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Immunoperinatology is an emerging field. Transdisciplinary efforts by physicians, physician‐scientists, basic science researchers, and
computational biologists have made substantial advancements by identifying unique immunologic signatures of specific diseases,
discovering innovative preventative or treatment strategies, and establishing foundations for individualized neonatal intensive care
of the most vulnerable neonates. In this review, we summarize the immunobiology and immunopathology of pregnancy, highlight
omics approaches to study the maternal–fetal interface, and their contributions to pregnancy health. We examined the importance
of transdisciplinary, multiomic (such as genomics, transcriptomics, proteomics, metabolomics, and immunomics) and machine-
learning strategies in unraveling the mechanisms of adverse pregnancy, neonatal, and childhood outcomes and how they can
guide the development of novel therapies to improve maternal and neonatal health.
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IMPACT:

● Discuss immunoperinatology research from the lens of omics and machine-learning approaches.
● Identify opportunities for omics-based approaches to delineate infection/inflammation-associated maternal, neonatal, and later

life adverse outcomes (e.g., histologic chorioamnionitis [HCA]).

INTRODUCTION
Inflammation, either sterile or non-sterile, may result in preterm
labor (PTL) or preterm premature rupture of membranes (PPROM).1

Ensuing preterm birth accompanied by postnatal inflammation
(a second inflammatory hit) as a result of postnatal infectious
agents, hypoxia, hyperoxia, intrauterine growth restriction (IUGR),
malnutrition, and/or medications may further exacerbate neonatal
morbidities.1 Preterm birth significantly impacts the infants, families,
and society at large. Thus, it is imperative that novel tools to predict
the development of devastating neonatal morbidities be designed,
which utilize all available clinical, laboratory, and omics data as well
as machine-learning (and artificial intelligence [AI]) approaches with
the aim of individualizing medical therapies.
Dynamic regulation of local placental, maternal peripheral

immune responses, inflammatory and anti-inflammatory cells,
cytokines and signaling pathways are important contributors to
maternal–fetal homeostasis.2,3 Maternal–fetal homeostasis can be
perturbed by prenatal factors such as environmental exposures,
inflammation and infection, poor nutrition, and chronic maternal
stress.4 Additionally, the balance between inherent susceptibilities
and resilience of the mother and fetus, gestational age (GA), birth
weight (BW) at delivery, the postnatal environment, neonatal
intensive care unit (NICU) course, and disease burden are important
contributors to neonatal and later life outcomes. Immune system
reprogramming can also be considered a core component of the

developmental origins of health and disease (Fig. 1). Based on fetal
programming, influences that occur in fetal life may persist beyond
the acute stage, some may remain silent during the early postnatal
life but result in lifelong morbidities.5–7 This is especially important
for preterm neonates where sustained inflammation could alter
postnatal organ development and contribute to inflammation-
associated neonatal morbidities such as bronchopulmonary dyspla-
sia (BPD), retinopathy of prematurity (ROP), intraventricular
hemorrhage (IVH), and periventricular leukomalacia (PVL).1

The exposome is a term coined by Wild et al. in 2005 to describe
that a phenotype is a function of the genome and environment,
where the environment is all encompassing from prenatal,
antenatal, and postnatal life.8 Interactions between the exposome
and genome are central for the development of chronic diseases8

and also implicated as a cause of preterm birth.9 Thus, reprogram-
ming in fetal life may determine lifelong health and individual
resilience or susceptibilities to disease as a function of altered early
homeostasis and gene–environment balance.7,10 In 2014, Rappaport
et al. explored the role of the exposome in disease causality.11

Although they did not target the neonatal exposome specifically,
they highlighted that targeting just one investigative approach was
insufficient to understand causality.11 For instance, data weighted
by epidemiological risk factors generated different risk maps for
chronic disease causality when compared with data weighted by
metabolic pathways.11 Therefore, to predict disease susceptibilities,
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severities, and/or short- or long-term outcomes from any biological
data, the complexity of the exposome must be included in any
prediction algorithm.
It has been difficult to differentiate associations from causality

for most neonatal morbidities. High-throughput technologies such
as omics approaches allow for a comprehensive study of biologic
molecules through the integration of a wide array of datasets
arising from studies of the genome, transcriptome, proteome,
metabolome, immunome, and microbiome.12 Indeed, they may
reveal new insights into the causative pathways of any complex
disease process.12 Generated datasets can be useful as prediction
tools for common neonatal morbidities, and can help stratify
patients based on their risk categories to conventional or novel
therapies. Here, we provide an overview of emerging omics and
machine-learning approaches to study normal and pathological
pregnancies as well as some of the common neonatal morbidities
that challenge clinicians working daily in the NICU.

