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OBJECTIVE: To investigate the association between change in body mass index (BMI) from birth to 36 weeks gestation (ΔBMI) and
bronchopulmonary dysplasia (BPD) among infants born <30 weeks gestation.
METHODS: This was a multicenter retrospective cohort study (2015–2018) of infants born <30 weeks gestation and alive at
≥34 weeks corrected. Main exposure was a change in BMI z score from birth to 36 weeks corrected age grouped into quartiles of
change. Association between ΔBMI z scores and BPD was assessed using generalized linear mixed models.
RESULTS: Among 772 included infants, 51% developed BPD. From birth to 36 weeks CGA, the weight z score of infants with BPD
decreased less than for BPD-free infants, despite a greater decrease in length z score and similar caloric intake resulting in increases
in BMI z score (median [IQR], 0.16 [–0.64; 1.03] vs –0.29 [–1.03; 0.49]; P < 0.01). In the adjusted analysis, higher ΔBMI z score quartiles
were associated with higher odds of BPD (Q3 vs Q2, AOR [95% CI], 2.02 [1.23; 3.31] and Q4 vs Q2, AOR [95% CI], 2.00 [1.20; 3.34]).
CONCLUSION: Among preterm infants, an increase in BMI z score from birth to 36 weeks corrected is associated with higher odds
of BPD.
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IMPACT:

● Preterm infants with evolving lung disease often experience disproportionate growth in the neonatal period. In this multicenter
cohort study, increases in BMI z score from birth to 36 weeks CGA were associated with higher odds of BPD.

● Despite similar caloric intake, infants with BPD had a higher weight- but lower length-for-age, resulting in higher BMI z score
compared to BPD-free infants.

● This suggests that infants with evolving BPD may require different growth and nutritional targets compared to BPD-free infants.

INTRODUCTION
Bronchopulmonary dysplasia (BPD) is the most common morbid-
ity among infants born <30 weeks gestational age (GA) affecting
over 45% of survivors.1,2 It is associated with higher hospital costs
and long-term complications, including neurodevelopmental
impairment.3–5 The causes of BPD are multifactorial; a low GA,
surfactant deficiency, persistent inflammation, prolonged invasive
ventilation, and oxidative damage are important contributing
factors.2,4,6 Optimal nutritional management of preterm infants
with evolving BPD is complex due to their hypermetabolic needs
associated with postnatal growth and increased work of breath-
ing.7–9 Nutritional interventions commonly focus on achieving
optimal body weight gain with less attention to linear growth and
body composition.10 Indeed, previous studies in infants with
evolving BPD have focused on the association of body weight
and head circumference with neurodevelopmental outcomes
but seldom on growth trajectories and body composition
changes.11–13

A lower birth body mass index (BMI) z score, used as an indirect
measure of body fat14,15 likely reflects asymmetric fetal growth
restrictions and has been associated with higher odds of BPD.16

However, changes in BMI during hospitalization, reflecting dis-
proportionate growth, may further contribute to BPD. A higher BMI
in adults is associated with increased ventilatory needs in intensive
care units.17,18 Therefore, this study aimed to compare growth
patterns of infants with and without BPD, and evaluate the
association of changes in BMI z score from birth to 36 weeks
corrected gestational age (CGA) with BPD among infants born at
<30 weeks of GA. We hypothesized that infants with the most
extreme changes in BMI z score would have increased odds of BPD.

METHODS
Study population and eligibility criteria
This was a multicenter retrospective cohort study using a convenience
sample of infants admitted to three tertiary neonatal intensive care units
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(NICU) between January 1, 2015, and December 31, 2018. We included
infants born at 220–296 weeks GA, admitted within 1 day after birth. Infants
who had major congenital anomalies, died before 34 weeks GA, or had
missing length measurements before 14 days or at 36 weeks CGA were
excluded. Ethics approval was obtained from the Research Ethics Board of
each participating site.

