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The field of pediatric critical care has been hampered in the era of precision medicine by our inability to accurately define and
subclassify disease phenotypes. This has been caused by heterogeneity across age groups that further challenges the ability to
perform randomized controlled trials in pediatrics. One approach to overcome these inherent challenges include the use of
machine learning algorithms that can assist in generating more meaningful interpretations from clinical data. This review
summarizes machine learning and artificial intelligence techniques that are currently in use for clinical data modeling with
relevance to pediatric critical care. Focus has been placed on the differences between techniques and the role of each in the clinical
arena. The various forms of clinical decision support that utilize machine learning are also described. We review the applications
and limitations of machine learning techniques to empower clinicians to make informed decisions at the bedside.
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IMPACT:

● Critical care units generate large amounts of under-utilized data that can be processed through artificial intelligence.
● This review summarizes the machine learning and artificial intelligence techniques currently being used to process clinical data.
● The review highlights the applications and limitations of these techniques within a clinical context to aid providers in making

more informed decisions at the bedside.

INTRODUCTION
Critical illness in children leads to millions of hospital admissions
to a Pediatric Intensive Care Unit (PICU).1,2 Since the inception of
the field more than nearly six decades ago, outcomes for these
patients have steadily improved, with PICU mortality rates as low
as 1–2%.3–5 While clinical research has played a role in improving
outcomes, there are surprisingly few therapies in pediatric critical
care supported by high levels of evidence. For example, in recent
guidelines for the care of children with sepsis6 and traumatic brain
injury,7 the vast majority of recommendations were supported by
“low” quality of evidence. Reasons for this paucity of evidence-
based therapies include heterogeneity within the age spectrum
seen in the specialty, limitations of extrapolation of adult studies,
low rate of mortality necessitating other outcomes of possibly
lower interest, patient volumes lower than adult critical care, and
heterogeneity within clinical diagnoses (e.g., sepsis). A reliance on
traditional ways to collect and analyze data has also limited the
field of pediatric critical care research.
New paradigm-shifting approaches in machine learning, pre-

dictive modeling, functional immunophenotyping, and artificial
intelligence (AI) have been developed to improve understanding
and specificity in refining definitions of disease. There has been
rapid growth both in computing power and data storage, enabling
a wide range of applications for machine learning and AI within

medicine. The term AI refers to the domain of tasks that historically
required human input, while machine learning is the subset of AI
where learning from data exists without explicit programming.8

Both have impacted drug discovery, personalized diagnostics,
therapeutics, and medical imaging.9,10 Within the realm of pediatric
critical care, the use of these techniques has the potential to
significantly improve our understanding of disease and of
therapeutic efficacy. In this review, we will outline different machine
learning techniques, provide an overview of current AI applications
and specific machine learning/AI limitations, and discuss how these
technologies will further the field of pediatric critical care.

MACHINE LEARNING
In machine learning, algorithms are used to correctly classify a
piece of data or make correct predictions by examining other data
provided. There are three broad stratifications: supervised
machine learning, unsupervised machine learning, and neural
networks (Fig. 1).

Supervised machine learning
Supervised machine learning is the most prevalent in med-
icine.11–19 In supervised learning, labeled datasets are used to train
an algorithm to correctly classify data.11–19 To train an algorithm,

Received: 15 March 2022 Revised: 15 September 2022 Accepted: 30 October 2022
Published online: 14 November 2022

1Department of Pediatrics, Washington University, St. Louis, MO, USA. 2Department of Pediatrics, University of Oklahoma, Oklahoma, OK, USA. 3Division of Pediatric Critical Care
Medicine, Department of Pediatrics, Rainbow Babies and Children’s Hospital, Cleveland, OH, USA. 4Department of Pediatrics, Connecticut Children’s Medical Center, Hartford, CT,
USA. 5Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University Hospital of Cleveland, Case Western University School of Medicine,
Cleveland, OH, USA. ✉email: Neel.Shah@Wustl.edu

www.nature.com/pr

1
2
3
4
5
6
7
8
9
0
()
;,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41390-022-02380-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41390-022-02380-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41390-022-02380-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41390-022-02380-6&domain=pdf
https://doi.org/10.1038/s41390-022-02380-6
mailto:Neel.Shah@Wustl.edu
www.nature.com/pr