DETERMINATION OF A HEALTHY MATERNAL–FETAL
INTERFACE: MATERNAL BLOOD, PLACENTA, AND OMICS
INTEGRATION
Adaptive maternal immunologic changes support the concept of
its effects on immune tolerance on the developing fetus, while
disruption of this homeostasis may be associated with patholo-
gical pregnancies and neonatal sequelae.2,3,13,14 Implantation and
maintenance of a healthy pregnancy and delivery corresponds
with dynamic changes in NF-KB regulation during gestation.15–17

Implantation, primarily a pro-inflammatory process, is followed by
a relative uterine quiescence maintained by a negative regulation
of NF-KB until induction of spontaneous labor at term. Th1, natural
killer (NK) cells, macrophages, and dendritic cells (DCs) are
activated during implantation.16 Peripheral blood monocytes

and T cell NF-KB downregulation contributes to healthy
maternal–fetal tolerance.15,18–20 PTL however may ensue with a
dysregulation in anti-inflammatory (IL-10, Galectin-1)/pro-inflam-
matory (TNF-α, IL-6, IL-8, IFN-γ, MMP, COX-2) signaling.15,21 In a
genome-wide transcriptional profiling study using third trimester
maternal dried bloodspots, preterm birth was found to be
associated with increased NF-KB and transcripts originating from
monocytes.22 Other pregnancy pathologies such as spontaneous
abortion and IUGR can occur due to an overactivation of NF-KB or
alterations of normal Th1/Th17 dynamics15,23 (Fig. 2).
Machine-learning and AI algorithms applied to high-throughput

omics data have enabled recent advances in the understanding of a
healthy maternal–fetal interface as well as of pathological
pregnancies.2,24–32 Novel approaches have been applied to define
an immune clock of pregnancy, where T cell function during a
healthy term pregnancy is modulated by a unique signaling
pathway, namely, interleukin-2 (IL-2)-dependent signal transducer
and activator of transcription-5 (STAT5ab) in naive CD4+ T cells.24 A
state-of-the-art cell signaling-based elastic net (csEN) algorithm was
designed to interrogate maternal whole blood immune cells
prospectively collected during early, mid, and late pregnancy and
accurately predicted dynamic immune alterations that were highly
regulated during the course of a healthy term pregnancy.24

Specifically, there was a progressive increase in endogenous
STAT5ab signaling in memory CD4+, naive CD8+, memory CD8+,
TCRγδ+ T, and CD25+ FoxP3+ regulatory T cells (Tregs), and
endogenous STAT5ab signaling in naive CD4+ T cells, which strongly
correlated with plasma IL-2.24 Given STAT5ab/IL-2 signaling is
important in T cell differentiation and the development of Tregs, it
may be relevant to the maintenance of maternal–fetal tolerance.24

In a subsequent study, Aghaeepour et al. investigated whether
plasma protein signatures from women having term pregnancies
could predict GA and whether functionality of these proteins is
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associated with pregnancy-related immunologic changes.25 Three
proteins (glypican 3, chorionic somatomammotropin hormone,
and granulin) ranked highest out of eight in predicting GA, while
chorionic somatomammotropin hormone showed a strong
correlation with immunologic changes, specifically in CD4+ T cell
STAT5 signaling, suggesting a role in regulating T cell function.25

A recent study demonstrated that the onset of spontaneous
labor can be predicted by multiomics data integration.33 The
metabolome, proteome, and immunome profiles generated from
maternal blood samples longitudinally collected from the last
100 days of pregnancy (i.e., prior to labor onset) were interrogated
for prediction of time to spontaneous labor.33 There was an
observed increase in the IL-1 receptor type 4 (IL-1R4) proteomic
signature in the last 30 days prior to labor onset along with a
decrease in JAK-STAT and MyD88, which suggests the involve-
ment and regulation of late pregnancy inflammatory pathways.33

Associated variations in placental methylated DNA (DNAm) and
gene expression for several previously established GWAS loci for
birth weight were determined using an omics approach.32

PLEKHA1, FES, PRMT7 and CTDNEP1, were classified as potentially
causal to BW.32 Of these, PLEKHA1, FES and PRMT7 met the cut-off
as having a shared causal variant and identified as functional
genes for underlying BW, DNAm, and gene expression in the
placenta by a multi-trait colocalization test.32 Importantly, these
results were validated in two independent datasets (Table 1).

MAPPING THE HEALTHY DEVELOPMENT OF THE FETAL/
NEONATAL IMMUNE SYSTEM WITH OMICS
Development of the human immune system is complex and
begins at pre-conception and matures throughout adolescence.34

Briefly, in humans, the fetal liver harbors lymphocyte progenitors
around 7–10 weeks of gestation, followed by progenitor migration
to the thymus by week 9, and the initiation of lymphopoiesis in
the bone marrow by week 12.34 During the next 14–26 weeks, an
expansion of the T cell pool occurs that coincides with the training
of T cells or acquisition of T cell function, and thereby exposing a
susceptible window for reprogramming.34

Maintenance of a healthy maternal–fetal interface is necessary
for the normal development of the fetal immune system (Table 2).

