Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Clinical Research Article
  • Published:

Risk factors for unfavorable outcome at discharge of newborns with hypoxic-ischemic encephalopathy in the era of hypothermia

Abstract

Objective

To re-visit short-term outcomes and associated risk factors of newborns with hypoxic-ischemic encephalopathy (HIE) in an era where hypothermia treatment (HT) is widespread.

Methods

This is a prospective population-based cohort in French neonatal intensive care units (NICU). Neonates born at or after 34 weeks of gestational age with HIE were included; main outcomes were in-hospital death and discharge with abnormal or normal MRI. Associations of early perinatal risk factors, present at birth or at admission to NICU, with these outcomes were studied.

Results

A total of 794 newborns were included and HT was administered to 670 (84.4%); 18.3% died and 28.5% and 53.2% survived with abnormal and normal MRI, respectively. Severe neurological status, Apgar score at 5 mn ≤5, lactate at birth ≥11 mMoles/l, and glycemia ≥100 mg/dL at admission were associated with an increased risk of death (relative risk ratios (aRRR) (95% CI) 19.93 (10.00–39.70), 2.89 (1.22–1.62), 3.06 (1.60–5.83), and 2.55 (1.38–4.71), respectively). Neurological status only was associated with survival with abnormal MRI (aRRR (95% CI) 1.76 (1.15–2.68)).

Conclusion

Despite high use of HT in this cohort, 46.8% died or presented brain lesions. Early neurological and biological examinations were associated with unfavorable outcomes and these criteria could be used to target children who warrant further neuroprotective treatment.

Trial registration

Clinical trial registry, NCT02676063, ClinicalTrials.gov.

Impact

  • In this population-based cohort of newborns with HIE where 84% received hypothermia, 46.8% still had an unfavorable evolution (death or survival with abnormal MRI). Risk factors for death were high lactate, low Apgar score, severe early neurological examination, and high glycaemia.

  • While studies have established risk factors for HIE, few have focused on early perinatal factors associated with short-term prognosis. This French population-based cohort updates knowledge about early risk factors for adverse outcomes in the era of widespread cooling.

  • In the future, criteria associated with an unfavorable evolution could be used to target children who would benefit from another neuroprotective strategy with hypothermia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Flowchart of the LyTONEPAL cohort.

Similar content being viewed by others

Data availability

Data cannot be shared publicly but will be available from the Grenoble University Hospital on request for researchers who meet the criteria for access to confidential data.

References

  1. Victor, S., Rocha-Ferreira, E., Rahim, A., Hagberg, H. & Edwards, D. New possibilities for neuroprotection in neonatal hypoxic-ischemic encephalopathy. Eur. J. Pediatr. 3, 875–887 (2022).

    Article  Google Scholar 

  2. Chalak, L., Ferriero, D. M., Gressens, P., Molloy, E. & Bearer, C. A 20 years conundrum of neonatal encephalopathy and hypoxic ischemic encephalopathy: are we closer to a consensus guideline? Pediatr. Res. 86, 548–549 (2019).

    Article  PubMed  Google Scholar 

  3. Sarnat, H. B. & Sarnat, M. S. Neonatal encephalopathy following fetal distress. A clinical and electroencephalographic study. Arch. Neurol. 33, 696–705 (1976).

    Article  CAS  PubMed  Google Scholar 

  4. Neonatal Encephalopathy and Neurologic Outcome, Second Edition Report of the American College of Obstetricians and Gynecologists’ Task Force on Neonatal Encephalopathy. Pediatrics 133, e1482–e1488 (2014).

  5. Shankaran, S. Therapeutic hypothermia for neonatal encephalopathy. Curr. Opin. Pediatr. 2, 152–157 (2015).

    Article  Google Scholar 

  6. Saliba, E. & Debillon, T. Hypothermia for hypoxic-ischemic encephalopathy in fullterm newborns. Arch. Pediatr. 3(Suppl), S67–S77 (2010).