Data collection
Data on infant characteristics and outcomes were obtained from the
Canadian Neonatal Network database. At each site, patient information is
entered electronically by trained abstractors into a data-entry program
with built-in error checking that has shown high reliability and internal
consistency.19 GA was calculated hierarchically from the best estimate
based on the date of in vitro fertilization, prenatal ultrasound, last
menstrual period, obstetric and pediatric estimates. The following
characteristics were extracted: use of antenatal steroids (partial or
complete), multiple delivery, mode of delivery, outborn, birth GA, birth
weight, small for GA status (SGA; defined as <10th percentile for GA and
sex),20 sex, 5-min Apgar <7, Score of Neonatal Acute Physiology version 2
(SNAP-II) >20,21 surfactant, mechanical ventilation, postnatal systemic
steroid, necrotizing enterocolitis (NEC; defined as stage 2 or 3 NEC
according to Bell’s classification22), and patent ductus arteriosus (PDA;
diagnosed based on clinical suspicion and/or echocardiography findings).
Biweekly anthropometric data (weight, length, and head circumference)

and caloric intake from birth to 36 weeks CGA were collected from a
medical chart review. Weight and length were used to calculate BMI (g/
cm2). Biweekly caloric intake (kcal/kg/d) was calculated from each infant’s
actual total caloric intake (parenteral and enteral) received on the days the
anthropometric measurements were taken.

Standards of care
Nutritional approaches and feeding protocols were comparable across the
sites (Supplementary Table 1). Parenteral nutrition was initiated after birth
at 65–80ml/kg/day and enteral feeding was initiated within 12–48 h of
birth. Parenteral and enteral nutrition were adjusted by neonatologist in
collaboration with trained neonatal dietitians and/or pharmacists. Typical
objectives were to achieve 90–120 kcal/kg/d and 3.5–4.5 g/kg/d of protein
by days 3–5, and full enteral feeding within 2–3 weeks of life. Weight was
measured daily using a neonatal scale. Length and head circumference
were measured at least biweekly by a trained registered nurse and nursing
assistant using either an infantometer or measuring tape.

Exposure variables and outcome definitions
Weight-, length- and head circumference-for-age z scores were calculated
using the 2013 Fenton reference standards20 and BMI-for-age z scores
were calculated using the 2015 Olsen reference standards.14,23 Length z
scores before 23.5 weeks CGA and BMI z scores before 24.5 weeks CGA
were based on extrapolated data as measurements fell beyond the
published growth charts.23 The main exposure variables were changes in
BMI (ΔBMI), weight (Δwt), length (Δlt), and head circumference (Δhc) z
scores from birth to 36 weeks CGA, using the closest value recorded
between 340 and 386 weeks CGA. To maximize the number of available
datapoints, birth length values were imputed for 48 infants for whom the
first length measurement was between 7 and 13 days of life; values were
imputed by subtracting the mean difference in length from birth to
13 days for the remaining cohort (0.89 cm). The primary outcome of BPD
was defined as the need for oxygen or respiratory support at 36 weeks
CGA, or at the time of death or NICU discharge before 36 weeks CGA. BPD
severity was graded as mild, moderate, and severe using standardized
definitions (Supplementary Table 2).1

Statistical analyses
Descriptive comparisons between infants with and without BPD were
conducted using the Pearson χ2 test for categorical variables and Wilcoxon
rank-sum test for continuous variables. Growth trajectories were compared
between the two groups by plotting the median biweekly measurements
(BMI, weight, length, head circumference z scores, and caloric intake), from
birth up to 14 weeks postnatally.
Since the association between ΔBMI and BPD was nonlinear, ΔBMI was

categorized into quartiles. Quartile 2 (Q2) was used as the reference category
since the ΔBMI range in this group (showing a ΔBMI that slightly decreased)
was similar to previously described postnatal BMI trajectory in preterm infants
and we hypothesized that the most extreme changes would have the highest

odds of BPD.24 Generalized linear mixed models including site as random
effect were used to assess the association between ΔBMI quartiles and BPD;
crude and adjusted odds ratios (OR) with corresponding 95% CI were reported.
Two adjustment models were evaluated: the birth model included antenatal
steroid exposure, GA, sex, multiple delivery, mode of delivery, SGA status, and
SNAP-II score >20, while the postnatal model included all birth model variables,
mechanical ventilation exposure, NEC (due to possible effect of NEC on
growth), and PDA (due to possible changes in fluid management due to PDA).
Collinearity was assessed with a variance inflation factor >5.25 Birth weight and
use of surfactant and postnatal steroids were excluded from regression models
due to collinearity with GA and mechanical ventilation, respectively. Primary
analyses aimed to evaluate the association of BPD with ΔBMI, and secondary
analyses evaluated associations with quartiles of Δwt, Δlt, and Δhc in attempts
to better understand what components of growth better correlate with BPD.
Secondary analyses were not adjusted for multiple comparisons as these were
conducted to generate hypotheses and should be interpreted with caution.26