Fragiadakis et al. analyzed paired peripheral maternal blood
samples and cord blood after cesarean delivery and characterized
the maternal–fetal immune cell network and function at term.27

Using single-cell time-of-flight mass cytometry (CyTOF), an
unsupervised clustering algorithm, and scaffold mapping,
they found that the neonatal adaptive immune system is
enhanced, except for a lower STAT1 response, while the innate
immune system is dampened, consistent with earlier reports.27

More importantly, novel differences were identified between the
maternal and fetal immune systems including increased ERK1/2,
MAPK-activated protein kinase 2, rpS6, and CREB phosphorylation
in fetal Tbet+CD4+ T cells, CD8+ T cells, B cells, and CD56loCD16+

NK cells and decreased ERK1/2, MAPK-activated protein kinase 2,
and STAT1 phosphorylation in fetal intermediate and nonclassical
monocytes.27

Peterson et al. collected umbilical cord venous blood samples
from neonates born between 25 and 40 weeks of gestation who
were not exposed to chorioamnionitis.35 Innate and adaptive
immune cell frequencies and baseline intracellular signaling
and responses after stimulation with lipopolysaccharide (LPS),
interferon-alpha (INF-α), and a cytokine cocktail, were evaluated
using CyTOF to identify specific neonatal immune signatures, and
whether GA could be predicted based on these changes alone.35

Overall, they observed that ligand-specific responses progressively
increased in immune cells as GA advanced as opposed to a
high basal signaling tone for inflammatory mediators at earlier
GAs. Additionally, innate immune cells including neutrophils and
classical monocytes increased while Tregs decreased with advan-
cing GA.35 These findings may constitute a first step to further
understand the inflammatory- and infection-related neonatal
morbidities seen in preterm neonates across gestation.

INTRA-AMNIOTIC INFECTION (IAI)/HISTOLOGIC
CHORIOAMNIONITIS (HCA) AS IMMUNOTOXIC EXPOSURES
AND CAUSES OF IMMUNE SYSTEM REPROGRAMMING
An altered intrauterine homeostasis can lead to neuro-immune
and peripheral immunologic alterations, and thus can impact
long-term health and result in lifelong disabilities.36–39 Immune
system reprogramming in the fetus can occur during critical
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immunotoxic prenatal windows during the prenatal period40 due
to exposures to inflammation or infection, and can skew
immune responses, thus contributing to disease processes and
mortality.34

In most HCA cases, clinical illness is not observed in the mother
or the fetus.41–44 HCA becomes more prevalent as the GA at
delivery decreases, with 94% of periviable infants shown to have
chorioamnionitis.42 Furthermore, HCA may be present in 36% and
58% in mothers undergoing PTL with intact membranes and in
PPROM, respectively.45 However, major neonatal morbidities, such

as neonatal sepsis, respiratory distress, BPD, and white matter
injury were more prevalent in infants with fetal inflammatory
response syndrome (FIRS).46–48 Specifically, fetal plasma IL-6
exceeding 11 pg/mL was identified as an independent risk factor
for neonatal morbidity.45 Almost half of the infants with high fetal
plasma IL-6 concentrations and adverse neonatal events did not
have bacterial invasion of the amniotic fluid or an associated HCA,
and thus may only have a sterile inflammation.45

In contrast, chronic chorioamnionitis is defined as the infiltra-
tion of maternal CD8+ T cells into the chorioamniotic membranes

Table 1. Determination of a healthy maternal–fetal interface: maternal peripheral blood samples, placentas, and omics data integration.

“Immune clock” of pregnancy Maternal whole blood: Aghaeepour et al.

T cell IL-2-STAT5ab

Term GA delivery prediction Maternal plasma proteins: Aghaeepour et al.

Glypican 3

Chorionic somatomammotropin

Granulin

Onset of spontaneous labor Maternal blood: Stelzer et al.

Decrease in IL-1R4

Decrease in JAK-STAT

Decrease in MyD88

Placental multiomics for
determining BW

GWAS BW/placental epigenomics and transcriptomics: evidence of mutitrait
colocalization for loci with causal sharing between BW, DNAm, and gene expression

Tekola-Ayele et al.

PLEKHA1 gene expression (GWAS) colocalize with DNAm sites in PLEKHA1 and
HTRA1 (Placenta)

FES gene expression (GWAS) colocalize with 9 DNAm sites in FES (Placenta)

PRMT7 gene expression (GWAS) colocalized with DNAm site in SMPD3 (Placenta)

IL interleukin, STAT5ab signal transducer and activator of transcription 5ab, JAK janus kinase, MyD88 myeloid differentiation primary response 88, BW birth
weight, GWAS genome-wide association study, PLEKHA1 pleckstrin homology domain containing A1, DNAm DNA methylation, HTRA1 serine peptidase 1, FES
proto-oncogene tyrosine kinase, PRMT7 protein arginine methyltransferase 7, SMPD3 sphingomyelin phosphodiesterase 3.

Table 2. Fetal/neonatal immune system development and reprogramming.

AF, acute HCA ↑ fetal plasma IL-6 independent risk for neonatal morbidity Gomez et al.

AF, chronic HCA ↑ significantly elevated fetal serum CXCL-10 Kim et al.