the labeled data is used to deduce any association between
independent and dependent variables. The respective weights of
independent variables are adjusted within the algorithm until it
arrives at the best fit that has the least error in predicting the
dependent variable. The trained model derived from this process
is then validated on additional datasets to assess the general-
izability of the algorithm. Algorithm performance can be assessed
in several ways including sensitivity, accuracy, and area under the
curve of a receiver operating characteristic curve20 (Table 1).
Supervised machine learning methods are often task-driven and

can complete classification, and regression tasks (Fig. 1). Classifica-
tion is used when the outcome of interest is a categorical variable
(alive/dead, high risk/low risk, etc.). The model uses the indepen-
dent variables in the labeled dataset to determine the category of
the dependent variable. A commonly used example of supervised
machine learning is training a model to relate a patient’s
demographics and smoking history to a certain outcome such as
lung cancer.21 Commonly used algorithms for classification include
logistic regression, k-nearest neighbors, decision trees, gradient
boosting, support vector machines, and naive Bayes algorithms.9

Regression is used to predict a numerical value for the dependent
variable. These models produce continuous outcomes and have
been used outside medicine to predict house prices, stock prices, or
sales. Commonly used algorithms for regression include linear
regression, lasso regression, polynomial regression, support vector
regression, random forest algorithms, and boosted as well as
ensemble methods.22

In pediatrics, supervised machine learning is commonly used for
prognostic predictions. In prognostic models, the algorithm is
used for risk stratification for outcomes of interest.23–26 Examples
of this include using machine learning to determine the risk of
serious bacterial infection in a cohort of children in the emergency
department,24 to determine if a subgroup of critically ill patients
would be more likely to benefit from corticosteroids,23 and to
determine the risk of developing childhood asthma.26

Predictive modeling can be used to predict whether a patient
responds to treatment or is at risk for clinical deterioration.27–30 In
the hospital setting, real-time or recent clinical data can be used as
a decision-support tool to alert clinicians to subtle signs of clinical
deterioration that can be acted on prior to decompensation.
Examples of this include using algorithms to detect the need for

transfer to an intensive care unit (ICU)29,30 and to detect
deterioration of children in the cardiac ICU.13

Unsupervised machine learning
Unsupervised machine learning is used to find previously
undetected patterns and clusters in unlabeled data
(Fig. 1).11–15,31–35 Unsupervised machine learning may serve as a
data exploration tool as it requires less manual intervention as it
involves unlabeled data. While these techniques can yield
previously undiscovered patterns, the groupings may not
necessarily be clinically meaningful without clinician insight. In
addition to data exploration, unsupervised machine learning can
also be used for classification tasks.
Examples of unsupervised machine learning include cluster

analysis; where data is grouped based on similarities, differences,
and associations. Dimensionality reduction can be used in large
datasets in the preproduction phase and reduces the number of
variables while preserving the integrity of the dataset, making it
more manageable for analysis. Common clustering algorithms
include latent class or profile analysis, k-means clustering, and
hierarchical clustering.
Latent class or profile analysis is the most used unsupervised

machine learning technique in pediatric research.32–35 Latent
class or profile analysis allows the detection of a possible
unmeasured group within a population by inferring patterns or
indicators from the observed variables.36 This differs from
cluster analysis which uses a distance from a specific measure
to assign grouping, while latent class or profile analysis
estimates the probability of each unit belonging to a class.36

Recent reanalysis using latent class analysis of the RESTORE
(Randomized Evaluation of Sedation Titration for Respiratory
Failure) and BALI (Biomarkers in Children with Acute Lung Injury)
studies have shown that while patients may fit under a unifying
definition of pediatric acute respiratory distress syndrome
(ARDS) within these groups there may be hypoinflammatory
and hyperinflammatory phenotypes.33 Adult literature has
shown that similar phenotypes in ARDS have varying responses
to targeted therapies (e.g., Positive End Expiratory Pressure
(PEEP), fluid overload, statins).37–39 Researchers have also used it
to identify phenotypes in critically ill children with sepsis34 and
near-fatal asthma.35