Biweekly median caloric intake was plotted based on ΔBMI quartiles and
comparisons were made using the Kruskal–Wallis test.
Additional analyses were performed for exploratory purposes and

should be interpreted as such. Ordinal regression models, adjusted for the
same confounders as above, were used to assess the association of BPD
severity with ΔBMI, Δwt, Δlt, and Δhc quartiles. Sensitivity analyses were
conducted by stratifying GA groups (22–256 and 26–296), SGA status, and
postnatal systemic steroid exposure, to address the potential differences in
growth trajectories of lower GA and SGA infants and the possible effects of
postnatal systemic steroids on body composition. Statistical significance
was set at a two-tailed P value <0.05. Analyses were performed in R version
3.6.1 using Tidyverse version 1.3.0.27,28

RESULTS
During the study period, 1023 infants were born <30 weeks GA at
participating sites and 251 infants were excluded (29 had a major
congenital anomaly, 139 died before 34 weeks GA and 83 had a
missing length at birth or 36 weeks [Supplementary Fig. 1]).
Excluded infants due to a missing length at birth or 36 weeks had
a higher birth weight, higher GA and were discharged/transfer
prior to 36 weeks (Supplementary Table 3). Of the 772 infants
included in the final study sample, 391 (51%) developed BPD.
Among infants with BPD, 44 (12%) had mild BPD, 244 (66%) had
moderate BPD and 83 (22%) had severe BPD. A total of 11 (1%)
infants died, all of whom were >35 weeks CGA at the time of
death and met the criteria for BPD.

Comparison of growth trajectories between BPD and BPD-free
infants
Compared to BPD-free infants, infants with BPD had similar rates
of antenatal steroid exposure, were more frequently delivered by
cesarean, born at lower GA and birth weight, and more frequently
had a SNAP-II score >20, exposed to surfactant, mechanical
ventilation, postnatal steroids, and were more often diagnosed
with NEC and PDA (Table 1). At birth, median weight, length, and
head circumference z scores were significantly lower for BPD
infants compared to BPD-free infants but there was no significant
difference in median BMI z score at birth. At 36 weeks CGA, there
was no difference in median weight z scores, but length and head
circumference z scores remained significantly lower resulting in a
significantly higher BMI z score in BPD infants compared to BPD-
free infants.
Figure 1 shows the anthropometric trajectories and caloric

intake between BPD and BDP-free infants from birth to 14 weeks
postnatal. Infants with BPD were born with similar BMI z scores,
but lower weight and length z scores compared to BPD-free
infants. After week 2, infants with BPD had higher biweekly BMI z
scores, similar weight z scores and lower length z scores, despite
similar biweekly caloric intakes.

Association of ΔBMI with BPD
When comparing the characteristics of infants across ΔBMI
quartiles, infants in Q3 and Q4 had higher rates of BPD than
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those in Q1 and Q2 (Supplementary Table 4). Compared to all
other quartiles, infants in Q4 had a greater increase in ΔBMI, a
smaller decrease in Δwt, and a greater decrease in Δlt from birth
to 36 weeks CGA. After adjusting for birth and postnatal variables,
infants in Q3 and Q4 of ΔBMI had higher odds of BPD compared
to Q2 (Table 2). Similarly, Q3 and Q4 of Δwt were associated with
higher odds of BPD after adjustment for postnatal variables,
whereas associations were non-significant between Δlt quartiles
and BPD.
Biweekly caloric intake using postnatal age and CGA was

compared between ΔBMI quartiles in Fig. 2. Infants in Q4 had
higher caloric intakes from 27 to 33 weeks CGA than those in
other quartiles (unadjusted comparisons). In the ordinal regression
analysis for the association of ΔBMI with BPD severity, Q3 (AOR