AF, IAI Cell-specific transcriptomic changes strongly correlate with severity
of FIRS

Gomez-Lopez et al.

Cord blood at term, no HCA CyTOF/ML
↑ ERK1/2, MAPK-apk2, rpS6, CREB in Tbet+CD4+, CD8+ T cells, B cells,
CD56loCD16+ NK cells
↓ ERK1/2, MAPK-apk2, STAT1 phosphorylation in intermediate and
classical monocytes

Fragiadakis et al.

Cord blood 25-40 weeks, no HCA CyTOF/ML↑ basal signaling tone for inflammatory mediators at
earlier GA
↑ neutrophil, classical monocytes at later GA
↓ Tregs at later GA

Peterson et al.

Peripheral blood at birth/<24 HOL, HCA-
exposed preterm, not infected

Activation of MiR-155-regulated innate and adaptive immune system
pathways
Differential expression of CCL2/MCP-1, MPO, MMP-9

Weitkamp et al.

Postnatal epigenetic modifications, preterm
neonate, no HCA

Monocytes acquire activating histone modification, H3K4me3, near
TNF-α, IL1-β, IL-6 gene promoters as PMA advances

Bermick et al.

Postnatal epigenetic modifications, preterm
neonate, HCA

Alterations of histone modifications at baseline and after second
inflammatory hit

Bermick et al.

AF amniotic fluid, IL interleukin, CXCL chemokine ligand, FIRS fetal inflammatory response syndrome, ERK1/2 extracellular signal regulated kinase, MAPK-apk2
mitogen-activated protein kinase, rpS6 human phosphoribosomal protein S6, CREB cAMP response element binding protein, Tbet T box expressed in T cells, CD
cluster of differentiation, NK natural killer, STAT1 signal transducer and activation of transcription 1, GA gestational age, Tregs regulatory T cells, MiR-155microRNA
155, MCP-1 (a.k.a. CCL2)monocyte chemoattractant protein-1 (CC motif chemokine ligand 2), MPOmyeloperoxidase, MMP-9matrix metalloproteinase-9, H3K4me3
tri-methylation at the 4th lysine residue of the histone H3 protein, TNF-α tumor necrosis factor alpha, CCR2 CC motif chemokine receptor 2, PMA post-menstrual
age, HOL hours of life, ML machine learning.
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or the chorionic plate.41,49 The frequency of chronic chorioamnio-
nitis is higher in PPROM, PTL, and preterm deliveries compared
with infants born at term.49 An isolated elevation in amniotic
CXCL-10 concentrations has been found to be associated with the
subsequent delivery of a placenta with lesions consistent with
fetal rejection, but not acute HCA.50 It is important to note that the
degree of elevation of amniotic CXCL-10 concentrations correlated
with the severity of chronic chorioamnionitis.49 Fetal serum CXCL-
10 concentration was significantly elevated in cases with chronic
placental inflammation and fetal rejection.51

All in all, there is still a pressing need to elucidate the
mechanism(s) of the reprogramming of the neonatal immune
system following immunotoxic exposures where high-dimensional
omics approaches can be utilized. Peripheral blood collected at
birth from neonates who were exposed to HCA, but not infected,
displayed activation of the innate and adaptive immune pathways
and with differential expression of certain mediators such as CCL2/
MCP-1, MPO, and MMP-9.37 HCA was found to be associated with
miR-155-regulated activation of the innate and adaptive immune
pathways in whole blood and CCL2 in plasma samples obtained
from moderate to late preterm neonates within 24 h of birth.37

This was the first study to show gene expression patterns
suggestive of immune system priming in preterm infants exposed
to HCA.37 miR-155 is an upstream regulator of these affected
immune networks and has been associated with chronic
inflammation.37,52,53 These changes in monocyte transcription
and its regulation are hypothesized to contribute to the potential
increase in susceptibilities of neonates to postnatal infections and
long-term immune system reprogramming and dysfunction in
adulthood.37

During the maturation of the immune system from neonatal life
to adulthood, important epigenetic modifications occur in
individual immune cells.54 Monocytes obtained from preterm
neonate blood have less abundant H3K4me3, an activating
histone modification, when compared to term neonates and
adults. Less abundant H3K4me3 near pro-inflammatory cytokine
promoters such as TNF-α, IL1-β, and IL-6 correspond to decreased
pro-inflammatory responses in preterm neonates.54 However, this
normal developmental change in histone modification can be
altered in the presence of HCA at baseline and after a second
inflammatory challenge.55 In a 2021 study by Gomez-Lopez et al.,
neutrophils and monocytes/macrophages in the amniotic fluid
were isolated by fluorescence-activated cell sorting (FACS) and
their origins (maternal or fetal) was determined by DNA
fingerprinting.56 Subsequent cell-type-specific transcriptomic dif-
ferences in these immune cells from women with IAI showed a
strong correlation with the severity of the fetal inflammatory
response.56 Furthermore, the immune transcriptome varied based
on the origin (maternal versus fetal) of the cell56 (Table 2).
Therefore, early identification of at-risk fetuses and neonates
exposed to HCA will be useful in guiding postnatal disease
prediction and management.

