Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Effects of systemic anticoagulation in a murine model of compensatory lung growth



Neonates with congenital diaphragmatic hernia (CDH) suffer from pulmonary hypoplasia (PH) and may require extracorporeal membrane oxygenation (ECMO) and anticoagulation, often with unfractionated heparin (UFH). UFH interacts with vascular endothelial growth factor (VEGF), a factor important in lung development. We investigated the effects of UFH, low molecular weight heparin (LMWH), and bivalirudin (BV) on a murine model of compensatory lung growth (CLG).


Proliferation and apoptosis were assessed in microvascular lung endothelial cells (HMVEC-L) treated with anticoagulants. Eight-week-old C57Bl/6J mice underwent left pneumonectomy and anticoagulation with low- or high-dose UFH, LMWH, BV, or saline control. Lung volume, pulmonary function tests, morphometrics, treadmill exercise tolerance, and pulmonary protein expression were examined.


UFH and LMWH inhibited HMVEC-L proliferation. BV promoted proliferation and decreased apoptosis. UFH and LMWH-treated mice had reduced lung volume, total lung capacity, alveolar volume, and septal surface area compared to controls, while BV did not affect these measures. UFH and LMWH-treated mice had lower exercise tolerance compared to controls.


UFH and LMWH impair pulmonary growth, alveolarization, and exercise tolerance, while BV does not. Alternative anticoagulants to heparin may be considered to improve functional outcomes for neonates with CDH and pulmonary hypoplasia.


  • Unfractionated heparin and low molecular weight heparin may modify compensatory lung growth by reducing microvascular lung endothelial cell proliferation and affecting pulmonary angiogenic signaling.

  • Functional effects of unfractionated heparin and low molecular weight heparin on murine compensatory lung growth include reduction in exercise tolerance.

  • Bivalirudin, a direct thrombin inhibitor, may increase microvascular lung endothelial cell proliferation and preserves lung volume, alveolarization, and exercise tolerance in a murine compensatory lung growth model.

  • Anticoagulants alternative to heparin should be further investigated for use in neonates with pulmonary hypoplastic diseases to optimize lung growth and development and improve outcomes.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Unfractionated and low molecular weight heparin inhibit endothelial cell proliferation and signaling.
Fig. 2: UFH and LMWH inhibit compensatory lung growth (CLG) and subsequent pulmonary function.
Fig. 3: UFH and LMWH impair alveolarization in CLG.
Fig. 4: UFH and LMWH impair exercise tolerance after left pneumonectomy.
Fig. 5: Anticoagulation with UFH or LMWH affect angiogenic and proliferative signaling.
Fig. 6: Bivalirudin (BV) has minimal detrimental effects on endothelial cell proliferation or CLG.

Data availability

All data generated or analyzed during this study are included in this published article (and its Supplementary Information files). For further details regarding the methods or materials, please contact the corresponding author.


  1. Tsao, K. et al. Congenital diaphragmatic hernia in the preterm infant. Surgery 148, 404–410 (2010).

    Article  Google Scholar 

  2. Seetharamaiah, R. et al. Factors associated with survival in infants with congenital diaphragmatic hernia requiring extracorporeal membrane oxygenation: a report from the Congenital Diaphragmatic Hernia Study Group. J. Pediatr. Surg. 44, 1315–1321 (2009).

    Article  Google Scholar 

  3. Burgos, C. M. & Frenckner, B. Addressing the hidden mortality in CDH: A population-based study. J. Pediatr. Surg. 52, 522–525 (2017).

    Article  Google Scholar 

  4. Hsia, C. C. Signals and mechanisms of compensatory lung growth. J. Appl. Physiol. 97, 1992–1998 (2004).

    Article  Google Scholar 

  5. Voswinckel, R. et al. Characterisation of post-pneumonectomy lung growth in adult mice. Eur. Respir. J. 24, 524–532 (2004).

    Article  CAS  Google Scholar 

  6. Sakurai, M. K. et al. Vascular endothelial growth factor accelerates compensatory lung growth after unilateral pneumonectomy. Am. J. Physiol. Lung Cell. Mol. Physiol. 292, L742–L747 (2007).

    Article  CAS  Google Scholar 

  7. Dao, D. T. et al. Vascular endothelial growth factor accelerates compensatory lung growth by increasing the alveolar units. Pediatr. Res. 83, 1182–1189 (2018).