    Article  Google Scholar 

  7. Jacobs, S. E. et al. Cooling for newborns with hypoxic ischaemic encephalopathy. Cochrane Database Syst. Rev. 31, CD003311 (2013).

    Google Scholar 

  8. Gluckman, P. D. et al. Selective head cooling with mild systemic hypothermia after neonatal encephalopathy: multicentre randomised trial. Lancet 365, 663–670 (2005).

    Article  PubMed  Google Scholar 

  9. Shankaran, S. et al. Whole-body hypothermia for neonates with hypoxic–ischemic encephalopathy. N. Engl. J. Med. 353, 1574–1584 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Azzopardi, D. V. et al. Moderate hypothermia to treat perinatal asphyxial encephalopathy. N. Engl. J. Med. 361, 1349–1358 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Debillon, T., Bednarek, N. & Ego, A., and the LyTONEPAL Writing Group. LyTONEPAL: long term outcome of neonatal hypoxic encephalopathy in the era of neuroprotective treatment with hypothermia: a French population-based cohort. BMC Pediatrics 18, 255–263 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Beck, J. et al. Cerebral injuries in neonatal encephalopathy treated with hypothermia: French LyTONEPAL cohort. Pediatr. Res. 92, 880–887. https://doi.org/10.1038/s41390-021-01846-3 (2022).

  13. Mamelle, N. et al. Fetal growth from the AUDIPOG study. I. Establishment of reference curves. J. Gynecol. Obstet. Biol. Reprod. (Paris) 1, 61–70 (1966).

    Google Scholar 

  14. Rubin, D. B. Frontmatter. In: Multiple Imputation for Nonresponse in Surveys (John Wiley & Sons, Inc.) https://doi.org/10.1002/9780470316696 (1987).

  15. Grass, B., Scheidegger, S. & Latal, B. Short-term neurological improvement in neonates with hypoxic-ischemic encephalopathy predicts neurodevelopmental outcome at 18-24 months. J. Perinat. Med. 48, 296–303 (2020).

    Article  PubMed  Google Scholar 

  16. Kracer, B., Hintz, S. R., Van Meurs, K. P. & Lee, H. C. Hypothermia therapy for neonatal hypoxic ischemic encephalopathy in the state of California. J. Pediatr. 165, 273 (2014).

    Article  Google Scholar 

  17. Shankaran, S. et al. Effect of depth and duration of cooling on death or disability at age 18 months among neonates with hypoxic-ischemic encephalopathy. JAMA 318, 57–67 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Tsuda, K. et al. Therapeutic hypothermia for neonatal encephalopathy: a report from the first 3 years if the Baby Cooling Registry of Japan. Sci. Rep. 7, 39508 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Thorsen, P. et al. The Thompson Encephalopathy Score and Short-Term Outcomes in asphyxiated newborns treated with therapeutic hypothermia. Pediatr. Neurol. 60, 49–53 (2016).

    Article  PubMed  Google Scholar 

  20. Ambalavanan, N. et al. Early determination of prognosis in neonatal moderate or severe hypoxic-ischemic encephalopathy. Pediatrics 147, e2020048678 (2021).

    Article  PubMed  Google Scholar 

  21. Tu, Y. F. et al. Lactate predicts neurological outcomes after perinatal asphyxia in post-hypothermia era: a prospective cohort study. Life (Basel) 11, 1193 (2021).

    CAS  PubMed  Google Scholar 

  22. O’Boyle, D. S. et al. Improvement in the prediction of neonatal hypoxic-ischemic encephalopathy with the integration of umbilical cord metabolites and current clinical makers. J. Pediatr. 229, 175–181 (2021).

    Article  PubMed  Google Scholar 

  23. Thompson, C. M. et al. The value of a scoring system for hypoxic ischaemic encephalopathy in predicting neurodevelopmental outcome. Acta Paediatr. 86, 757–761 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Shah, S., Tracy, M. & Smyth, J. Postnatal lactate as an early predictor of short-term outcome after intrapartum asphyxia. J. Perinatol. 24, 16–20 (2004).