Machine learning
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Fig. 1 Types of machine learning. Examples of only a few types of machine learning, including subcategories of supervised and
unsupervised machine learning.
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Neural networks
Artificial neural networks are another type of machine learning
modeling and take inspiration from biological neural networks;
they may be supervised or unsupervised. They are most
comparable to gradient boosting methods and are a popular
classifier algorithm.9 They consist of layers of neurons, with an
input layer, one or more hidden layers, and an output layer.
Input layers typically consist of input variables such as
physiologic or lab markers, and hidden layers have a function
applied (a series of calculations including weighing or combin-
ing input variables) to predict the output layer.40 Two common
types of neural networks include recurrent neural networks—

which can process large amounts of data and “learn” from
missed predictions and convolutional neural networks which
specialize in transforming imaging data.40 While several
applications have been published,41–43 historic limitations
include their “black box” nature and difficulty in determining
clinical importance. Recent advances such as detector rando-
mized input sampling or generative adversarial networks have
substantially reduced the “black box” nature of neural networks,
these techniques have allowed researchers to even determine
which portions of an x-ray were important to an algorithm in
predicting if an image belonged to a COVID-19 positive or
negative patient.44,45

Table 1. Common Measures of Model Performance.

Description Advantages Limitations

Accuracy Ratio of correct predictions to total
number of predictions made.
(TP+ TN/Total)

Easy to understand, works well if
there are an equal number of
samples in each class

Does not represent a clinically
meaningful number if the classes
are unbalanced, or if there is a high
cost of misclassification (rare but
fatal disease)

Precision (positive
predictive value)

Number of correct positives divided
by number of positive test results
TP/(TP+ FP)

Gives information about
performance with respect to false
positives. Goal is to minimize false
positives

No information about false
negatives

Sensitivity/recall Number of correct positive results
divided by all that are actually
positive
TP/(TP+ FN)

Gives information about
performance with respect to false
negatives. Goal is to minimize
false negatives

No information about false
positives

Specificity Number of correct negative results
divided by all that are actually
negative TN/(FP+ TN)

Useful to characterize the rate of
true negatives compared to
predicted negatives

No information about true
positives.

F1 score Measure of the accuracy of a test–
represents a harmonic mean between
precision and recall.
F1= 2 × ((Precision × Recall)/
(Precision+ Recall))

Balances both precision and
recall, for instance a high
precision with low recall may
have a high accuracy but would
have a lower F1 score

Harder to calculate than an
arithmetic mean, may be difficult
to interpret unless familiar with the
concept

Mean absolute error Average of difference between
original values and predicted values

Measure of the distance between
prediction and actual input

Does not give any insight into
direction of error (under or over
prediction)

Mean squared error Similar to mean absolute error but
takes square of the difference

Easier to compute gradient
differences

Can emphasize the effect of larger
errors over smaller errors

Logarithmic loss Classifier must assign probabilities for
each prediction. Penalizes false
classifications. Values closer to 0
indicate higher accuracy

Very strong if many observations Weak if few observations.
Maximizing log loss may lead to
better probability estimation but at
cost of accuracy

Area under receiver
operator curve (AUROC)

Probability a true positive will have a
higher predicted probability than true
negative across all thresholds

Useful for discrimination. Helpful
to visually assess performance
over range of thresholds, useful
to compare across models. Higher
is better (1.0= perfect)

Not clinically relevant, can be
biased if classes are unbalanced

Area under precision-
recall curve (AUPRC)

Average probability that a positive
prediction will be true across all
sensitivities

Useful for discrimination. Reflects
overall probability that a positive
prediction is a true positive.
Higher is better (1.0= perfect).
Better positioned in rare events
than AUROC, and helpful to
visually assess performance

May be difficult to interpret, some
performance is also graphed at
clinically irrelevant regions

Hosmer–Lemeshow Observed probability vs predicted
probability across varying ranges of
prediction

Useful for assessing model
calibration. Visually represents
the data, allows easy observation
of areas where the model may
have poor performance

Groupings of ranges are arbitrary.
May struggle with smaller datasets

Scaled Brier’s Score Squared difference between
observations and prediction, scaled to
account for the event rate