[95% CI], 1.85 [1.20–2.86]) and Q4 (AOR [95% CI], 1.93 [1.24–3.01])
were associated with BPD severity compared to Q2 in the
postnatal model (Supplementary Table 5). Sensitivity analysis
based on GA group (<26 and 26–29 weeks), SGA status, and
postnatal systemic steroid exposure showed similar results or
effect directions: Q3 and Q4 of ΔBMI were associated with higher
odds of BPD compared to Q2 (Supplementary Table 6). Sensitivity
analysis among neonates with no imputed data (N= 724) also
showed similar results (results not shown).

DISCUSSION
In this multicenter cohort of preterm infants born <30 weeks GA,
an increase in BMI z score from birth to 36 weeks was associated

Table 1. Maternal and infant characteristics of full cohort, BPD, and BPD-free infants.

Variable Total (n= 772) BPD (n= 391) BPD-free (n= 381) P value

Maternal variables

Antenatal steroids, N (%) 708 (92) 357 (92) 351 (93) 0.67

Multiple deliveries, N (%) 178 (23) 94 (24) 84 (22) 0.57

Cesarean delivery, N (%) 525 (68) 280 (72) 245 (64) *

Outborn delivery, N (%) 86 (11) 38 (10) 48 (13) 0.25

Infant variables

Gestational age, median (IQR), weeks 27 (26 to 29) 26 (25 to 28) 28 (27 to 29) **

Gestational age group **

22–256/7, N (%), weeks 231 (30) 174 (45) 57 (15)

26–296/7, N (%), weeks 541 (70) 217 (55) 324 (85)

Birth weight, median (IQR), g 940 (744 to 1142) 800 (660 to 980) 1080 (890 to 1270) **

Small for gestational age, N (%) 60 (8) 44 (11) 16 (4) **

Male sex, N (%) 396 (51) 199 (51) 197 (52) 0.88

Apgar at 5min <7, N (%) 319 (42) 193 (50) 126 (33) **

SNAP-II score >20, N (%) 166 (22) 120 (31) 46 (12) **

Use of surfactant, N (%) 504 (65) 309 (79) 195 (51) **

Mechanical ventilation, N (%) 576 (75) 349 (89) 227 (60) **

Systemic steroids, N (%) 307 (40) 244 (62) 63 (17) **

NEC, N (%) 51 (7) 37 (9) 14 (4) **

PDA, N (%) 467 (61) 321 (82) 146 (38) **

Z scores at birth

BMI z score, median (IQR) 0.26 (–0.56 to 0.92) 0.19 (–0.66 to 0.95) 0.31 (–0.34 to 0.91) 0.10

Weight z score, median (IQR) 0.14 (–0.51 to 0.63) 0.02 (–0.72 to 0.50) 0.26 (–0.28 to 0.70) **

Length z score, median (IQR) 0.02 (–0.75 to 0.61) –0.27 (–0.95 to 0.43) 0.22 (–0.42 to 0.81) **

Head circumference z score, median (IQR) –0.13 (–0.83 to 0.55) –0.30 (–0.96 to 0.41) 0.04 (–0.67 to 0.68) **

Z scores at 36 weeks CGA

BMI z score, median (IQR) 0.13 (–0.46 to 0.83) 0.30 (–0.35 to 1.01) –0.01 (–0.60 to 0.55) **

Weight z score, median (IQR) –0.73 (–1.41 to –0.16) –0.78 (–1.57 to –0.19) –0.69 (–1.33 to –0.12) 0.11

Length z score, median (IQR) –1.15 (–1.85 to –0.37) –1.36 (–2.09 to –0.76) –0.77 (–1.55 to –0.12) **

Head circumference z score, median (IQR) –0.91 (–1.58 to –0.24) –1.19 (–1.95 to –0.63) –0.57 (–1.25 to 0.03) **

Change from birth to 36 weeks CGA

ΔBMI z score, median (IQR) –0.07 (–0.89 to 0.80) 0.16 (–0.64 to 1.03) –0.29 (–1.03 to 0.49) **