OMICS APPROACHES TO INTRA-AMNIOTIC INFECTION/
HISTOLOGIC CHORIOAMNIONITIS-ASSOCIATED PATHOLOGIC
PREGNANCY OUTCOMES
In 2010, Romero et al. published the first metabolomics study of
the amniotic fluid to identify patients who presented with PTL but
delivered at term, PTL without IAI and delivered preterm, and PTL
with IAI and delivered preterm using gas/liquid chromatography
and mass spectroscopy (GC-MS).57 Metabolomic profiling of the
amniotic fluid was able to correctly identify patients with 88.5 to
96.3% accuracy, but this technique would require invasive
collection, which would limit clinical utility57 (Table 3). A recent
study by Vincente-Munoz et al. focused on the vaginal metabo-
lome to diagnose PTL with intact membranes, since sample
collection is minimally invasive.58 They sought to determine

whether the vaginal metabolome could discriminate PTL cases
with and without microbial invasion of the amniotic cavity where
the current gold standard is amniotic fluid analysis.58 Using
nuclear magnetic resonance (NMR) spectroscopy, they were able
to discriminate PTL cases with and without microbial invasion of
the amniotic cavity58 (Table 3).
Fattuoni et al. was able to discern newborns exposed to HCA

(mean GA= 30.2 ± 3.8 weeks) from those who were not (mean
GA= 30.2 ± 2.9 weeks), based on urine metabolomics signatures
in the first 24 h of life by gas chromatography–mass spectroscopy
(GC-MS).59 Among the 29 metabolites that showed a difference,
28 were downregulated, while gluconic acid was upregulated.59

Furthermore, using a metabolite set enrichment analysis, they
showed that energy metabolism-related functional pathways
(including glutamate metabolism, mitochondrial transport chain,
tricarboxylic acid [TCA] cycle, and galactose, fructose, and
mannose metabolism) were significantly affected in newborns
whose mothers were diagnosed with HCA when compared with
controls.59 Some limitations of this study were a small sample size
and lack of placental and microbial data as microbial flora could
have impacted gluconic acid values59 (Table 3).
It has been recently shown that asymptomatic or mild COVID-19

infections in mothers can result in immune system reprogram-
ming at the maternal–fetal interface in the term placenta60

(Table 3), but their long-term effects on their infants remains to be
seen.61

OMICS AND MACHINE-LEARNING APPROACHES TO COMMON
SUSTAINED INFLAMMATION-ASSOCIATED NEONATAL
MORBIDITIES
Inflammation is associated with many neonatal morbidities,1 with
sustained inflammation specifically associated with BPD, ROP, IVH,
and PVL to name a few.1 Transcriptomic analyses of samples
collected from intrauterine inflammation- and postnatal
hyperoxia-exposed rat pups have shown that resident immune
cells and inflammatory immune pathways in the lung were
upregulated at 2 weeks and 2 months postnatally, compared with
control rats.62 In contrast, there was a downregulation of genes in
T cell receptor signaling and CD8+ T cell gene expression that
persists until adulthood despite recovery to room air.62 In cord
blood of human neonates, exposure to HCA/inflammation not
only can alter or activate immune and inflammatory genes, but it
also can influence differential gene expression affecting lung
development, airway remodeling, neuroimmune pathways, and
the development of asthma, allergy, and BPD.63

BPD is the most common pulmonary morbidity with life-long
sequalae and is prevalent among extremely preterm neonates
with a multifactorial pathogenesis.64 Omics approaches have been
applied to study BPD.65 However, a universally agreed, reliable
biomarker for its diagnosis and/or prognostication is not yet
available.66 In a recent review, Piersigili and Bhandari summarized
genomics, epigenomics, microbiomics, transcriptomics, proteo-
mics, and metabolomics approaches to BPD in human neonates,
including potential BPD biomarkers in tracheal aspirates, urine, or
volatile compounds in exhaled breath.66–71 In a 2011 study by
Fabiano et al. tracheal aspirate metabolic profiles analyzed by
NMR or GC-MS were different from bronchoalveolar lavage (BAL)
fluids collected during mechanical ventilation after administration
of surfactant for respiratory distress syndrome (RDS) compared
with those collected before surfactant administration.66,67 Fanos
et al. in 2014 showed by using urine samples collected within
24–36 h of life from preterm neonates who were <27 weeks
of gestation or <1500 g at birth, it may be possible to identify
neonates who will develop BPD by increases in lactate,
taurine, trimethylamine-N-oxide (TMAO), and myoinositol, or
decreases in gluconate.66,68 Carraro et al. reported observing an
altered exhaled breath condensate metabolomic profile by liquid
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chromatography–mass spectroscopy (LC-MS) in adolescents
(mean age of 14.8 years) who were former premature neonates
with a mean GA of 28.4 weeks and had BPD when compared with
healthy adolescents, suggesting that metabolomics profiles
remain altered in later life for infants with BPD66,70 (Table 4).
In neonates who were born at <30 weeks of gestation, with or