Explains variance so useful for
both discrimination and
calibration. Higher is better (1.0=
perfect). Good measure of overall
predictive performance

Does not give information about
individual predictions and may
represent performance at clinically
irrelevant regions
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PREDICTIVE MODELING TECHNIQUES
There are several widely used illness severity scores in pediatric
critical care that were developed over the past four decades using
traditional approaches. The first widespread physiology-based
scoring system to assess the risk of mortality in critically ill children
was the Physiologic Stability Index (PSI) which was published in
1984.46 The same group of investigators simplified the PSI into the
Pediatric Risk of Mortality (PRISM) score several years later, which
improved usability by reducing the number of variables from 34 to
14.47 Another group developed the Pediatric Index of Mortality
(PIM) in 1996.48 Also based on the PSI, the PIM score only required
eight variables present within the first hour of PICU care. These
scores have undergone serial refinement to the PRISM IV and
PIM3 scores by adjusting what variables are included, their cut-
offs, and their weights.49,50 Because mortality in the PICU is
uncommon, other illness severity scores like the Pediatric Logistic
Organ Dysfunction (PELOD) score, PELOD-2 score, and Pediatric
Sequential Organ Failure Assessment (pSOFA) score are intended
to quantify organ dysfunction. The pediatric organ dysfunction
information update mandate (PODIUM) developed contemporary
criteria to define pediatric single- and multi-organ dysfunction.51

The panel of 88 content experts from 47 institutions appraised the
body of present-day peer-reviewed evidence defining pediatric
organ failure for 11 organ systems. The goals of this endeavor are
to promote early recognition and appropriate treatment of
pediatric organ dysfunction to create a globally accepted platform
for universal nomenclature, promoting enhanced multi-
institutional collaborative research.
There are inherent limitations to these scores and the methods

used to develop them. While PRISM and PIM relied on variables
already established as predictive in the PSI score, the PSI variables
themselves were selected subjectively via the consensus of “a
group of pediatric intensivists”. Similarly, variables for PELOD were
chosen by the Delphi method and in PODIUM the final variables
were voted on by the panel of content experts after being
selected through a rigorous examination of the literature. While
expert consensus does identify variables associated with out-
comes of interest, it is inherently limited in scope and prone to
bias. Many of the variables themselves are single values of
continuous variables (e.g., heart rate), with the “worst” value in a
specified time range being used for scoring. Improved methods to
identify and weigh variables could enable predictive scores to be
improved for use on cohorts and refined sufficiently for use on
individual patients. Many of these scores have also been
developed to describe outcomes and stratify the severity of
illness across the population or individual intensive care unit level
and may be limited in their ability for individual patient prediction.
A large reason for the paucity of widely recognized and

validated pediatric predictive tools includes the low mortality rate
and substantially lower numbers of patients compared with
critically ill adults. Many in the field are moving away from
developing additional tools to predict mortality or define the
severity of specific dysfunctional organ systems. There is now
momentum targeting more nuanced outcomes such as disease
trajectory, clinical deterioration during hospitalization, and the
development of new cognitive or physical disability. Utilizing
modern monitoring systems through machine learning and AI, the
field is rapidly advancing towards higher-level predictive model-
ing that will likely soon become standard to the care of critically ill
pediatric patients. Several single-center prospective and retro-
spective studies have recently been published underscoring the
importance of advancing this field in addition to highlighting the
significant momentum building worldwide. Several groups have
started to define machine learning algorithms to predict the
development of sepsis or septic shock in pediatric inpatients.52–54

This is in addition to the use of machine learning in pediatrics for
predicting 30-day readmissions,55 need for massive transfusion
following blunt trauma,56 risk of cerebral hemorrhage in preterm

infants,57 and early prediction of AKI.58,59 Recent publications also
include utilizing machine learning to predict the absence of
serious bacterial infection at the time of pediatric intensive care
unit admission, with a goal to reduce antibiotic days per patient.60

Finally, machine learning is being utilized to predict long-term
neurologic outcomes in pediatric traumatic brain injury
patients.61–63 Ultimately, the utilization of dynamic trends in
physiologic data and changes in laboratory values over time,
together with high fidelity machine learning algorithms, will
provide a more robust and fertile landscape for outcome
prediction in the critically ill pediatric patient.