ΔWeight z score, median (IQR) –0.84 (–1.30 to –0.39) –0.76 (–1.29 to –0.27) –0.90 (–1.30 to –0.50) **

ΔLength z score, median (IQR) –1.03 (–1.67 to –0.40) –1.09 (–1.78 to –0.44) –0.97 (–1.52 to –0.37) *

ΔHead circumference z score, median (IQR) –0.76 (–1.40 to –0.13) –0.86 (–1.59 to –0.28) –0.63 (–1.25 to 0.01) **

IQR interquartile range, BMI body mass index, BPD bronchopulmonary dysplasia, SNAP-II score score for neonatal acute physiology, NEC necrotizing
enterocolitis, PDA patent ductus arteriosus.
P values for comparisons between BPD and BPD-free infants derived from the χ2 test and Wilcoxon rank-sum test, as appropriate.
*P value <0.05.
**P value <0.01.
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with higher odds of BPD. At birth, infants who developed BPD
were proportionately smaller, with lower weight and length z
scores, compared to BPD-free infants, with no significant
difference in BMI z score. By 36 weeks CGA, BPD infants had
higher BMI z scores due to a combination of higher weight gain
velocity but slower linear growth despite receiving similar caloric
intakes as BPD-free infants.
Our findings are consistent with several studies that have

shown lower birth weight, length, and head circumference z
scores are associated with the development of BPD.11,29,30

However, our study expands on prior work by including a
description of changes in length and BMI z scores from birth to
36 weeks based on BPD status. Contrary to a recent study by Lee
et al., we observed no significant difference in birth BMI z score
between BPD and BPD-free infants, which may be explained by
differences in study populations and inclusion criteria:16 Our study
excluded infants who died <34 weeks GA who may have had a
lower BMI z score at birth which differs from Lee et al. who
assessed the association of birth BMI with all neonatal outcomes.
Also, Lee et al. included infants based on birth weight <1500 g
(regardless of GA), which may have led to including more infants
with growth restriction. At 36 weeks CGA, weight z score was
similar in BPD and BPD-free groups despite a lower birth weight z
score. Our results are consistent with a large UK study showing
that infants with BPD had a smaller decrease in Δwt compared to
BPD-free infants.11 Length and head circumference z scores
remained significantly lower in infants with BPD at 36 weeks CGA.
This relative weight “catch up” in infants with BPD combined with
poor linear growth may explain why these infants had a higher
ΔBMI despite similar caloric intake.
Based on growth trajectories, we hypothesize that the higher

ΔBMI in BPD infants was due to a combination of factors including
lower weight loss in the first 2 weeks of life, a higher Δwt, and lower
Δlt compared to BPD-free infants. The lower initial weight loss in the
BPD group is possibly a reflection of differences in fluid balance
(either due to intake and/or diuresis post birth), insensible water loss,
differences in use of parenteral nutrition and disease severity which

are also associated with BPD.31–33 While fluid balance likely
contributes to ΔBMI in the first 14 days, the contribution of
nutritional intake to changes in BMI likely increases in weeks after
birth as nutrition becomes better established. Several investigators
have shown that preterm infants often experience disproportionate
growth with increased adiposity compared to term infants by
discharge.34–36 Currently, adjustment of nutrition for infants growing
disproportionately remains unclear as growth assessment is
primarily focused on weight for age. While BMI cannot distinguish
between fat mass, fat-free mass, and fluid, studies have shown that a
higher BMI correlates with higher fat mass in preterm infants,
making BMI a reasonable proxy for body fat percentage.34,37,38 This
has been validated against dual-energy X-ray absorptiometry and
bioimpedance analysis which are more accurate but less accessible
in clinical practice.36,39–41 Different anthropometric ratios of body
proportionality have also been compared and BMI was consistently
the best measure of disproportionate growth in preterm infants.14,42

Although BMI has been suggested as a validated and non-invasive
method to assess body proportionality in the NICU for preterm
infants, how to integrate it into clinical practice still needs to be
investigated.14,15,42,43

