diseases and Bronchiolitis Guidelines Committee et al. Updated guidance for palivizumab prophylaxis among infants and young children at increased risk of hospitalization for respiratory syncytial virus infection. Pediatrics 134, 415–420 (2014).

    Google Scholar 

  92. Olicker, A. et al. Have changing palivizumab administration policies led to more respiratory morbidity in infants born at 32–35 weeks? J. Pediatr. 171, 31–37 (2016).

    CAS  PubMed  Google Scholar 

  93. Simões, E. A. F. et al. The effect of respiratory syncytial virus on subsequent recurrent wheezing in atopic and nonatopic children. J. Allergy Clin. Immunol. 126, 256–262 (2010).

    PubMed  PubMed Central  Google Scholar 

  94. Abbasi, J. RSV vaccines, finally within reach, could prevent tens of thousands of yearly deaths. JAMA 327, 204–206 (2022).

    PubMed  Google Scholar 

  95. Griffin, M. P. et al. Single-dose nirsevimab for prevention of RSV in preterm infants. N. Engl. J. Med. 383, 415–425 (2020).

    CAS  PubMed  Google Scholar 

  96. Hammitt, L. L. et al. Nirsevimab for prevention of RSV in healthy late-preterm and term infants. N. Engl. J. Med. 386, 837–846 (2022).

    CAS  PubMed  Google Scholar 

  97. Baraldi, E., Bonetto, G., Zacchello, F. & Filippone, M. Low exhaled nitric oxide in school-age children with bronchopulmonary dysplasia and airflow limitation. Am. J. Respir. Crit. Care Med. 171, 68–72 (2005).

    PubMed  Google Scholar 

  98. Kotecha, S., Clemm, H., Halvorsen, T. & Kotecha, S. J. Bronchial hyper-responsiveness in preterm-born subjects: a systematic review and meta-analysis. Pediatr. Allergy Immunol. 29, 715–725 (2018).

    PubMed  Google Scholar 

  99. Simões, M. C. R. D. S. et al. Recurrent wheezing in preterm infants: prevalence and risk factors. J. Pediatr. (Rio J.) 95, 720–727 (2019).

    PubMed  Google Scholar 

  100. Kotecha, S. J. et al. Effect of bronchodilators on forced expiratory volume in 1 s in preterm-born participants aged 5 and over: a systematic review. Neonatology 107, 231–240 (2015).

    PubMed  Google Scholar 

  101. Beresford, M. W., Primhak, R., Subhedar, N. V. & Shaw, N. J. Randomised double blind placebo controlled trial of inhaled fluticasone propionate in infants with chronic lung disease. Arch. Dis. Child Fetal Neonatal Ed. 87, F62–F63 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Pelkonen, A. S., Hakulinen, A. L., Hallman, M. & Turpeinen, M. Effect of inhaled budesonide therapy on lung function in schoolchildren born preterm. Respir. Med. 95, 565–570 (2001).

    CAS  PubMed  Google Scholar 

  103. Edwards, M. O. et al. Management of prematurity-associated wheeze and its association with atopy. PLoS One 11, e0155695 (2016).

    PubMed  PubMed Central  Google Scholar 

  104. Ryan, R. M. et al. Respiratory medications in infants <29 weeks during the first year postdischarge: the Prematurity and Respiratory Outcomes Program (PROP) Consortium. J. Pediatr. 208, 148–155.e3 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Morata-Alba, J., Romero-Rubio, M. T., Castillo-Corullón, S. & Escribano-Montaner, A. Respiratory morbidity, atopy and asthma at school age in preterm infants aged 32–35 weeks. Eur. J. Pediatr. 178, 973–982 (2019).

    PubMed  Google Scholar 

  106. Garcia-Garcia, M. L. et al. Impact of prematurity and severe viral bronchiolitis on asthma development at 6–9 years. J. Asthma Allergy 13, 343–353 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Ho, J. J., Subramaniam, P. & Davis, P. G. Continuous positive airway pressure (CPAP) for respiratory distress in preterm infants. Cochrane Database Syst. Rev. 10, CD002271 (2020).

    PubMed  Google Scholar 

  108. Christian, P. et al. The need to study human milk as a biological system. Am. J. Clin. Nutr. 113, 1063–1072 (2021).

    PubMed  PubMed Central  Google Scholar 

  109. Ehrenkranz, R. A. et al. Validation of the National Institutes of Health consensus definition of bronchopulmonary dysplasia. Pediatrics 116, 1353–1360 (2005).

    PubMed  Google Scholar 

  110. Jensen, E. A. et al. The diagnosis of bronchopulmonary dysplasia in very preterm infants. an evidence-based approach. Am. J. Respir. Crit. Care Med. 200, 751–759 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

A.M.H. receives funding from the NHLBI: K24HL143291.

Author information

Authors and Affiliations

Authors

Contributions

A.P.C. drafted and revised the article. A.M.H. contributed to conception, revisions, and final approval of the published version.

Corresponding author

Correspondence to Anna P. Crist.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crist, A.P., Hibbs, A.M. Prematurity-associated wheeze: current knowledge and opportunities for further investigation. Pediatr Res 94, 74–81 (2023). https://doi.org/10.1038/s41390-022-02404-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41390-022-02404-1

Search

Quick links