CLINICAL DECISION SUPPORT
The widespread adoption of electronic health records (EHR) has
been followed by the increased development of clinical decision
support systems (CDSS). These systems range from medication
interaction alerts to patient safety reminders.64–67 CDSS have been
demonstrated to improve process measures and clinical out-
comes.68,69 The utilization of machine learning algorithms for
CDSS is more recent and rapidly expanding.
Prediction models have been the most implemented modality

of machine learning in clinical medicine.70–72 These models use
machine learning techniques to synthesize large amounts of
patient data into simplified scores that providers can use to assess
each patient’s risk.73 The clinical application of these models
includes the prediction of kidney injury,74 significant clinical
deterioration,75 and mortality.76,77 These models are frequently
derived using single-center data with validation performed on a
separate cohort of patients admitted to the same center.74–77 The
rise in popularity of similar models has led to calls for greater rigor
in their derivation to ensure true clinical utility.78 Another group of
models includes those created by EHR vendors that are available
to use in hospitals that are paying for a particular EHR. While these
models tend to be derived from larger datasets, their proprietary
nature leads to limited information being published regarding
their validation. Attempts at external validation have raised
concerns about the validity of these models.79,80

A different approach to CDSS is the augmentation of data
visualization to assist physicians in better understanding trends in
real time. One system that utilizes this approach is the Etiometry
(Etiometry Inc., Boston, MA) risk analytics algorithm81 that includes
a data aggregation and visualization system in addition to a risk
analytics engine. The T3 (tracking, trajectory, and triggering) data
visualization system continuously aggregates real-time patient
data including vital signs and select lab data. Similarly, Sickbay
(Medical Informatics Corp., Houston, TX) is a vendor-neutral
platform that aggregates data to improve data visualization.82

This contrasts with conventional data monitoring in the ICU which
is limited to nurse-validated recordings at fixed time intervals.
Current EHRs usually store and present data at hourly intervals.
These models aggregate all data points continuously and there-
fore attempt to provide a more holistic picture.83

Some platforms use algorithms to provide additional function-
ality beyond the aggregation of patient data. Sickbay allows the
use of continuous physiologic data to develop real-time risk
calculators for outcomes. Published examples of this include
predicting deterioration in children with congenital heart dis-
ease28 and predicting the need for extracorporeal membrane
oxygenation (ECMO) in neonates with congenital diaphragmatic
hernias.84 In contrast, Etiometry leverages continuous physiologic
data through a proprietary machine learning algorithm to provide
real-time risk-based analysis of patient deterioration. The algo-
rithm uses patient data to continuously calculate the risk of
inadequate delivery of oxygen (IDO2) and inadequate ventilation
of carbon dioxide (IVCO2) that can be used as proxies to predict
clinical deterioration. To their credit, the development of these
metrics has been described in detail, providing users with an in-
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depth understanding of their workings.85 Publications testing the
accuracy and utility of Etiometry models have had mixed results.
One study demonstrated that the IDO2 index was significantly
elevated in patients who failed to be weaned off vasoactive
infusions compared to those who were weaned successfully.86

Another study found that the IDO2 index was outperformed by a
conventional scoring system in predicting adverse events in
children after cardiac bypass.87

Other examples include an algorithm developed by Better Care
(Better Care Inc., Barcelona, Spain) that is currently being used in
Spain88 and the Continuous Monitoring of Event Trajectories
(CoMET) developed at the University of Virginia.89 In addition to
using patient vital signs, the Better Care algorithm also
incorporates ventilator metrics and analytics such as asynchrony
in its features. This is built on previous efforts by the same
company to utilize machine learning to categorize patient-
ventilator interactions.90 CoMET combines continuous physiologic
data and lab values in its algorithm to predict the risk of urgent
intubation and assist in the early detection of sepsis.91 However,
there are currently no published reports describing the perfor-
mance of this system in an external pediatric cohort.
While the development of CDSS has been promising, there are