without exposure to maternal chorioamnionitis and had RDS,
tracheal aspirates collected within the first 24 h of life were
studied using LC-MS-based untargeted lipidomics.72 This study
described changes in the lipidomic fingerprints in the fluid of the
lung epithelial lining collected from preterm neonates with RDS
who had exposures to chorioamnionitis compared with neonates
who did not have a clinical presentation of RDS.72 The authors
suggested that the identified tracheal aspirate lipid mediators
(Table 4) in neonates with RDS exposed to chorioamnionitis could
be associated with later adverse respiratory outcomes. However,
RDS at birth does not necessarily correlate with an increased risk
of BPD and studies on whether chorioamnionitis contributes to
later BPD sequalae have been controversial.73–77 Whether these
omics approaches can shed light on the pathogenesis, prediction,
or outcomes of BPD remains to be seen.
Prematurity, chorioamnionitis, antenatal or postnatal infection,

and sustained inflammation have been associated with multiple
neonatal neurologic morbidities, including IVH, PVL, and cerebral
palsy (CP).78–81 However, it has been challenging to tease out the
exact implications of HCA versus clinical chorioamnionitis to
infant and/or later school age outcomes.79–81 Using an LC-MS-
based metabolomics approach, Dudzik et al. set out to identify
novel pathophysiologic processes for HCA and associated
perinatal brain injury in a cohort of pregnant women with
PPROM (24 to 32 weeks of gestation) and/or PTL (24–28 weeks).82

Samples were stratified into neonates with normal neurological
findings without any evidence of microbial or HCA exposure

(controls), and those with HCA exposure and neurological
sequalae defined by presence of PVL or IVH by ultrasound or
magnetic resonance imaging (MRI).82 Sphingolipids, specifically
sphingomyelin and lactosylceramides, were significantly altered
in the amniotic fluid from infants with chorioamnionitis
compared with controls.82 Notably, lactosylceramides were
increased 3000 times.82 It is important to highlight that
sphingomyelin is a sphingolipid present in white matter, while
lactosylceramide has proinflammatory and oxidative properties
and acts as a second messenger in neuroinflammatory dis-
eases.82–86 However, in this study, amniotic fluid lactosylceramide
levels were not predictive of perinatal neurological sequalae for
neonates of women with chorioamnionitis.82 Therefore, the
authors concluded that amniotic fluid lactosylceramides could
be used as a biomarker for chorioamnionitis, but not predictive of
later neurological sequalae, specifically IVH82 (Table 4).
A genome-wide association study (GWAS) of neonates who were

born 250/7 to 296/7 weeks of gestation, <1500 g, and who had a
history of minimum 3 days of intermittent positive pressure
ventilation, did not identify any clinical chorioamnionitis-associated
single nucleotide polymorphisms (SNPs), but highlighted an
association between clinical chorioamnionitis, high-grade IVH, PVL,
and high-grade ROP87 (Table 4).
In a recent study, Hamilton et al. demonstrated that using a

supervised machine-learning approach can outperform traditional
statistical methods in identifying discriminating factors for a
known outcome.88 In neonates born at 230/7–316/7 weeks of
gestation, a composite outcome including severe IVH (grade 3 or
4), ventilator dependence ≥28 days, PVL, surgical necrotizing
enterocolitis (NEC), death and clusters with known antenatal risk
factors were identified.88 Utilizing logistic regression, machine-
learning algorithms or a hybrid model that utilizes both methods,
they predicted severe morbidity. Babies who had abnormal fetal

Table 3. Omics approaches to diagnose inflammation-, MIAC-, IAI-, and HCA-associated pathologic pregnancy outcomes.

PT labor and delivery at term AF, representative metabolomics:
↑ galactose, hexose cluster 2, 3, 5, 6, mannose, fructose, urea, 3-hydroxybutanoic
acid, palmitate, threo-isocitric acid, glycerol, citric acid
↓ alanine, glutamine, pyroglutamic acid, isoleucine, glutamic acid, serine, tyrosine

Romero et al.

PT labor, no IAI with PT delivery AF, representative metabolomics:
↑ hexose cluster 6, dulcitol
↓ alanine, pyroglutamic acid, proline, glycine, glutamine, galactose, hexose cluster 3,
5, mannose, inositol

Romero et al.

PT labor with IAI AF, representative metabolomics:
↑ alanine, pyroglutamic acid, glutamine, leucine, proline, isoleucine, valine, glutamic
acid, glycine, tyrosine
↓ galactose, hexose cluster 1, 2, 3, 5, 6, mannose, fructose

Romero et al.

PT labor with MIAC, intact
membranes

Vaginal, metabolomics:
↑ hypoxanthine, proline, choline, acetyl choline
↓ phenylalanine, glutamine, leucine, isoleucine, glycerophosphocholine

Vivente-Munoz et al.