    Article  PubMed  Google Scholar 

  25. Polackovaa, R., Salounovac, D. & Kantord, L. Lactate as an early predictor of psychomotor development in neonates with asphyxia receiving therapeutic hypothermia. Biomed. Pap. Med Fac. Univ. Palacky. Olomouc Czech Repub. 162, 144–148 (2018).

    Article  Google Scholar 

  26. Daboval, T. et al. Comparisons between umbilical cord biomarkers for newborn hypoxic-ischemic encephalopathy. J. Matern. Fetal Neonatal Med. 25, 1–14 (2019).

    Google Scholar 

  27. Basu, S. K. et al. Early glycemic profile is associated with brain injury patterns on magnetic resonance imaging in hypoxic ischemic encephalopathy. J. Pediatr. 203, 137–143 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Basu, S. K. et al. Hyperglycaemia in infants wiht hypoxic-ischaemic encephalopathy is associated with improved outcomes after therapeutic hypothermia: a post hoc analysis ot the CoolCap study. Arch. Dis. Child Fetal Neonatal Ed. 4, F299–F306 (2017).

    Article  Google Scholar 

  29. Montaldo, P. et al. Continuous glucose monitoring profile during therapeutic hypothermia in encephalopathic infants with unfavorable outcome. Pediatr. Res. 88, 218–224 (2020).

    Article  CAS  PubMed  Google Scholar 

  30. Chouthai, N. S. et al. Hyperglycemia is associated with poor outcome in newborn infnants undergoing therapeutic hypothermia for hypoxic ischemic encephalopathy. J. Neonatal Perinat. Med. 8, 125–131 (2015).

    Article  Google Scholar 

  31. Mohammad, K. et al. Hemodynamic instability associated with increase risk of deaths or brain injury in neonates with hypoxic ischemic encephalopathy. J. Neonatal Perinat. Med. 10, 363–370 (2017).

    Article  CAS  Google Scholar 

  32. Wang, H. et al. Ilness severity predicts death and brain injury in asphyxiated newborns treated with hypothermia. Am. J. Perinatol. 35, 951–958 (2018).

    Article  PubMed  Google Scholar 

  33. Liljestrom, L., Wikstrom, A. K. & Jonsson, M. Obstetric emergencies as antecedents to neonatal hypoxic ischemic encephalopathy, does parity matter? Acta Obstet. Gynecol. Scand. 97, 1396–1404 (2018).

    Article  PubMed  Google Scholar 

  34. Martinez-Biarge, M., Madero, R., González, A., Quero, J. & García-Alix, A. Perinatal morbidity and risk of hypoxic-ischemic encephalopathy associated with intrapartum sentinel events. Am. J. Obstet. Gynecol. 206, 148.e1–7 (2012).

    Article  PubMed  Google Scholar 

  35. Michaeli, J. et al. Intrapartum fetal monitoring and perinatal risk factors of neonatal hypoxic–ischemic encephalopathy. Arch. Gynecol. Obstet. 303, 409–417 (2021).

    Article  PubMed  Google Scholar 

  36. Zuarez‑Easton, S. et al. Peripartum events associated with severe neurologic morbidity and mortality among acidemic neonates. Arch. Gynecol. Obstet. 297, 877–883 (2018).

    Article  PubMed  Google Scholar 

  37. Tann, C. J. et al. Perinatal risk factors for neonatal encephalopathy: an unmatched case-control study. Arch. Dis. Child Fetal Neonatal Ed. 103, F250–F256 (2018).

    Article  PubMed  Google Scholar 

  38. Nelson, K. B. et al. Antecedents of neonatal encephalopathy in the Vermont Oxford network encephalopathy registry. Pediatrics 130, 878–886 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Parker, S. J., Kuzniewicz, M., Niki, H. & Wu, Y. W. Antenatal and intrapartum risk factors for hypoxic-ischemic encephalopathy in a US Birth Cohort. J. Pediatr. 203, 163–169 (2018).