challenges that have limited widespread adoption.92 Limitations
include the knowledge and time required to deploy and maintain
an update-to-date and clinically relevant CDSS. A good CDSS must
further be well-integrated into the clinician’s existing workflow.
Another area of concern is transparency and understanding. The
workings of a CDSS must be transparent to garner trust. Providers
are answerable to their patients and are unlikely to utilize a metric
in their decision-making that they do not fully understand, and
therefore cannot explain to their patients. Finally, the CDSS must
continue to adapt to changes in both clinical guidelines and
practice patterns. A stagnant CDSS that is created based on a
historical dataset and not updated will lose accuracy and
eventually become redundant. This concept is known as data
drift, and updates to a CDSS are required if the data distribution
passes a prespecified threshold.93 These systems must therefore
be reviewed and updated regularly, either at fixed intervals or with
significant changes in practice or the target population to remain
relevant.94 Additional limitations that are specific to a pediatric
population include the smaller patient population and fewer large
datasets available to train algorithms.95 Within that smaller
population, there is also greater heterogeneity due to the
differences in normal ranges and at times treatment strategies
by age group. Furthermore, adverse outcomes in pediatric
patients tend to be more infrequent compared to adults. This
limits the accuracy of a model derived to predict those rare
outcomes. The financial consideration of implementing CDSS can

be significant, limiting the widespread adoption of tools that are
yet unproven in clinical efficacy. These limitations were high-
lighted in a recent study in which most pediatric critical care
providers were neutral or disagreed that current predictive
algorithms provided useful information.96 Providers agreed that
important goals included evidence-based CDSS with a proven
impact on patient safety, that were well-placed and delivered at
the right time.96 Providers expressed concern about the accuracy
of CDSS, the effect on practitioners’ critical reasoning, and the
burden of increased time spent on the computer.96

LIMITATIONS
Several machine learning and AI-derived tools have failed to live
up to their promise when deployed clinically. It is crucial to
understand the pitfalls in their development and implementation,
and why so many have struggled to make an impact at the
bedside. Specific examples range from sepsis prediction to
imaging classification.79,97,98

During development particular focus needs to be paid to the
definitions and scope of the model, and the selection of predictor
variables. Several important characteristics must be true, the
predictors must not have collinearity with the predicted outcome
and be known prior to the outcome.78 This is vital to ensure that
the information provided by the model is clinically actionable.
Predictors that become known either immediately before or after
the outcome event occurs do not provide an opportunity for
clinical intervention. Observable data including blood pressure or
heart rate may be perturbed in sepsis only after the condition has
developed, limiting any time to make actionable predictions.99

The model must also be able to retain accuracy when applied to
new data and thus be generalizable to be useful to the bedside
clinician.
Care should be further taken during data preprocessing, first to

ensure data accuracy, and further to not disregard potentially
useful information by binning continuous variables. Doing so
often introduces assumptions into the model that are not
biologically plausible (e.g., a model may treat a hemoglobin of 3
the same as 6.7 if a dichotomous predictor of hemoglobin <7
exists). While grouping variables may be useful for easy bedside
prediction, we recommend close consideration of these tradeoffs
when developing a model. Particular attention must also be paid
to how specific models handle missing data. Extensive data
preprocessing may yield better results but may dramatically limit
real-world applications if the preprocessing is not able to be done
in real time.
When developing models to evaluate binary outcomes, a key

concept is the number of events per variable (EPV)—which
represents the number of events/outcomes divided by the
number of predictor variables.100 EPV may provide guidance on
sample size requirements. Further attention is required in
regression models to avoid overfitting. Overfitting occurs when
the model begins to describe the random error in the data rather
than the true relationship between variables—this often occurs as
the model becomes more complex and reduces generalizability
outside the original dataset.
When evaluating models, it is important to determine how a