    Article  CAS  Google Scholar 

  8. Yu, L. J. et al. Investigation of the mechanisms of VEGF-mediated compensatory lung growth: the role of the VEGF heparin-binding domain. Sci. Rep. 11, 11827 (2021).

    Article  Google Scholar 

  9. Dao, D. T. et al. Heparin impairs angiogenic signaling and compensatory lung growth after left pneumonectomy. Angiogenesis 21, 837–848 (2018).

    Article  CAS  Google Scholar 

  10. East, M. A., Landis, D. I., Thompson, M. A. & Annex, B. H. Effect of single dose of intravenous heparin on plasma levels of angiogenic growth factors. Am. J. Cardiol. 91, 1234–1236 (2003).

    Article  CAS  Google Scholar 

  11. Kapur, N. K. et al. Distinct effects of unfractionated heparin versus bivalirudin on circulating angiogenic peptides. PLoS ONE 7, e34344 (2012).

    Article  CAS  Google Scholar 

  12. Sakurai, M. K. et al. Pneumonectomy in the mouse: technique and perioperative management. J. Invest. Surg. 18, 201–205 (2005).

    Article  Google Scholar 

  13. Scherle, W. A simple method for volumetry of organs in quantitative stereology. Mikroskopie 26, 57–60 (1970).

    CAS  PubMed  Google Scholar 

  14. Ochs, M. & Muhlfeld, C. Quantitative microscopy of the lung: a problem-based approach. Part 1: Basic principles of lung stereology. Am. J. Physiol. Lung Cell. Mol. Physiol. 305, L15–L22 (2013).

    Article  CAS  Google Scholar 

  15. Muhlfeld, C. & Ochs, M. Quantitative microscopy of the lung: a problem-based approach. Part 2: stereological parameters and study designs in various diseases of the respiratory tract. Am. J. Physiol. Lung Cell. Mol. Physiol. 305, L205–L221 (2013).

    Article  Google Scholar 

  16. Dougherty, J. P., Springer, D. A. & Gershengorn, M. C. The treadmill fatigue test: a simple, high-throughput assay of fatigue-like behavior for the mouse. J. Vis. Exp. 54052 (2016).

  17. Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25, 402–408 (2001).

    Article  CAS  Google Scholar 

  18. Tsikis, S. T. et al. Lipopolysaccharide-induced murine lung injury results in long-term pulmonary changes and downregulation of angiogenic pathways. Sci. Rep. 12, 10245 (2022).

    Article  CAS  Google Scholar 

  19. Khorana, A. A., Sahni, A., Altland, O. D. & Francis, C. W. Heparin inhibition of endothelial cell proliferation and organization is dependent on molecular weight. Arterioscler. Thromb. Vasc. Biol. 23, 2110–2115 (2003).

    Article  CAS  Google Scholar 

  20. Collen, A. et al. Unfractionated and low molecular weight heparin affect fibrin structure and angiogenesis in vitro. Cancer Res. 60, 6196–6200 (2000).

    CAS  PubMed  Google Scholar 

  21. Furue, M. K. et al. Heparin promotes the growth of human embryonic stem cells in a defined serum-free medium. Proc. Natl Acad. Sci. USA 105, 13409–13414 (2008).

    Article  CAS  Google Scholar 

  22. Teran, M. & Nugent, M. A. Synergistic binding of vascular endothelial growth factor-A and its receptors to heparin selectively modulates complex affinity. J. Biol. Chem. 290, 16451–16462 (2015).

    Article  CAS  Google Scholar 

  23. Sack, K. D., Teran, M. & Nugent, M. A. Extracellular matrix stiffness controls VEGF signaling and processing in endothelial cells. J. Cell. Physiol. 231, 2026–2039 (2016).

    Article  CAS  Google Scholar 

  24. Dao, D. T. et al. Heparin-binding epidermal growth factor-like growth factor as a critical mediator of tissue repair and regeneration. Am. J. Pathol. 188, 2446–2456 (2018).

    Article  CAS  Google Scholar 

  25. Shibuya, M. Vascular endothelial growth factor and its receptor system: physiological functions in angiogenesis and pathological roles in various diseases. J. Biochem. 153, 13–19 (2013).

    Article  CAS  Google Scholar 

  26. Dao, D. T. et al. A paradoxical method to enhance compensatory lung growth: Utilizing a VEGF inhibitor. PLoS ONE 13, e0208579 (2018).

    Article  CAS  Google Scholar 

  27. Tazawa, S. et al. Heparin stimulates the proliferation of bovine aortic endothelial cells probably through activation of endogenous basic fibroblast growth factor. Thromb. Res. 72, 431–439 (1993).