    Article  PubMed  Google Scholar 

  40. Lundgren, C., Brudin, L., Wanby, A. S. & Blomberg, M. Ante- and intrapartum risk factors for neonatal hypoxic ischemic encephalopathy. J. Matern. Fetal Neonatal Med. 31, 1595–1601 (2018).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Alison Foote (Grenoble Alpes University Hospital, France) for critically editing the manuscript and Catherine de Launay du Couedic for the overall coordination of the data collection. We thank The LyTONEPAL Study Group Collaborators: Auvergne Rhône-Alpes: N. Bouchon-Guedj (Chambéry), G. Remerand (Clermont-Ferrand), M. Chevallier (Grenoble), O. Claris (Lyon, HFME), C.M. Loys (Lyon, Croix Rousse), H. Patural (Saint-Etienne); Bourgogne Franche-Comté: T. Dabudyk (Besançon), C. Chantegret (Dijon); Bretagne: J.M. Roué (Brest), M. Gromand (Rennes), A. Busnel (St-Brieuc), A. Sevestre (Vannes); Centre Val-de-Loire: J. Guerreiro (Orléans), G. Favrais (Tours); Grand Est: J. Nakhleh (Mulhouse), N. Bednarek (Reims), D. Astruc, (Strasbourg), B. Kassis-Makhoul (Troyes); Hauts de France: G. Ghostine (Amiens), J. Ghesquiere (Arras), L. Egreteau (Calais), S.M. Dhahbi (Creil), S. Klosowski (Lens), F. Flamein (Lille), J. Balitalike (Valenciennes); Ile-de-France: D. Brau (Argenteuil), V. Zupan-Simunek (Clamart), C. Huon (Colombes), M. Tauzin (Créteil), M. Merhi (Evry), N. Le Sache (Le Kremlin-Bicêtre), B. Heller Roussin (Montreuil), D. Mellah (Meaux), A. Lapillonne, E. Leroy Terquem (Paris, Necker), J. Patkai (Paris, Port Royal), V. Biran (Paris, Robert Debré), I. Guellec (Paris, Trousseau), A. Durandy (Poissy), P. Boize (Pontoise), F. Goudjil (St Denis); Nouvelle Aquitaine: P. Jouvencel (Bayonne), O. Brissaud (Bordeaux), F. Mons (Limoges), K. Norbert (Pau), A. Parizel (Poitiers); Occitanie: G. Cambonie (Montpellier), M. Di Maio (Nîmes), R. Salloum (Perpignan), M.O. Marcoux (Toulouse); Pays de Loire: S. Le Bouedec (Angers), C. Flamant (Nantes), Y. Montcho (Le Mans); Provence Alpes Côte d’Azur: C. Desrobert (Marseille La Conception), V. Brevaut-Malaty (Marseille, Nord), F. Casagrande (Nice), R. Salloum (Perpignan); Martinique: S. Ketterer Martinon (Fort de France); Normandie: A. Cénéric (Caen), J. Mourdie (Le Havre), A. Chadie (Rouen); La Réunion: M. Carbonnier (Saint-Pierre), D. Ramful (Saint-Denis).

Funding

The study was funded by 2013 French Program for Hospital Clinical Research (PHRC-N-13-0327). The funder had no role in the design and conduct of the study.

Author information

Authors and Affiliations

Authors

Contributions

T.D., N.B., and A.E. conceptualized and designed the study, wrote the grant proposal, supervised data collection, drafted the manuscript and reviewed and revised it. L.S., G.K., O.B., P.Y.A., and I.G. helped design the study and critically reviewed and revised the manuscript. J.Z., M.C., and V.P. critically reviewed the manuscript for important intellectual content. A.V. carried out the statistical analysis and reviewed the manuscript.

Corresponding author

Correspondence to Thierry Debillon.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Debillon, T., Sentilhes, L., Kayem, G. et al. Risk factors for unfavorable outcome at discharge of newborns with hypoxic-ischemic encephalopathy in the era of hypothermia. Pediatr Res 93, 1975–1982 (2023). https://doi.org/10.1038/s41390-022-02352-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41390-022-02352-w

Search

Quick links