To better understand the association of ΔBMI, we used several
adjustment models and sensitivity analyses. Across all models,
quartiles with an increasing ΔBMI (Q3 and Q4) were consistently
associated with increased odds of BPD. This novel finding
suggests infants with BPD appeared to have a different growth
potential even when provided with similar calories. We hypothe-
sized that the combination of episodes of hypometabolic hypoxia,
chronic inflammation and nutritional epigenetic may alter the
growth and metabolism of infants with evolving BPD.44–50

Alternatively, the extent of change in BMI z score as early as at
2 weeks of life can perhaps be a marker of a more severe
phenotype of BPD requiring a different nutritional approach.
Despite similar caloric intakes, our results suggest that dispropor-
tionate weight gain in relation to linear growth might correlate
with increased fat mass and contribute to delayed weaning from
mechanical ventilation and development of BPD. Studies in
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ventilated adults have shown that physiological alterations from
obesity can increase upper airway resistance, alveolar de-
recruitment, and decreased respiratory compliance.17,18,51,52

Although this has not been studied in preterm infants, similar
changes may occur; a higher fat mass and lower lean body mass
may impact ventilatory requirements. BPD-free infants had lower
BMI z scores after postnatal week 2 but also a better linear growth
which could reflect a higher percentage of lean body mass. Linear
growth is generally recognized as a better indicator of lean body
mass accretion, organ growth, and nutritional adequacy, which
together can improve muscle function involved in lung
mechanics.3,53,54 It is also possible that prolonged intermittent
hypoxia, inflammation, and steroid exposure in infants with BPD
alter their metabolic profile in a way that may predispose them to
disproportionate growth; thus, potentially making the relationship
between BMI and BPD bidirectional.
Current preterm guidelines focus on achieving standard growth

velocities regardless of the infant’s disease status. Weight gain and
head circumference are overwhelmingly used as a benchmark of
adequate postnatal growth. This study highlights the need to
identify and validate other indicators for postnatal growth in
preterm infants. For example, the consensus guidelines for term-
corrected children with severe BPD emphasize monitoring somatic
growth by aiming for an ideal weight-for-length ratio at ~50%,
preventing excessive weight gain, and reassessing calories when
weight gain crosses the growth chart percentile.3 In addition,
Williamson et al. recently developed longitudinal BMI curves
based on the postnatal growth of preterm infants.24 However,
there is no definition for excessive weight gain in preterm
neonates prior to term-corrected age and more research is
required to better understand if a positive change in BMI z score
correlates with fat mass deposition and/or fluid accumulation. It is

also unclear how and if nutritional interventions can change body
proportionality and health outcomes in the neonatal period.
Optimal growth in preterm infants appears to be about striking a
balance between two extremes. Further research is required to
evaluate if and how monitoring of ΔBMI combined with other
anthropometric measurements can help achieve a more balanced
postnatal growth among infants born less than 30 weeks GA.

Strengths and limitations
Strengths of this study include the analyses of each individual
growth parameters (BMI, weight, length, and head circumference)
at multiple time points and their association with BPD using a
large multicenter cohort with a validated dataset. Caloric intake
was assessed based on actual intake received at the same time
points to mitigate the confounding effect of nutrition in
association with BPD. Our results were consistent across adjusted
models, analysis of exposures for each 2-week period, and in
sensitivity analyses.
This study has limitations. Having used retrospective data, we

cannot infer causality and account for errors in reporting
measurements and caloric intakes that may have happened.
Other nutritional components that may impact BPD such as
macronutrient (protein, fat, macronutrient distribution), modality
of feeding (enteral to parenteral ratio) and fluid intake were not
included. Although we adjusted for postnatal factors that can
affect growth and fluid balance such as NEC and PDA, we did not
have data on fluid intake and fluid balance. There may be residual
confounding due to different clinical practices for nutrition,
ventilation, or steroid exposure among centers despite statistical
adjustment and sensitivity analysis. Although sensitivity analysis
among non-SGA showed similar results (association of higher
ΔBMI z score with BPD), we cannot fully account for differences in

Table 2. Regression results for quartiles of z score change and BPD.