Distinction of newborn
exposed to HCA

Urine, metabolomics:
↑ gluconic acid
Alterations in glutamate metabolism, mitochondrial electron transport chain, citric
acid cycle, galactose metabolism, fructose and mannose degradation

Fattuoni et al.

Asymptomatic/mild COVID-19 Term decidua: single-cell RNA sequencing
Decidual macrophages (HLA-DRhigh): ↓ frequency, ↑ cytokine signaling, ↑ MHCII
Monocyte-derived decidual macrophages (HLADRlow): ↓MHCII, ↓ INF type I signaling,
↑ cytokine signaling
Decidual CD4+ T cells: ↓ naive subset, ↑ activation, ↓ Treg
Decidual CD8+ T cells: ↑ terminally differentiated, ↑ exhaustion (PD-1), ↑ INF type I
signaling
Blood: single cell RNA sequencing
↓ T cell diversity

Sureshchandra et al.

IAI intra-amniotic infection, MIACmicrobial invasion of amniotic cavity, HCA histologic chorioamnionitis, PT preterm, AF amniotic fluid, HLA-DR human leukocyte
antigen DR isotype, MHC major histocompatibility complex, INF interferon, CD cluster of differentiation, Tregs regulatory T cells, PD-1 programmed cell death
protein 1.
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testing, IUGR, who were born before 28 weeks and had
incomplete antenatal steroid course were at highest risk.88 The
hybrid approach yielded an area under the curve (AUC) of 0.8588

demonstrating that a hybrid model can potentially identify factors
that are not linear or independent, but are composed of a
collection of etiologies.88 However, this study did not identify any
novel risk factors.
ROP is a preterm birth-related cause of blindness. The

pathophysiology of ROP is related to abnormal vascular develop-
ment at the boundary of a vascularized and an avascular
peripheral retina. Early GA at delivery, low BW, and higher or
variable levels of oxygen supplementation are major risk factors
for the development of ROP. In a retrospective cohort study of 110
premature singleton infants who were born at ≤32.0 weeks of
gestation, cord plasma at birth was assayed for various
biomarkers.89 The primary outcome measures were the occur-
rence of any stage ROP, severe ROP (>stage 3), and vision-
threatening type 1 ROP requiring laser treatment. ROP was
diagnosed in approximately 27%, of which 12% was with severe
ROP.89 Laser treatment was performed on 6.4%.89 A prediction
model was developed, which included high cord plasma IL-6
levels and low BW for severe ROP (AUC of 0.84), and high cord
plasma C5a levels and low BW for laser treatment (AUC of 0.884).
The authors concluded that elevated levels of cord plasma IL-6
and C5a could be used as independent biomarkers to predict
severe ROP and laser treatment, respectively89 (Table 4).
Danielsson et al. identified serum proteins that correlated with

later ROP from extremely preterm neonates using a novel
multiplex extension proximity assay platform.90 Using hierarchical
clustering and principal component analysis (PCA), they computed
pairwise Spearman correlations on blood samples that were

longitudinally collected from 14 extremely preterm neonates at
several timepoints including at birth, postnatal weeks 1, 2, 4, and
post-menstrual age (PMA) 32, 36 and 40 weeks.90 Among 448
unique target proteins that were analyzed from 88 patient blood
samples, 20 most significant proteins were identified that
correlated with GA and/or ROP.90 The levels of 11 out of these
20 proteins showed a direct correlation to ROP, but not to GA.90

Furthermore, they correlated the function of ROP-associated
proteins to angiogenesis, neurogenesis, osteogenesis, immune
function, and lipid metabolism.90 Although these findings raise
hope for identifying disease-specific biomarker to predict ROP
severity, they need validation in larger cohorts90 (Table 4).

OMICS AND MACHINE-LEARNING APPROACHES IN
IMMUNOPERINATOLOGY AND NEONATOLOGY
Current state
Methodological advances have enabled an exponential increase in
omics data that interrogates pregnancy and maternal-placental-
fetal interactions. High-dimensional functional immune profiling
with novel analytic algorithms unraveled the exact immune
changes that occur during the time course of normal term
pregnancy as well as dyads of mothers and their respective
newborns at term.24,27 Furthermore, combining state-of-the-art
multiomics datasets (such as maternal metabolomics, proteomics,
and immunomics) have revealed that these systems are inter-
connected in determining onset of labor in term and preterm
pregnancies.25,33 In a recent study, more than 500 members of
computational biology community were assembled and chal-
lenged to predict GA and spontaneous preterm birth using whole
blood transcriptomic and/or plasma proteomic profiles using data

Table 4. Omics and machine-learning approaches to common sustained inflammation associated neonatal morbidities.

BPD, biomarker Tracheal aspirate:
↑ undecane, decanoic acid, dodecanoic acid, hexadecenoic acid,
octadecanoic acid, hexadecenoic acid methyl ester, 9-octadecanoic acid,
tetracosanoic acid, myristic acid, phosphate

Fabiano et al.

BPD, biomarker Urine:
↑ lactate, taurine, trimethylamine-N-oxide (TMAO), and myoinositol
↓ gluconate

Fanos et al.