    Article  CAS  Google Scholar 

  28. Hales, C. A., Kradin, R. L., Brandstetter, R. D. & Zhu, Y. J. Impairment of hypoxic pulmonary artery remodeling by heparin in mice. Am. Rev. Respir. Dis. 128, 747–751 (1983).

    CAS  PubMed  Google Scholar 

  29. Hassoun, P. M., Thompson, B. T. & Hales, C. A. Partial reversal of hypoxic pulmonary hypertension by heparin. Am. Rev. Respir. Dis. 145, 193–196 (1992).

    Article  CAS  Google Scholar 

  30. Halayko, A. J., Rector, E. & Stephens, N. L. Airway smooth muscle cell proliferation: characterization of subpopulations by sensitivity to heparin inhibition. Am. J. Physiol. 274, L17–L25 (1998).

    CAS  PubMed  Google Scholar 

  31. Zhao, G. et al. Heparin reduces overcirculation-induced pulmonary artery remodeling through p38 MAPK in piglet. Ann. Thorac. Surg. 99, 1677–1684 (2015).

    Article  Google Scholar 

  32. Al-Ansari, E. et al. Low-molecular-weight heparin inhibits hypoxic pulmonary hypertension and vascular remodeling in guinea pigs. Chest 132, 1898–1905 (2007).

    Article  CAS  Google Scholar 

  33. Kays, D. W. et al. Outcomes in the physiologically most severe congenital diaphragmatic hernia (CDH) patients: whom should we treat? J. Pediatr. Surg. 50, 893–897 (2015).

    Article  Google Scholar 

  34. Snyder, C. W. et al. A perioperative bivalirudin anticoagulation protocol for neonates with congenital diaphragmatic hernia on extracorporeal membrane oxygenation. Thromb. Res. 193, 198–203 (2020).

    Article  CAS  Google Scholar 

  35. Hamzah, M., Jarden, A. M., Ezetendu, C. & Stewart, R. Evaluation of bivalirudin as an alternative to heparin for systemic anticoagulation in pediatric extracorporeal membrane oxygenation. Pediatr. Crit. Care Med. 21, 827–834 (2020).

    Article  Google Scholar 

  36. Stoll, B. J. et al. Trends in care practices, morbidity, and mortality of extremely preterm neonates, 1993-2012. JAMA 314, 1039–1051 (2015).

    Article  CAS  Google Scholar 

  37. Higgins, R. D. et al. Bronchopulmonary dysplasia: Executive Summary of a Workshop. J. Pediatr. 197, 300–308 (2018).

    Article  Google Scholar 

Download references


The authors acknowledge the neurodevelopmental behavior core at Boston Children’s Hospital CHB IDDRC, 1U54HD090255.


Research funding for this study was provided by the Richard and Sandra Cummings Research Fellowship of the Beth Israel Deaconess Medical Center Department of Surgery (L.J.Y.), Boston Children’s Hospital Surgical Foundation (L.J.Y., V.H.K., J.D.S., M.P.), The Boston Children’s Hospital Vascular Biology Program (all), the Joshua Ryan Rappaport Fellowship of the Boston Children’s Hospital Department of Surgery (L.J.Y.), the National Institutes of Health grants 2T32DK007754–21 (S.T.T.) and 5T32HL007734 (D.T.D., S.C.F.), and the Howard Hughes Medical Institute (B.S.C.).

Author information

Authors and Affiliations



Conceptualization: V.H.K., L.J.Y., D.T.D., M.P. Data curation: L.J.Y., V.H.K., S.T.T., J.D.S., A.P., B.S.C., S.C.F. Formal analysis: L.J.Y., V.H.K., P.D.M. Funding acquisition: L.J.Y., M.P. Investigation: V.H.K., L.J.Y., S.T.T., D.T.D., A.P. Methodology: V.H.K., L.J.Y., S.T.T., D.T.D., S.C.F. Project administration: A.P. Supervision: M.P. Writing—original draft: L.J.Y., V.H.K., S.T.T. Writing—review and editing: L.J.Y., S.T.T., V.H.K., D.T.D., J.D.S., P.D.M., S.C.F., B.S.C., H.K., M.P.

Corresponding author

Correspondence to Mark Puder.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yu, L.J., Ko, V.H., Tsikis, S.T. et al. Effects of systemic anticoagulation in a murine model of compensatory lung growth. Pediatr Res (2022).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI:


Quick links