model has been evaluated and validated. Standard evaluation
frequently includes internal validation, which is determining if
model performance is reproducible in the same population it was
derived from. This frequently means the same dataset and can be
performed by either holding out a particular set of patients for
model validation, or k-fold cross-validation. K-fold cross-validation
generally includes partitioning the data into subsamples, the
model is then trained on all subsamples except one and validated
on the remaining subsample (Fig. 2).78 The data are then shuffled,
and this is process is repeated until a stable model is derived. A
rare outcome limits model performance since most mathematical
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Fig. 2 K-fold cross-validation. Example of K-fold cross validation. A
different subset of the data is used for training and validation in
each fold, and performance is based off combined performance in
the validation folds.
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models are designed to distinguish between two outcomes (i.e.,
event vs. no event) of equal likelihood. This is particularly
important when considering applying machine learning to predict
rare outcomes in pediatric patients. External validation determines
if the model is reproducible in a distinct population from the one
it was trained on. Models trained on single-center data often
demonstrate high accuracy but fail to perform similarly in new
populations, again limiting their generalizability.
Performance metrics for machine learning models also differ

from common statistical models (Table 1). It is crucial to separate a
model’s discrimination – its ability to separate events/outcomes
from non-events/outcomes (e.g., Fig. 3), from its calibration—
which is its ability to specify the probability of the outcome.
Common measures such as area under the receiver operating
characteristic curve (AUROC) are mainly a measure of discrimina-
tion and may be falsely high when predicting rare events. For rare
events, it is also important to consider a series of metrics,
including the area under the precision-recall curve (AUPRC), which
reflects positive predictive value and sensitivity (the average
probability that a positive prediction is true across all sensitivities).
Other metrics may also provide further clarity, especially in rare
events on a model’s performance, including its specificity,
sensitivity, and F1 score which combines the precision and recall
into a single metric.101 Understanding the calibration of a model is
also crucial in knowing if the model will be useful clinically (e.g.,
there is a large difference between predicting an outcome will
occur 51% of the time, or 90% of the time). Ultimately while
AUROC and AUPRC curves are important, to the bedside clinician
the important factors are the positive and negative predictive
values for any algorithm, which will depend on the prevalence of
the outcome in the local population.
A recent concern has been how the incorporation of any

systematic bias in the underlying dataset may perpetuate the bias
in the algorithm, especially if the algorithm is utilized for triage or
treatment decisions. These risks can be understood in models
where there is higher clinical correlation or plausibility but a
recent paper has shown that a deep learning model was able to
identify self-reported race from radiological images even when
the data was corrupted or cropped, and this capability was
incredibly difficult to isolate.102 Further work is necessary before
the broad deployment of these types of models.
Along the same lines, it is important to also understand how

provider beliefs and actions affect machine learning models.103

Actions performed by clinicians such as obtaining certain lab tests
are based on prior knowledge of disease patterns or clinical
intuition. Patients whom a clinician is more concerned about
expectedly may have more labs or diagnostic tests performed.
Machine learning models that incorporate the results of these
actions may in fact be predicting provider behavior and not

disease patterns. Conversely, models trained exclusively on
patient data that is independent of provider actions (e.g., vital
signs on admission) may provide a more distilled approximation
of the disease process but not reflect the realities of patient care
within the hospital system. Overall, machine learning models that
are trained on both clinician-initiated and clinician-independent
variables are likely to encompass both physician intuition and
patient factors in their predictions. Pediatric critical care generates
swaths of clinician-independent data that can be harnessed to
train more models that are agnostic of provider behavior patterns
and home in on the disease process.
In evaluating model performance then, it is important to

consider the variables used in model training, how the model was
validated (retrospective vs prospective), how performance was
reported, and if performance included measures of discrimination,
calibration, and clinically relevant measures such as positive or
negative predictive values in a representative population. Educat-
ing clinicians on understanding these metrics and critically
appraising machine learning models will be essential in ensuring
successful adoption at the bedside.
For these reasons, the addition of machine learning and artificial

intelligence algorithms to pediatric critical care is not meant to
replace decision-making by bedside staff. Rather, it should
augment the knowledge employed to develop individualized
care plans for increasingly complex patients and will ultimately
lead to improved nuance and discrimination of diverse pheno-
types within organ system failures.

CONCLUSIONS
Common machine learning and artificial intelligence techniques
hold promise in their applications in predictive modeling and
clinical decision support however to be fully impactful to the field,
common pitfalls that may explain why current tools have failed to
live up to their promise must be considered for the field to
mature. As these tools and techniques become ubiquitous,
understanding how they were developed and how to evaluate
them will be vital for pediatric intensivists.
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