BPD, biomarker Volatile compounds:
lyso-phosphatidylcholine, platelet activating factor (PAF), unsaturated
phosphatidyl choline, plasmenyl-phosphatidylserine

Carraro et al.

RDS, lipidomics, PT with/without exposure
to chorioamnionitis

Tracheal aspirate:
↑ glycerophospholipids, sphingolipids
↓ sphingomyelins

Giambelluca et al.

HCA, biomarker, not predictive of IVH AF:
↑ sphingomyelin, lactosylceramide

Dudzik et al.

Clinical chorioamnionitis associated SNPs
or outcomes

GWAS bloodspots:
No clinical chorioamnionitis associated SNPs identified in preterm
Association with high-grade IVH, PVL, high-grade ROP sustained

Spiegel et al.

ROP, biomarker Cord plasma:
Severe ROP/laser treatment:
↑ IL-6
↑ C5a

Park et al.

ROP, biomarker PT serum:
Severe ROP:
PILRB
Negative correlation with ROP:
HBEGF, CD84, AGER, SERPINE1, ANGPT1, APP, MMP-12, PPIB, GDF2,
THBD, CD40LG

Danielsson et al.

BPD bronchopulmonary dysplasia, IVH intraventricular hemorrhage, PVL periventricular leukomalacia, ROP retinopathy of prematurity, PT preterm, HCA
histologic chorioamnionitis, AF amniotic fluid, PILRB paired immunoglobin-like type 2 receptor beta, RDS respiratory distress syndrome, GWAS genome-wide
association study, SNP single-nucleotide polymorphism, HBEGF heparin binding EGF-like growth factor, CD cluster of differentiation, AGER advanced
glycosylation end product-specific receptor, SERPINE1 plasminogen activator inhibitor-1, ANGPT1 angiopoietin-1, APP amyloid beta precursor protein, MMP
matrix metalloproteinase, PPIB peptidylprolyl isomerase B, GDF2 growth differentiation factor 2, THBD thrombomodulin.
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obtained <37 weeks of gestation and samples collected from
asymptomatic pregnant women <33 weeks.29 This approach
accurately predicted delivery dates in spontaneous preterm
and term births, identified a leukocyte-mediated immunity gene
expression signature for PPROM and correctly estimated
ultrasound-based GAs.29 Prediction of preterm birth by transcrip-
tomics/plasma proteomic profiles could be beneficial for identify-
ing at-risk pregnancies for targeted therapies.
It has been difficult to differentiate associations from causality

for most neonatal morbidities. Approaches integrating omics
datasets into machine-learning algorithms may prove beneficial
for unbiased prediction tools for common neonatal morbidities to
enable timely interventional strategies and alleviate adverse
outcomes.91,92

Limitations
It is important to acknowledge some of the limitations of omics
approaches. While omics technologies provide sophisticated
datasets, understanding the underlying pathophysiology of a
disease may be challenging. Inflammatory, immune biomarkers in
peripheral blood may not be directly causal in the pathophysiol-
ogy of inflammatory-immune-organ injury. Furthermore, while the
machine-learning methods discussed in this manuscript can
identify important associations, they cannot, in general, make
inference about causal effects. Despite the advantage that omics
technologies can quantify a vast amount of markers, sample sizes
in individual studies are still small which necessitate further
studies to validate and evaluate the rigor and reproducibility of
existing neonatal omics studies. Analysis of such data with high
number of features and small sample sizes requires specific
machine-learning methods that can effectively identify the
most important biomarkers and results in fairly simple models.93

Over-complicated models can lead to overfitting the data and
poor generalization.93 Furthermore, any novel pathways identified
as potentially causative for pregnancy-related pathologies or
neonatal morbidities should be further studied and confirmed
in relevant animal models and then used to guide potential
therapeutic strategies.

Advancing the field
An in-depth understanding of the normal dynamic changes in
pregnancy, integration of all available clinical, multiomics datasets
with machine learning can pave the way for future research on
the causes of preterm birth including infection/inflammation-
related immunologic alterations to pregnancy complications, and
immediate neonatal and long-term adverse outcomes.2,26,91

Statistical learning methods can be applied to predict neonatal
outcomes from prenatal maternal data and additional neonatal
information that becomes available during NICU course.28

Collective knowledge gained by interrogating the maternal and
neonatal immunome along with other omics data can delineate
inherent susceptibilities of each maternal/neonatal dyad and
guide individualized treatment approaches for inflammatory/
infectious morbidities in premature neonates.35 Validation studies
with larger sample sizes can evaluate the rigor and reproducibility
of current data and advance the field. Additionally, by expanding
the sample sizes, generating centralized databanks and better
integration of machine-learning approaches, causal pathways in
neonatal diseases might be unraveled. In the future, merging
antenatal maternal and postnatal neonatal omics data, real-time
clinical data and application of machine-learning algorithms to
identify most at risk neonates for precision care will help with
timely interventions and treatment.94–97
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