Quartiles of z score change n/N (%) Odds ratio (95% CI)

Crude Birth model Postnatal model

ΔBMI

Q1 [–4.42, –0.89] 80/193 (41) 1.09 (0.72–1.65) 1.16 (0.72–1.86) 1.36 (0.83–2.24)

Q2 [–0.89, –0.07] 78/193 (40) [Reference] [Reference] [Reference]

Q3 [–0.07, 0.80] 110/193 (57) 1.89 (1.25–2.86) 1.81 (1.13–2.88) 2.02 (1.23–3.31)

Q4 [0.80, 4.73] 123/193 (64) 2.30 (1.51–3.50) 1.66 (1.03–2.69) 2.00 (1.20–3.34)

ΔWeight

Q1 [–4.08, –1.30] 94/193 (49) 1.57 (1.03–2.39) 1.30 (0.81–2.09) 1.14 (0.69–1.88)

Q2 [–1.30, –0.84] 81/193 (42) [Reference] [Reference] [Reference]

Q3 [–0.84, –0.39] 92/193 (48) 1.04 (0.68–1.58) 1.24 (0.77–1.99) 1.21 (0.73–2.01)

Q4 [–0.39, 1.55] 124/193 (64) 1.94 (1.26–2.98) 1.57 (0.96–2.56) 1.97 (1.16–3.35)

ΔLength
Q1 [–5.02, –1.67] 112/193 (58) 1.71 (1.12–2.61) 1.15 (0.71–1.86) 0.91 (0.54–1.51)

Q2 [–1.67, –1.03] 96/193 (50) [Reference] [Reference] [Reference]

Q3 [–1.03, –0.40] 91/193 (47) 0.85 (0.56–1.29) 0.81 (0.51–1.28) 0.67 (0.41–1.11)

Q4 [–0.40, 2.84] 92/193 (48) 0.86 (0.57–1.31) 0.91 (0.57–1.46) 0.79 (0.48–1.31)

ΔHead circumference

Q1 [–4.81, –1.40] 120/188 (64) 2.07 (1.35–3.17) 1.84 (1.13–2.98) 1.58 (0.95–2.61)

Q2 [–1.40, –0.77] 89/187 (48) [Reference] [Reference] [Reference]

Q3 [–0.77, –0.13] 95/187 (51) 1.09 (0.71–1.65) 1.14 (0.71–1.84) 1.17 (0.71–1.92)

Q4 [–0.13, 3.89] 75/187 (40) 0.67 (0.44–1.03) 0.72 (0.45–1.17) 0.77 (0.46–1.29)

Estimates derived from generalized linear mixed models including site as a random effect.
Birth model adjustment variables: antenatal steroids, multiple deliveries, caesarian delivery, GA at birth, SGA status, sex, SNAP-II score >20.
Postnatal model adjustment variables: all variables from birth model + mechanical ventilation during admission + necrotizing enterocolitis + patent ductus
arteriosus.

L. Li Ching Ng et al.

1613

Pediatric Research (2023) 93:1609 – 1615



intra-uterine growth restrictions and need for postnatal catch-up
growth. Caloric intake was assessed biweekly and may not reflect
the cumulative effect of energy intake on growth. The use of BPD
as a primary binary outcome has limitations since it does not fully
correlate with lung growth, lung function, and long-term
respiratory outcomes. The grouping of the exposure into quartiles
of change due to the nonlinear association between ΔBMI and
BPD also has limitations such as assuming a similar effect for all
values within each quartile and using cut-off based on the data
distribution.55 Further research is required to better define and
validate the expected postnatal BMI trajectory in preterm
infants.24 The exclusion of infants that died before 34 weeks
(because these infants would not have a known BPD status) may
contribute to survival bias.

CONCLUSIONS
An increasing BMI z score from birth to 36 weeks was independently
associated with higher odds of BPD. This positive ΔBMI from birth to
36 weeks was due to a lower weight loss in the first 2 weeks of life, a
higher weight gain overtime, and a slower linear growth velocity,
despite no differences in caloric intake when compared to BPD-free
infants. These findings suggest that infants who develop BPD may
have altered metabolism and may require individualized growth
targets. Future studies on macronutrient intake and body composi-
tion are required to better identify nutritional goals in very preterm
infants with evolving lung disease.

DATA AVAILABILITY
The datasets generated during and/or analyzed during the current study are not
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